An algorithm for physics informed scan path optimization in additive manufacturing
[Display omitted] •Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure. Site specific microstructure cont...
Uložené v:
| Vydané v: | Computational materials science Ročník 212; číslo 1; s. 111566 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier B.V
01.09.2022
Elsevier |
| Predmet: | |
| ISSN: | 0927-0256, 1879-0801 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure.
Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1.A heat transfer model for simulating the temperature field at a given time.2.A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3.A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this paper, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control. |
|---|---|
| AbstractList | [Display omitted]
•Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure.
Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1.A heat transfer model for simulating the temperature field at a given time.2.A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3.A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this paper, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control. Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1. A heat transfer model for simulating the temperature field at a given time.2. A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3. A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this work, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control. |
| ArticleNumber | 111566 |
| Author | Stump, B. |
| Author_xml | – sequence: 1 givenname: B. surname: Stump fullname: Stump, B. email: stumpbc@ornl.gov organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States |
| BackLink | https://www.osti.gov/servlets/purl/1872871$$D View this record in Osti.gov |
| BookMark | eNqNkE9LxDAQxYOs4O7qZzB4b02aNm0PHpbFf7AgiJ5DmqTbLNukJNmF9dObWvHgRZnDMMz7DfPeAsyMNQqAa4xSjDC93aXC9j0PXug0Q1mWYowLSs_AHFdlnaAK4RmYozorE5QV9AIsvN-hSNZVNgevKwP5fmudDl0PW-vg0J28Fh5qE6deSegFN3DgoYN2CLrXHzxoa-Iecil10EcFe24OLRfh4LTZXoLzlu-9uvruS_D-cP-2fko2L4_P69UmEaTGIREUS4oIx01RKlLJtsYC1SXPsVC0JJzWpJV5kYtYTVMiEhdUSoJlzpumpWQJbqa71gfNov2gRCesMUoEFr1nVYmj6G4SCWe9d6plUfdlIDiu9wwjNqbIduwnRTamyKYUI1_-4gene-5O_yBXE6liBket3PiiMkJJ7cYPpdV_3vgEz02VgA |
| CitedBy_id | crossref_primary_10_1007_s40964_025_01251_w crossref_primary_10_1016_j_addma_2023_103861 crossref_primary_10_1016_j_commatsci_2024_112901 crossref_primary_10_1016_j_commatsci_2025_113684 crossref_primary_10_1016_j_addma_2023_103708 crossref_primary_10_1016_j_addma_2024_104321 crossref_primary_10_1016_j_addma_2023_103551 |
| Cites_doi | 10.1016/j.pmatsci.2017.10.001 10.1016/j.scriptamat.2012.06.014 10.1016/j.actamat.2019.11.053 10.1016/j.actamat.2017.08.038 10.1016/j.commatsci.2018.08.064 10.1007/s11837-017-2264-3 10.1016/S1359-6454(00)00367-0 10.1115/1.4047916 10.1007/s00170-018-2038-2 10.1016/j.jmatprotec.2015.02.013 10.1016/j.apm.2019.07.008 10.1016/j.commatsci.2020.109861 10.1016/j.actamat.2016.12.065 10.1179/1743284714Y.0000000734 10.1016/j.actamat.2016.03.063 10.1007/s40571-020-00358-x 10.1016/j.msea.2016.03.036 10.1007/s40192-019-00125-8 10.1016/j.addma.2020.101354 10.1016/j.neucom.2015.12.114 10.1016/0025-5416(84)90201-5 10.1038/srep43554 10.1007/s11663-000-0022-2 10.1016/j.apm.2018.09.018 10.1016/S1359-6454(02)00317-8 10.1016/j.matdes.2017.11.021 10.1016/j.commatsci.2018.04.004 10.1007/s11661-020-06008-4 10.1088/1361-651X/abca19 10.1080/09506608.2015.1116649 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
| CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1016/j.commatsci.2022.111566 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0801 |
| ExternalDocumentID | 1872871 10_1016_j_commatsci_2022_111566 S0927025622003147 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 6XO AALMO ABPIF ABPTK OIOZB OTOTI |
| ID | FETCH-LOGICAL-c391t-c61d603a1b57e38df91c097a41ce673a693fd454c4c4bb70341c6dd31d4abbf63 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822953300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-0256 |
| IngestDate | Mon Jun 19 03:48:40 EDT 2023 Sat Nov 29 07:08:27 EST 2025 Tue Nov 18 21:08:21 EST 2025 Fri Feb 23 02:40:21 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Numerical modeling Scan path optimization Additive manufacturing Microstructure control Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-c61d603a1b57e38df91c097a41ce673a693fd454c4c4bb70341c6dd31d4abbf63 |
| Notes | USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office USDOE Office of Electricity (OE) AC05-00OR22725 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1872871 |
| ParticipantIDs | osti_scitechconnect_1872871 crossref_citationtrail_10_1016_j_commatsci_2022_111566 crossref_primary_10_1016_j_commatsci_2022_111566 elsevier_sciencedirect_doi_10_1016_j_commatsci_2022_111566 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computational materials science |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Taylor_2002_Applied-Mathematical-Modelling, m (2002) 12. Haines, Plotkowski, Frederick, Schwalbach, Babu (b0100) 2018; 155 Raghavan, Dehoff, Pannala, Simunovic, Kirka, Turner, Carlson, Babu (b0050) 2016; 112 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0195) 2014 Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0220) 2017; 140 Stump, Plotkowski (b0135) 2019; 75 B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, ArXiv Prepr. ArXiv1505.00853. (2015). http://arxiv.org/abs/1505.00853. Kirka, Lee, Greeley, Okello, Goin, Pearce, Dehoff (b0045) 2017; 69 Tang, Pistorius, Beuth (b0065) 2017; 14 Körner, Ramsperger, Meid, Bürger, Wollgramm, Bartsch, Eggeler (b0155) 2018; 49 B. Stump, A. Plotkowski, Spatiotemporal Parallelization of an Analytical Heat Conduction Model for Additive Manufacturing via a Hybrid OpenMP + MPI Approach, Comput. Mater. Sci. (2020). Zavala-Arredondo, Ali, Groom, Mumtaz (b0115) 2018; 97 de Myttenaere, Golden, Le Grand, Rossi (b0205) 2016; 192 Hunt (b0175) 1984; 65 Stump, Plotkowski (b0140) 2019; 141 Plotkowski, Pries, List, Nandwana, Stump, Carver, Dehoff (b0025) 2019; 29 Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0165) 2017; 140 Nguyen, Ohta, Matsuoka, Suzuki, Maeda (b0185) 1999; I Holm, Cohn, Gao, Kitahara, Matson, Lei, Yarasi (b0090) 2020; 51 R. Forslund, A. Snis, S. Larsson, Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters, (2018). http://arxiv.org/abs/1803.10668. Dehoff, Kirka, Sames, Bilheux, Tremsin, Lowe, Babu (b0040) 2015; 31 Weingarten, Buchbinder, Pirch, Meiners, Wissenbach, Poprawe (b0070) 2015; 221 Plotkowski, Rios, Sridharan, Sims, Unocic, Ott, Dehoff, Babu (b0075) 2017; 126 Maeshima, Kim, Zohdi (b0105) 2021; 8 Kok, Tan, Wang, Nai, Loh, Liu, Tor (b0010) 2018; 139 Raplee, Plotkowski, Kirka, Dinwiddie, Okello, Dehoff, Babu (b0020) 2017; 7 Fernandez-Zelaia, Melkote (b0085) 2019; 8 W. Halsey, J. Ferguson, A. Plotkowski, R. Deho, V. Paquit, Geometry-independent microstructure optimization for electron beam powder bed fusion additive manufacturing, 35 (2020). doi:10.1016/j.addma.2020.101354. Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0035) 2017; 140 Gäumann, Bezençon, Canalis, Kurz (b0095) 2001; 49 Stump, Plotkowski, Coleman (b0225) 2021; 29 Komanduri, Hou (b0110) 2000; 31 Raghavan, Stump, Fernandez-Zelaia, Kirka, Simunovic (b0180) 2021; 47 Geiger, Kunze, Etter (b0150) 2016; 661 Coleman, Plotkowski, Stump, Raghavan, Sabau, Krane, Heigel, Ricker, Levine, Babu (b0120) 2020; 142 Sames, List, Pannala, Dehoff, Babu (b0015) 2016; 61 Babu, Elmer, Vitek, David (b0080) 2002; 50 D.P. Kingma, Adam: A Method for Stochastic Optimization, ICLR. (2015) 1–15. DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (b0005) 2018; 92 Shi, Khairallah, Roehling, Heo, McKeown, Matthews (b0160) 2020; 184 S.L. Smith, P. Kindermans, C. Ying, Q. V Le, G. Brain, Don’t Decay the Learning Rate, Increase the Batch Size, ICLR. (2018) 1–11. Bishop (b0190) 2006 Rolchigo, LeSar (b0060) 2018; 150 Rai, Helmer, Körner (b0055) 2016; 13 Dinda, Dasgupta, Mazumder (b0030) 2012; 67 Raghavan (10.1016/j.commatsci.2022.111566_b0035) 2017; 140 Plotkowski (10.1016/j.commatsci.2022.111566_b0075) 2017; 126 Kok (10.1016/j.commatsci.2022.111566_b0010) 2018; 139 10.1016/j.commatsci.2022.111566_b0130 Raghavan (10.1016/j.commatsci.2022.111566_b0180) 2021; 47 Weingarten (10.1016/j.commatsci.2022.111566_b0070) 2015; 221 Stump (10.1016/j.commatsci.2022.111566_b0135) 2019; 75 10.1016/j.commatsci.2022.111566_b0210 Geiger (10.1016/j.commatsci.2022.111566_b0150) 2016; 661 10.1016/j.commatsci.2022.111566_b0215 Fernandez-Zelaia (10.1016/j.commatsci.2022.111566_b0085) 2019; 8 Raghavan (10.1016/j.commatsci.2022.111566_b0165) 2017; 140 Dinda (10.1016/j.commatsci.2022.111566_b0030) 2012; 67 Plotkowski (10.1016/j.commatsci.2022.111566_b0025) 2019; 29 Rai (10.1016/j.commatsci.2022.111566_b0055) 2016; 13 Raplee (10.1016/j.commatsci.2022.111566_b0020) 2017; 7 Tang (10.1016/j.commatsci.2022.111566_b0065) 2017; 14 Bishop (10.1016/j.commatsci.2022.111566_b0190) 2006 Sames (10.1016/j.commatsci.2022.111566_b0015) 2016; 61 DebRoy (10.1016/j.commatsci.2022.111566_b0005) 2018; 92 Dehoff (10.1016/j.commatsci.2022.111566_b0040) 2015; 31 Nguyen (10.1016/j.commatsci.2022.111566_b0185) 1999; I Gäumann (10.1016/j.commatsci.2022.111566_b0095) 2001; 49 Coleman (10.1016/j.commatsci.2022.111566_b0120) 2020; 142 de Myttenaere (10.1016/j.commatsci.2022.111566_b0205) 2016; 192 10.1016/j.commatsci.2022.111566_b0145 10.1016/j.commatsci.2022.111566_b0200 Maeshima (10.1016/j.commatsci.2022.111566_b0105) 2021; 8 Raghavan (10.1016/j.commatsci.2022.111566_b0220) 2017; 140 10.1016/j.commatsci.2022.111566_b0125 Haines (10.1016/j.commatsci.2022.111566_b0100) 2018; 155 Körner (10.1016/j.commatsci.2022.111566_b0155) 2018; 49 Babu (10.1016/j.commatsci.2022.111566_b0080) 2002; 50 Komanduri (10.1016/j.commatsci.2022.111566_b0110) 2000; 31 Stump (10.1016/j.commatsci.2022.111566_b0225) 2021; 29 Holm (10.1016/j.commatsci.2022.111566_b0090) 2020; 51 Shi (10.1016/j.commatsci.2022.111566_b0160) 2020; 184 Raghavan (10.1016/j.commatsci.2022.111566_b0050) 2016; 112 Kirka (10.1016/j.commatsci.2022.111566_b0045) 2017; 69 Szegedy (10.1016/j.commatsci.2022.111566_b0195) 2014 Zavala-Arredondo (10.1016/j.commatsci.2022.111566_b0115) 2018; 97 Stump (10.1016/j.commatsci.2022.111566_b0140) 2019; 141 Hunt (10.1016/j.commatsci.2022.111566_b0175) 1984; 65 Rolchigo (10.1016/j.commatsci.2022.111566_b0060) 2018; 150 10.1016/j.commatsci.2022.111566_b0170 |
| References_xml | – volume: 141 year: 2019 ident: b0140 article-title: A forward time stepping heat conduction model for spot melt additive manufacturing publication-title: A Forward Time Stepping Heat Conduction Model for Spot Melt Additive Manufacturing – volume: 192 start-page: 38 year: 2016 end-page: 48 ident: b0205 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing – volume: 112 start-page: 303 year: 2016 end-page: 314 ident: b0050 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater. – year: 2006 ident: b0190 article-title: Pattern recognition and machine learning – volume: 31 start-page: 931 year: 2015 end-page: 938 ident: b0040 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. – volume: 69 start-page: 523 year: 2017 end-page: 531 ident: b0045 article-title: Strategy for texture management in metals additive manufacturing publication-title: Jom. – volume: 14 start-page: 39 year: 2017 end-page: 48 ident: b0065 article-title: Prediction of lack-of-fusion porosity for powder bed fusion publication-title: Addit. Manuf. – volume: 140 start-page: 375 year: 2017 end-page: 387 ident: b0220 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater. – reference: R. Forslund, A. Snis, S. Larsson, Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters, (2018). http://arxiv.org/abs/1803.10668. – volume: 140 start-page: 375 year: 2017 end-page: 387 ident: b0165 article-title: Acta Materialia Localized melt-scan strategy for site speci fi c control of grain size and primary dendrite arm spacing in electron beam additive publication-title: Acta Mater. – volume: 61 start-page: 315 year: 2016 end-page: 360 ident: b0015 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. – volume: 97 start-page: 1383 year: 2018 end-page: 1396 ident: b0115 article-title: Investigating the melt pool properties and thermal effects of multi-laser diode area melting publication-title: Int. J. Adv. Manuf. Technol. – volume: 49 start-page: 1051 year: 2001 end-page: 1062 ident: b0095 article-title: Single-crystal laser deposition of superalloys processing-microstructure maps publication-title: Acta Mater. – year: 2014 ident: b0195 publication-title: Going Deeper with Convolutions – volume: 13 start-page: 124 year: 2016 end-page: 134 ident: b0055 article-title: Simulation of grain structure evolution during powder bed based additive manufacturing publication-title: Addit. Manuf. – volume: 31 start-page: 1353 year: 2000 end-page: 1370 ident: b0110 article-title: Thermal analysis of the arc welding process: Part I. General solutions publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. – volume: 29 year: 2019 ident: b0025 article-title: Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si publication-title: Addit. Manuf. – volume: 8 start-page: 613 year: 2021 end-page: 623 ident: b0105 article-title: Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method publication-title: Comput. Part. Mech. – reference: D.P. Kingma, Adam: A Method for Stochastic Optimization, ICLR. (2015) 1–15. – reference: B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, ArXiv Prepr. ArXiv1505.00853. (2015). http://arxiv.org/abs/1505.00853. – reference: S.L. Smith, P. Kindermans, C. Ying, Q. V Le, G. Brain, Don’t Decay the Learning Rate, Increase the Batch Size, ICLR. (2018) 1–11. – volume: 29 start-page: 035001 year: 2021 ident: b0225 article-title: Solidification Dynamics in Metal Additive Manufacturing: Analysis of Model Assumptions publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 142 year: 2020 ident: b0120 article-title: Sensitivity of thermal predictions to uncertain surface tension data in laser additive manufacturing publication-title: J. Heat Transfer. – volume: 184 start-page: 284 year: 2020 end-page: 305 ident: b0160 article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy publication-title: Acta Mater. – volume: 139 start-page: 565 year: 2018 end-page: 586 ident: b0010 article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review publication-title: Mater. Des. – volume: 155 start-page: 340 year: 2018 end-page: 349 ident: b0100 article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing publication-title: Comput. Mater. Sci. – volume: 7 start-page: 1 year: 2017 end-page: 16 ident: b0020 article-title: Thermographic microstructure monitoring in electron beam additive manufacturing publication-title: Sci. Rep. – volume: 65 start-page: 75 year: 1984 end-page: 83 ident: b0175 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. – volume: I start-page: 265 year: 1999 end-page: 274 ident: b0185 article-title: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources publication-title: Weld. Res. Suppl. – volume: 140 start-page: 375 year: 2017 end-page: 387 ident: b0035 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron publication-title: Acta Mater. – volume: 51 start-page: 5985 year: 2020 end-page: 5999 ident: b0090 article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis publication-title: Metall. Mater. Trans. A. – volume: 49 start-page: 3781 year: 2018 end-page: 3792 ident: b0155 article-title: Microstructure and mechanical properties of CMSX-4 single crystals prepared by publication-title: Addit. Manuf. – reference: G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Taylor_2002_Applied-Mathematical-Modelling, m (2002) 12. – volume: 150 start-page: 535 year: 2018 end-page: 545 ident: b0060 article-title: Modeling of binary alloy solidification under conditions representative of additive manufacturing publication-title: Comput. Mater. Sci. – volume: 8 start-page: 17 year: 2019 end-page: 36 ident: b0085 article-title: Process-structure-property modeling for severe plastic deformation processes using orientation imaging microscopy and data-driven techniques publication-title: Integr. Mater. Manuf. Innov. – volume: 126 start-page: 507 year: 2017 end-page: 519 ident: b0075 article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing publication-title: Acta Mater. – volume: 661 start-page: 240 year: 2016 end-page: 246 ident: b0150 article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies publication-title: Mater. Sci. Eng. A. – reference: W. Halsey, J. Ferguson, A. Plotkowski, R. Deho, V. Paquit, Geometry-independent microstructure optimization for electron beam powder bed fusion additive manufacturing, 35 (2020). doi:10.1016/j.addma.2020.101354. – volume: 221 start-page: 112 year: 2015 end-page: 120 ident: b0070 article-title: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg publication-title: J. Mater. Process. Technol. – volume: 50 start-page: 4763 year: 2002 end-page: 4781 ident: b0080 article-title: Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds publication-title: Acta Mater. – reference: B. Stump, A. Plotkowski, Spatiotemporal Parallelization of an Analytical Heat Conduction Model for Additive Manufacturing via a Hybrid OpenMP + MPI Approach, Comput. Mater. Sci. (2020). – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: b0005 article-title: Additive manufacturing of metallic components – Process, structure and properties publication-title: Prog. Mater. Sci. – volume: 75 start-page: 787 year: 2019 end-page: 805 ident: b0135 article-title: An adaptive integration scheme for heat conduction in additive manufacturing publication-title: Appl. Math. Model. – volume: 47 start-page: 102209 year: 2021 ident: b0180 article-title: Influence of geometry on columnar to equiaxed transition during electron beam powder bed fusion of IN718 publication-title: Addit. Manuf. – volume: 67 start-page: 503 year: 2012 end-page: 506 ident: b0030 article-title: Texture control during laser deposition of nickel-based superalloy publication-title: Scr. Mater. – year: 2014 ident: 10.1016/j.commatsci.2022.111566_b0195 publication-title: Going Deeper with Convolutions – ident: 10.1016/j.commatsci.2022.111566_b0200 – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0005 article-title: Additive manufacturing of metallic components – Process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 – volume: 67 start-page: 503 issue: 5 year: 2012 ident: 10.1016/j.commatsci.2022.111566_b0030 article-title: Texture control during laser deposition of nickel-based superalloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.06.014 – volume: 184 start-page: 284 year: 2020 ident: 10.1016/j.commatsci.2022.111566_b0160 article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.053 – volume: 140 start-page: 375 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0035 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.038 – ident: 10.1016/j.commatsci.2022.111566_b0215 – volume: 14 start-page: 39 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0065 article-title: Prediction of lack-of-fusion porosity for powder bed fusion publication-title: Addit. Manuf. – ident: 10.1016/j.commatsci.2022.111566_b0210 – volume: 155 start-page: 340 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0100 article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.08.064 – volume: 141 issue: 11 year: 2019 ident: 10.1016/j.commatsci.2022.111566_b0140 article-title: A forward time stepping heat conduction model for spot melt additive manufacturing publication-title: A Forward Time Stepping Heat Conduction Model for Spot Melt Additive Manufacturing – volume: 69 start-page: 523 issue: 3 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0045 article-title: Strategy for texture management in metals additive manufacturing publication-title: Jom. doi: 10.1007/s11837-017-2264-3 – volume: 49 start-page: 1051 issue: 6 year: 2001 ident: 10.1016/j.commatsci.2022.111566_b0095 article-title: Single-crystal laser deposition of superalloys processing-microstructure maps publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00367-0 – volume: 142 year: 2020 ident: 10.1016/j.commatsci.2022.111566_b0120 article-title: Sensitivity of thermal predictions to uncertain surface tension data in laser additive manufacturing publication-title: J. Heat Transfer. doi: 10.1115/1.4047916 – volume: 49 start-page: 3781 issue: 9 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0155 article-title: Microstructure and mechanical properties of CMSX-4 single crystals prepared by publication-title: Addit. Manuf. – volume: 97 start-page: 1383 issue: 1-4 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0115 article-title: Investigating the melt pool properties and thermal effects of multi-laser diode area melting publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2038-2 – volume: 221 start-page: 112 year: 2015 ident: 10.1016/j.commatsci.2022.111566_b0070 article-title: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.02.013 – volume: 75 start-page: 787 year: 2019 ident: 10.1016/j.commatsci.2022.111566_b0135 article-title: An adaptive integration scheme for heat conduction in additive manufacturing publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.008 – ident: 10.1016/j.commatsci.2022.111566_b0145 doi: 10.1016/j.commatsci.2020.109861 – volume: 140 start-page: 375 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0220 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.038 – volume: 126 start-page: 507 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0075 article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.065 – volume: 31 start-page: 931 issue: 8 year: 2015 ident: 10.1016/j.commatsci.2022.111566_b0040 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000734 – volume: 112 start-page: 303 year: 2016 ident: 10.1016/j.commatsci.2022.111566_b0050 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.063 – volume: 13 start-page: 124 year: 2016 ident: 10.1016/j.commatsci.2022.111566_b0055 article-title: Simulation of grain structure evolution during powder bed based additive manufacturing publication-title: Addit. Manuf. – volume: 47 start-page: 102209 year: 2021 ident: 10.1016/j.commatsci.2022.111566_b0180 article-title: Influence of geometry on columnar to equiaxed transition during electron beam powder bed fusion of IN718 publication-title: Addit. Manuf. – volume: 8 start-page: 613 issue: 3 year: 2021 ident: 10.1016/j.commatsci.2022.111566_b0105 article-title: Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method publication-title: Comput. Part. Mech. doi: 10.1007/s40571-020-00358-x – volume: 661 start-page: 240 year: 2016 ident: 10.1016/j.commatsci.2022.111566_b0150 article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2016.03.036 – volume: 8 start-page: 17 issue: 1 year: 2019 ident: 10.1016/j.commatsci.2022.111566_b0085 article-title: Process-structure-property modeling for severe plastic deformation processes using orientation imaging microscopy and data-driven techniques publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-019-00125-8 – ident: 10.1016/j.commatsci.2022.111566_b0170 doi: 10.1016/j.addma.2020.101354 – volume: 192 start-page: 38 year: 2016 ident: 10.1016/j.commatsci.2022.111566_b0205 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 – volume: 65 start-page: 75 issue: 1 year: 1984 ident: 10.1016/j.commatsci.2022.111566_b0175 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(84)90201-5 – volume: 140 start-page: 375 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0165 article-title: Acta Materialia Localized melt-scan strategy for site speci fi c control of grain size and primary dendrite arm spacing in electron beam additive publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.038 – volume: 29 year: 2019 ident: 10.1016/j.commatsci.2022.111566_b0025 article-title: Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si publication-title: Addit. Manuf. – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.commatsci.2022.111566_b0020 article-title: Thermographic microstructure monitoring in electron beam additive manufacturing publication-title: Sci. Rep. doi: 10.1038/srep43554 – volume: 31 start-page: 1353 issue: 6 year: 2000 ident: 10.1016/j.commatsci.2022.111566_b0110 article-title: Thermal analysis of the arc welding process: Part I. General solutions publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. doi: 10.1007/s11663-000-0022-2 – ident: 10.1016/j.commatsci.2022.111566_b0130 doi: 10.1016/j.apm.2018.09.018 – volume: 50 start-page: 4763 issue: 19 year: 2002 ident: 10.1016/j.commatsci.2022.111566_b0080 article-title: Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00317-8 – volume: 139 start-page: 565 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0010 article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.021 – volume: 150 start-page: 535 year: 2018 ident: 10.1016/j.commatsci.2022.111566_b0060 article-title: Modeling of binary alloy solidification under conditions representative of additive manufacturing publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.004 – ident: 10.1016/j.commatsci.2022.111566_b0125 – volume: 51 start-page: 5985 year: 2020 ident: 10.1016/j.commatsci.2022.111566_b0090 article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-020-06008-4 – volume: 29 start-page: 035001 issue: 3 year: 2021 ident: 10.1016/j.commatsci.2022.111566_b0225 article-title: Solidification Dynamics in Metal Additive Manufacturing: Analysis of Model Assumptions publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/abca19 – year: 2006 ident: 10.1016/j.commatsci.2022.111566_b0190 – volume: 61 start-page: 315 issue: 5 year: 2016 ident: 10.1016/j.commatsci.2022.111566_b0015 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2015.1116649 – volume: I start-page: 265 year: 1999 ident: 10.1016/j.commatsci.2022.111566_b0185 article-title: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources publication-title: Weld. Res. Suppl. |
| SSID | ssj0016982 |
| Score | 2.4030771 |
| Snippet | [Display omitted]
•Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm... Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 111566 |
| SubjectTerms | Additive manufacturing Machine learning MATERIALS SCIENCE Microstructure control Numerical modeling Scan path optimization |
| Title | An algorithm for physics informed scan path optimization in additive manufacturing |
| URI | https://dx.doi.org/10.1016/j.commatsci.2022.111566 https://www.osti.gov/servlets/purl/1872871 |
| Volume | 212 |
| WOSCitedRecordID | wos000822953300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0801 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016982 issn: 0927-0256 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7RwKEcKl4Vj4L20FtkZHs3--AWVSDggKqKSrlZ9q5NG5FNRALi5zPjXbuG8iiHKpIVeTXJZr7x7MxkHoR8lWDCD1IpwDexKuJwYMMjVZhIyLTAdmjcFqYeNiEvLtRopL-HIYjzepyAdE7d3-vZf4Ua7gHYWDr7DrjbD4Ub8B5AhyvADtd_An7o-vn11RSc_l-TOonQBy_qvCswUMHAnKPmw1HE_SkojEmoxMTIB2YX1blEk9zdYs1DXcTYNWD9FIgmggjmrv9J_XCStgGbBYhJLTulG-cTLC087AYYwDdtMqhC1Csc0d3QYSojtJX8GeIVp5JApQJd0Kxpkj4Vob80tg8ejJHhsGfY7CHuATX5QDzpke2dFiXRyftAllNwdVSPLA_Pjkfn7T9HQtcDwto9Psrpe_ZLXrJIelNQsh1j43KNfApeAh16dNfJUuk2yGqnd-Qm-TF0tMWZArI04EwbnCniTBFn2sUZ1mmDM32E8xb5eXJ8-e00CgMyIsN0soiMSKyIWZ4UA1kyZSudmFjLnCemFJLlQrPK8gE38CoK0O2wIKxlieV5UVSCfSY9N3XlNqE8NpUt40qkhnNuwQvmuTYmVmWsWcL4DhENkzITusfjEJPrrEkTHGctdzPkbua5u0PilnDmG6i8TXLUoJAF6fX2XQZC8zbxHuKGhNgF2WC6GFAGsdl9dXWPfPzzAHwhvcXNbblPVszd4vf85iBI2gOIbolE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+physics+informed+scan+path+optimization+in+additive+manufacturing&rft.jtitle=Computational+materials+science&rft.au=Stump%2C+Benjamin+C.&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=212&rft.issue=1&rft_id=info:doi/10.1016%2Fj.commatsci.2022.111566&rft.externalDocID=1872871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |