An algorithm for physics informed scan path optimization in additive manufacturing

[Display omitted] •Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure. Site specific microstructure cont...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational materials science Ročník 212; číslo 1; s. 111566
Hlavný autor: Stump, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier B.V 01.09.2022
Elsevier
Predmet:
ISSN:0927-0256, 1879-0801
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure. Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1.A heat transfer model for simulating the temperature field at a given time.2.A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3.A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this paper, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control.
AbstractList [Display omitted] •Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm for creating a variety of scan paths.•Results show ability for fine control of site-specific microstructure. Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1.A heat transfer model for simulating the temperature field at a given time.2.A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3.A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this paper, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control.
Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part performance. One way to achieve site specific microstructure control is through control of the solidification conditions via the construction of intricate scan paths; however, the search space for such a problem is large. Previous attempts only considered the solidification conditions at the top surface while also requiring either lots of manual-fine tuning or large amounts of computational resources. This paper introduces a general method for scan path optimization which considers the solidification conditions in the bulk of the material without an increase in computational expense. This method consists of three core components:1. A heat transfer model for simulating the temperature field at a given time.2. A surrogate model which takes scan pattern information and temperature data and predicts the solidification conditions of the bulk as well as the meltpool depths for a spot melt.3. A decision algorithm to decide which spot melt should be printed next based on the outputs of the surrogate model.Each of these components can be changed without changing the overall method. Within this work, this method is applied in the creation of an algorithm containing a semi-analytic heat transfer model to simulate the temperature field, a fully convolutional neural network (FCNN) as the surrogate model, and a greedy decision algorithm. The resulting algorithm produced complex scan patterns which gave strong results for simulated microstructure control.
ArticleNumber 111566
Author Stump, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Stump
  fullname: Stump, B.
  email: stumpbc@ornl.gov
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
BackLink https://www.osti.gov/servlets/purl/1872871$$D View this record in Osti.gov
BookMark eNqNkE9LxDAQxYOs4O7qZzB4b02aNm0PHpbFf7AgiJ5DmqTbLNukJNmF9dObWvHgRZnDMMz7DfPeAsyMNQqAa4xSjDC93aXC9j0PXug0Q1mWYowLSs_AHFdlnaAK4RmYozorE5QV9AIsvN-hSNZVNgevKwP5fmudDl0PW-vg0J28Fh5qE6deSegFN3DgoYN2CLrXHzxoa-Iecil10EcFe24OLRfh4LTZXoLzlu-9uvruS_D-cP-2fko2L4_P69UmEaTGIREUS4oIx01RKlLJtsYC1SXPsVC0JJzWpJV5kYtYTVMiEhdUSoJlzpumpWQJbqa71gfNov2gRCesMUoEFr1nVYmj6G4SCWe9d6plUfdlIDiu9wwjNqbIduwnRTamyKYUI1_-4gene-5O_yBXE6liBket3PiiMkJJ7cYPpdV_3vgEz02VgA
CitedBy_id crossref_primary_10_1007_s40964_025_01251_w
crossref_primary_10_1016_j_addma_2023_103861
crossref_primary_10_1016_j_commatsci_2024_112901
crossref_primary_10_1016_j_commatsci_2025_113684
crossref_primary_10_1016_j_addma_2023_103708
crossref_primary_10_1016_j_addma_2024_104321
crossref_primary_10_1016_j_addma_2023_103551
Cites_doi 10.1016/j.pmatsci.2017.10.001
10.1016/j.scriptamat.2012.06.014
10.1016/j.actamat.2019.11.053
10.1016/j.actamat.2017.08.038
10.1016/j.commatsci.2018.08.064
10.1007/s11837-017-2264-3
10.1016/S1359-6454(00)00367-0
10.1115/1.4047916
10.1007/s00170-018-2038-2
10.1016/j.jmatprotec.2015.02.013
10.1016/j.apm.2019.07.008
10.1016/j.commatsci.2020.109861
10.1016/j.actamat.2016.12.065
10.1179/1743284714Y.0000000734
10.1016/j.actamat.2016.03.063
10.1007/s40571-020-00358-x
10.1016/j.msea.2016.03.036
10.1007/s40192-019-00125-8
10.1016/j.addma.2020.101354
10.1016/j.neucom.2015.12.114
10.1016/0025-5416(84)90201-5
10.1038/srep43554
10.1007/s11663-000-0022-2
10.1016/j.apm.2018.09.018
10.1016/S1359-6454(02)00317-8
10.1016/j.matdes.2017.11.021
10.1016/j.commatsci.2018.04.004
10.1007/s11661-020-06008-4
10.1088/1361-651X/abca19
10.1080/09506608.2015.1116649
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.commatsci.2022.111566
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 1872871
10_1016_j_commatsci_2022_111566
S0927025622003147
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
6XO
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c391t-c61d603a1b57e38df91c097a41ce673a693fd454c4c4bb70341c6dd31d4abbf63
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822953300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0927-0256
IngestDate Mon Jun 19 03:48:40 EDT 2023
Sat Nov 29 07:08:27 EST 2025
Tue Nov 18 21:08:21 EST 2025
Fri Feb 23 02:40:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Numerical modeling
Scan path optimization
Additive manufacturing
Microstructure control
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-c61d603a1b57e38df91c097a41ce673a693fd454c4c4bb70341c6dd31d4abbf63
Notes USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office
USDOE Office of Electricity (OE)
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1872871
ParticipantIDs osti_scitechconnect_1872871
crossref_citationtrail_10_1016_j_commatsci_2022_111566
crossref_primary_10_1016_j_commatsci_2022_111566
elsevier_sciencedirect_doi_10_1016_j_commatsci_2022_111566
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational materials science
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Taylor_2002_Applied-Mathematical-Modelling, m (2002) 12.
Haines, Plotkowski, Frederick, Schwalbach, Babu (b0100) 2018; 155
Raghavan, Dehoff, Pannala, Simunovic, Kirka, Turner, Carlson, Babu (b0050) 2016; 112
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0195) 2014
Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0220) 2017; 140
Stump, Plotkowski (b0135) 2019; 75
B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, ArXiv Prepr. ArXiv1505.00853. (2015). http://arxiv.org/abs/1505.00853.
Kirka, Lee, Greeley, Okello, Goin, Pearce, Dehoff (b0045) 2017; 69
Tang, Pistorius, Beuth (b0065) 2017; 14
Körner, Ramsperger, Meid, Bürger, Wollgramm, Bartsch, Eggeler (b0155) 2018; 49
B. Stump, A. Plotkowski, Spatiotemporal Parallelization of an Analytical Heat Conduction Model for Additive Manufacturing via a Hybrid OpenMP + MPI Approach, Comput. Mater. Sci. (2020).
Zavala-Arredondo, Ali, Groom, Mumtaz (b0115) 2018; 97
de Myttenaere, Golden, Le Grand, Rossi (b0205) 2016; 192
Hunt (b0175) 1984; 65
Stump, Plotkowski (b0140) 2019; 141
Plotkowski, Pries, List, Nandwana, Stump, Carver, Dehoff (b0025) 2019; 29
Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0165) 2017; 140
Nguyen, Ohta, Matsuoka, Suzuki, Maeda (b0185) 1999; I
Holm, Cohn, Gao, Kitahara, Matson, Lei, Yarasi (b0090) 2020; 51
R. Forslund, A. Snis, S. Larsson, Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters, (2018). http://arxiv.org/abs/1803.10668.
Dehoff, Kirka, Sames, Bilheux, Tremsin, Lowe, Babu (b0040) 2015; 31
Weingarten, Buchbinder, Pirch, Meiners, Wissenbach, Poprawe (b0070) 2015; 221
Plotkowski, Rios, Sridharan, Sims, Unocic, Ott, Dehoff, Babu (b0075) 2017; 126
Maeshima, Kim, Zohdi (b0105) 2021; 8
Kok, Tan, Wang, Nai, Loh, Liu, Tor (b0010) 2018; 139
Raplee, Plotkowski, Kirka, Dinwiddie, Okello, Dehoff, Babu (b0020) 2017; 7
Fernandez-Zelaia, Melkote (b0085) 2019; 8
W. Halsey, J. Ferguson, A. Plotkowski, R. Deho, V. Paquit, Geometry-independent microstructure optimization for electron beam powder bed fusion additive manufacturing, 35 (2020). doi:10.1016/j.addma.2020.101354.
Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (b0035) 2017; 140
Gäumann, Bezençon, Canalis, Kurz (b0095) 2001; 49
Stump, Plotkowski, Coleman (b0225) 2021; 29
Komanduri, Hou (b0110) 2000; 31
Raghavan, Stump, Fernandez-Zelaia, Kirka, Simunovic (b0180) 2021; 47
Geiger, Kunze, Etter (b0150) 2016; 661
Coleman, Plotkowski, Stump, Raghavan, Sabau, Krane, Heigel, Ricker, Levine, Babu (b0120) 2020; 142
Sames, List, Pannala, Dehoff, Babu (b0015) 2016; 61
Babu, Elmer, Vitek, David (b0080) 2002; 50
D.P. Kingma, Adam: A Method for Stochastic Optimization, ICLR. (2015) 1–15.
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (b0005) 2018; 92
Shi, Khairallah, Roehling, Heo, McKeown, Matthews (b0160) 2020; 184
S.L. Smith, P. Kindermans, C. Ying, Q. V Le, G. Brain, Don’t Decay the Learning Rate, Increase the Batch Size, ICLR. (2018) 1–11.
Bishop (b0190) 2006
Rolchigo, LeSar (b0060) 2018; 150
Rai, Helmer, Körner (b0055) 2016; 13
Dinda, Dasgupta, Mazumder (b0030) 2012; 67
Raghavan (10.1016/j.commatsci.2022.111566_b0035) 2017; 140
Plotkowski (10.1016/j.commatsci.2022.111566_b0075) 2017; 126
Kok (10.1016/j.commatsci.2022.111566_b0010) 2018; 139
10.1016/j.commatsci.2022.111566_b0130
Raghavan (10.1016/j.commatsci.2022.111566_b0180) 2021; 47
Weingarten (10.1016/j.commatsci.2022.111566_b0070) 2015; 221
Stump (10.1016/j.commatsci.2022.111566_b0135) 2019; 75
10.1016/j.commatsci.2022.111566_b0210
Geiger (10.1016/j.commatsci.2022.111566_b0150) 2016; 661
10.1016/j.commatsci.2022.111566_b0215
Fernandez-Zelaia (10.1016/j.commatsci.2022.111566_b0085) 2019; 8
Raghavan (10.1016/j.commatsci.2022.111566_b0165) 2017; 140
Dinda (10.1016/j.commatsci.2022.111566_b0030) 2012; 67
Plotkowski (10.1016/j.commatsci.2022.111566_b0025) 2019; 29
Rai (10.1016/j.commatsci.2022.111566_b0055) 2016; 13
Raplee (10.1016/j.commatsci.2022.111566_b0020) 2017; 7
Tang (10.1016/j.commatsci.2022.111566_b0065) 2017; 14
Bishop (10.1016/j.commatsci.2022.111566_b0190) 2006
Sames (10.1016/j.commatsci.2022.111566_b0015) 2016; 61
DebRoy (10.1016/j.commatsci.2022.111566_b0005) 2018; 92
Dehoff (10.1016/j.commatsci.2022.111566_b0040) 2015; 31
Nguyen (10.1016/j.commatsci.2022.111566_b0185) 1999; I
Gäumann (10.1016/j.commatsci.2022.111566_b0095) 2001; 49
Coleman (10.1016/j.commatsci.2022.111566_b0120) 2020; 142
de Myttenaere (10.1016/j.commatsci.2022.111566_b0205) 2016; 192
10.1016/j.commatsci.2022.111566_b0145
10.1016/j.commatsci.2022.111566_b0200
Maeshima (10.1016/j.commatsci.2022.111566_b0105) 2021; 8
Raghavan (10.1016/j.commatsci.2022.111566_b0220) 2017; 140
10.1016/j.commatsci.2022.111566_b0125
Haines (10.1016/j.commatsci.2022.111566_b0100) 2018; 155
Körner (10.1016/j.commatsci.2022.111566_b0155) 2018; 49
Babu (10.1016/j.commatsci.2022.111566_b0080) 2002; 50
Komanduri (10.1016/j.commatsci.2022.111566_b0110) 2000; 31
Stump (10.1016/j.commatsci.2022.111566_b0225) 2021; 29
Holm (10.1016/j.commatsci.2022.111566_b0090) 2020; 51
Shi (10.1016/j.commatsci.2022.111566_b0160) 2020; 184
Raghavan (10.1016/j.commatsci.2022.111566_b0050) 2016; 112
Kirka (10.1016/j.commatsci.2022.111566_b0045) 2017; 69
Szegedy (10.1016/j.commatsci.2022.111566_b0195) 2014
Zavala-Arredondo (10.1016/j.commatsci.2022.111566_b0115) 2018; 97
Stump (10.1016/j.commatsci.2022.111566_b0140) 2019; 141
Hunt (10.1016/j.commatsci.2022.111566_b0175) 1984; 65
Rolchigo (10.1016/j.commatsci.2022.111566_b0060) 2018; 150
10.1016/j.commatsci.2022.111566_b0170
References_xml – volume: 141
  year: 2019
  ident: b0140
  article-title: A forward time stepping heat conduction model for spot melt additive manufacturing
  publication-title: A Forward Time Stepping Heat Conduction Model for Spot Melt Additive Manufacturing
– volume: 192
  start-page: 38
  year: 2016
  end-page: 48
  ident: b0205
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
– volume: 112
  start-page: 303
  year: 2016
  end-page: 314
  ident: b0050
  article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing
  publication-title: Acta Mater.
– year: 2006
  ident: b0190
  article-title: Pattern recognition and machine learning
– volume: 31
  start-page: 931
  year: 2015
  end-page: 938
  ident: b0040
  article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing
  publication-title: Mater. Sci. Technol.
– volume: 69
  start-page: 523
  year: 2017
  end-page: 531
  ident: b0045
  article-title: Strategy for texture management in metals additive manufacturing
  publication-title: Jom.
– volume: 14
  start-page: 39
  year: 2017
  end-page: 48
  ident: b0065
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
– volume: 140
  start-page: 375
  year: 2017
  end-page: 387
  ident: b0220
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing
  publication-title: Acta Mater.
– reference: R. Forslund, A. Snis, S. Larsson, Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters, (2018). http://arxiv.org/abs/1803.10668.
– volume: 140
  start-page: 375
  year: 2017
  end-page: 387
  ident: b0165
  article-title: Acta Materialia Localized melt-scan strategy for site speci fi c control of grain size and primary dendrite arm spacing in electron beam additive
  publication-title: Acta Mater.
– volume: 61
  start-page: 315
  year: 2016
  end-page: 360
  ident: b0015
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
– volume: 97
  start-page: 1383
  year: 2018
  end-page: 1396
  ident: b0115
  article-title: Investigating the melt pool properties and thermal effects of multi-laser diode area melting
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 49
  start-page: 1051
  year: 2001
  end-page: 1062
  ident: b0095
  article-title: Single-crystal laser deposition of superalloys processing-microstructure maps
  publication-title: Acta Mater.
– year: 2014
  ident: b0195
  publication-title: Going Deeper with Convolutions
– volume: 13
  start-page: 124
  year: 2016
  end-page: 134
  ident: b0055
  article-title: Simulation of grain structure evolution during powder bed based additive manufacturing
  publication-title: Addit. Manuf.
– volume: 31
  start-page: 1353
  year: 2000
  end-page: 1370
  ident: b0110
  article-title: Thermal analysis of the arc welding process: Part I. General solutions
  publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci.
– volume: 29
  year: 2019
  ident: b0025
  article-title: Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 613
  year: 2021
  end-page: 623
  ident: b0105
  article-title: Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method
  publication-title: Comput. Part. Mech.
– reference: D.P. Kingma, Adam: A Method for Stochastic Optimization, ICLR. (2015) 1–15.
– reference: B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, ArXiv Prepr. ArXiv1505.00853. (2015). http://arxiv.org/abs/1505.00853.
– reference: S.L. Smith, P. Kindermans, C. Ying, Q. V Le, G. Brain, Don’t Decay the Learning Rate, Increase the Batch Size, ICLR. (2018) 1–11.
– volume: 29
  start-page: 035001
  year: 2021
  ident: b0225
  article-title: Solidification Dynamics in Metal Additive Manufacturing: Analysis of Model Assumptions
  publication-title: Modelling Simul. Mater. Sci. Eng.
– volume: 142
  year: 2020
  ident: b0120
  article-title: Sensitivity of thermal predictions to uncertain surface tension data in laser additive manufacturing
  publication-title: J. Heat Transfer.
– volume: 184
  start-page: 284
  year: 2020
  end-page: 305
  ident: b0160
  article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
  publication-title: Acta Mater.
– volume: 139
  start-page: 565
  year: 2018
  end-page: 586
  ident: b0010
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review
  publication-title: Mater. Des.
– volume: 155
  start-page: 340
  year: 2018
  end-page: 349
  ident: b0100
  article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing
  publication-title: Comput. Mater. Sci.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0020
  article-title: Thermographic microstructure monitoring in electron beam additive manufacturing
  publication-title: Sci. Rep.
– volume: 65
  start-page: 75
  year: 1984
  end-page: 83
  ident: b0175
  article-title: Steady state columnar and equiaxed growth of dendrites and eutectic
  publication-title: Mater. Sci. Eng.
– volume: I
  start-page: 265
  year: 1999
  end-page: 274
  ident: b0185
  article-title: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources
  publication-title: Weld. Res. Suppl.
– volume: 140
  start-page: 375
  year: 2017
  end-page: 387
  ident: b0035
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron
  publication-title: Acta Mater.
– volume: 51
  start-page: 5985
  year: 2020
  end-page: 5999
  ident: b0090
  article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis
  publication-title: Metall. Mater. Trans. A.
– volume: 49
  start-page: 3781
  year: 2018
  end-page: 3792
  ident: b0155
  article-title: Microstructure and mechanical properties of CMSX-4 single crystals prepared by
  publication-title: Addit. Manuf.
– reference: G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Taylor_2002_Applied-Mathematical-Modelling, m (2002) 12.
– volume: 150
  start-page: 535
  year: 2018
  end-page: 545
  ident: b0060
  article-title: Modeling of binary alloy solidification under conditions representative of additive manufacturing
  publication-title: Comput. Mater. Sci.
– volume: 8
  start-page: 17
  year: 2019
  end-page: 36
  ident: b0085
  article-title: Process-structure-property modeling for severe plastic deformation processes using orientation imaging microscopy and data-driven techniques
  publication-title: Integr. Mater. Manuf. Innov.
– volume: 126
  start-page: 507
  year: 2017
  end-page: 519
  ident: b0075
  article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing
  publication-title: Acta Mater.
– volume: 661
  start-page: 240
  year: 2016
  end-page: 246
  ident: b0150
  article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies
  publication-title: Mater. Sci. Eng. A.
– reference: W. Halsey, J. Ferguson, A. Plotkowski, R. Deho, V. Paquit, Geometry-independent microstructure optimization for electron beam powder bed fusion additive manufacturing, 35 (2020). doi:10.1016/j.addma.2020.101354.
– volume: 221
  start-page: 112
  year: 2015
  end-page: 120
  ident: b0070
  article-title: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg
  publication-title: J. Mater. Process. Technol.
– volume: 50
  start-page: 4763
  year: 2002
  end-page: 4781
  ident: b0080
  article-title: Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds
  publication-title: Acta Mater.
– reference: B. Stump, A. Plotkowski, Spatiotemporal Parallelization of an Analytical Heat Conduction Model for Additive Manufacturing via a Hybrid OpenMP + MPI Approach, Comput. Mater. Sci. (2020).
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: b0005
  article-title: Additive manufacturing of metallic components – Process, structure and properties
  publication-title: Prog. Mater. Sci.
– volume: 75
  start-page: 787
  year: 2019
  end-page: 805
  ident: b0135
  article-title: An adaptive integration scheme for heat conduction in additive manufacturing
  publication-title: Appl. Math. Model.
– volume: 47
  start-page: 102209
  year: 2021
  ident: b0180
  article-title: Influence of geometry on columnar to equiaxed transition during electron beam powder bed fusion of IN718
  publication-title: Addit. Manuf.
– volume: 67
  start-page: 503
  year: 2012
  end-page: 506
  ident: b0030
  article-title: Texture control during laser deposition of nickel-based superalloy
  publication-title: Scr. Mater.
– year: 2014
  ident: 10.1016/j.commatsci.2022.111566_b0195
  publication-title: Going Deeper with Convolutions
– ident: 10.1016/j.commatsci.2022.111566_b0200
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0005
  article-title: Additive manufacturing of metallic components – Process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 67
  start-page: 503
  issue: 5
  year: 2012
  ident: 10.1016/j.commatsci.2022.111566_b0030
  article-title: Texture control during laser deposition of nickel-based superalloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.06.014
– volume: 184
  start-page: 284
  year: 2020
  ident: 10.1016/j.commatsci.2022.111566_b0160
  article-title: Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.053
– volume: 140
  start-page: 375
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0035
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.038
– ident: 10.1016/j.commatsci.2022.111566_b0215
– volume: 14
  start-page: 39
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0065
  article-title: Prediction of lack-of-fusion porosity for powder bed fusion
  publication-title: Addit. Manuf.
– ident: 10.1016/j.commatsci.2022.111566_b0210
– volume: 155
  start-page: 340
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0100
  article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.08.064
– volume: 141
  issue: 11
  year: 2019
  ident: 10.1016/j.commatsci.2022.111566_b0140
  article-title: A forward time stepping heat conduction model for spot melt additive manufacturing
  publication-title: A Forward Time Stepping Heat Conduction Model for Spot Melt Additive Manufacturing
– volume: 69
  start-page: 523
  issue: 3
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0045
  article-title: Strategy for texture management in metals additive manufacturing
  publication-title: Jom.
  doi: 10.1007/s11837-017-2264-3
– volume: 49
  start-page: 1051
  issue: 6
  year: 2001
  ident: 10.1016/j.commatsci.2022.111566_b0095
  article-title: Single-crystal laser deposition of superalloys processing-microstructure maps
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00367-0
– volume: 142
  year: 2020
  ident: 10.1016/j.commatsci.2022.111566_b0120
  article-title: Sensitivity of thermal predictions to uncertain surface tension data in laser additive manufacturing
  publication-title: J. Heat Transfer.
  doi: 10.1115/1.4047916
– volume: 49
  start-page: 3781
  issue: 9
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0155
  article-title: Microstructure and mechanical properties of CMSX-4 single crystals prepared by
  publication-title: Addit. Manuf.
– volume: 97
  start-page: 1383
  issue: 1-4
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0115
  article-title: Investigating the melt pool properties and thermal effects of multi-laser diode area melting
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2038-2
– volume: 221
  start-page: 112
  year: 2015
  ident: 10.1016/j.commatsci.2022.111566_b0070
  article-title: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.02.013
– volume: 75
  start-page: 787
  year: 2019
  ident: 10.1016/j.commatsci.2022.111566_b0135
  article-title: An adaptive integration scheme for heat conduction in additive manufacturing
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.07.008
– ident: 10.1016/j.commatsci.2022.111566_b0145
  doi: 10.1016/j.commatsci.2020.109861
– volume: 140
  start-page: 375
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0220
  article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.038
– volume: 126
  start-page: 507
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0075
  article-title: Evaluation of an Al-Ce alloy for laser additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.065
– volume: 31
  start-page: 931
  issue: 8
  year: 2015
  ident: 10.1016/j.commatsci.2022.111566_b0040
  article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000734
– volume: 112
  start-page: 303
  year: 2016
  ident: 10.1016/j.commatsci.2022.111566_b0050
  article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.063
– volume: 13
  start-page: 124
  year: 2016
  ident: 10.1016/j.commatsci.2022.111566_b0055
  article-title: Simulation of grain structure evolution during powder bed based additive manufacturing
  publication-title: Addit. Manuf.
– volume: 47
  start-page: 102209
  year: 2021
  ident: 10.1016/j.commatsci.2022.111566_b0180
  article-title: Influence of geometry on columnar to equiaxed transition during electron beam powder bed fusion of IN718
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 613
  issue: 3
  year: 2021
  ident: 10.1016/j.commatsci.2022.111566_b0105
  article-title: Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-020-00358-x
– volume: 661
  start-page: 240
  year: 2016
  ident: 10.1016/j.commatsci.2022.111566_b0150
  article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies
  publication-title: Mater. Sci. Eng. A.
  doi: 10.1016/j.msea.2016.03.036
– volume: 8
  start-page: 17
  issue: 1
  year: 2019
  ident: 10.1016/j.commatsci.2022.111566_b0085
  article-title: Process-structure-property modeling for severe plastic deformation processes using orientation imaging microscopy and data-driven techniques
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-019-00125-8
– ident: 10.1016/j.commatsci.2022.111566_b0170
  doi: 10.1016/j.addma.2020.101354
– volume: 192
  start-page: 38
  year: 2016
  ident: 10.1016/j.commatsci.2022.111566_b0205
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.114
– volume: 65
  start-page: 75
  issue: 1
  year: 1984
  ident: 10.1016/j.commatsci.2022.111566_b0175
  article-title: Steady state columnar and equiaxed growth of dendrites and eutectic
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(84)90201-5
– volume: 140
  start-page: 375
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0165
  article-title: Acta Materialia Localized melt-scan strategy for site speci fi c control of grain size and primary dendrite arm spacing in electron beam additive
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.038
– volume: 29
  year: 2019
  ident: 10.1016/j.commatsci.2022.111566_b0025
  article-title: Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si
  publication-title: Addit. Manuf.
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.commatsci.2022.111566_b0020
  article-title: Thermographic microstructure monitoring in electron beam additive manufacturing
  publication-title: Sci. Rep.
  doi: 10.1038/srep43554
– volume: 31
  start-page: 1353
  issue: 6
  year: 2000
  ident: 10.1016/j.commatsci.2022.111566_b0110
  article-title: Thermal analysis of the arc welding process: Part I. General solutions
  publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci.
  doi: 10.1007/s11663-000-0022-2
– ident: 10.1016/j.commatsci.2022.111566_b0130
  doi: 10.1016/j.apm.2018.09.018
– volume: 50
  start-page: 4763
  issue: 19
  year: 2002
  ident: 10.1016/j.commatsci.2022.111566_b0080
  article-title: Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00317-8
– volume: 139
  start-page: 565
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0010
  article-title: Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.021
– volume: 150
  start-page: 535
  year: 2018
  ident: 10.1016/j.commatsci.2022.111566_b0060
  article-title: Modeling of binary alloy solidification under conditions representative of additive manufacturing
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.04.004
– ident: 10.1016/j.commatsci.2022.111566_b0125
– volume: 51
  start-page: 5985
  year: 2020
  ident: 10.1016/j.commatsci.2022.111566_b0090
  article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis
  publication-title: Metall. Mater. Trans. A.
  doi: 10.1007/s11661-020-06008-4
– volume: 29
  start-page: 035001
  issue: 3
  year: 2021
  ident: 10.1016/j.commatsci.2022.111566_b0225
  article-title: Solidification Dynamics in Metal Additive Manufacturing: Analysis of Model Assumptions
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/abca19
– year: 2006
  ident: 10.1016/j.commatsci.2022.111566_b0190
– volume: 61
  start-page: 315
  issue: 5
  year: 2016
  ident: 10.1016/j.commatsci.2022.111566_b0015
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2015.1116649
– volume: I
  start-page: 265
  year: 1999
  ident: 10.1016/j.commatsci.2022.111566_b0185
  article-title: Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources
  publication-title: Weld. Res. Suppl.
SSID ssj0016982
Score 2.4030771
Snippet [Display omitted] •Computationally cheap method for scan path optimization.•Fully convolutional neural network used as a surrogate model.•Generator algorithm...
Site specific microstructure control is a critical research area within the field of additive manufacturing due to its potential to revolutionize part...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 111566
SubjectTerms Additive manufacturing
Machine learning
MATERIALS SCIENCE
Microstructure control
Numerical modeling
Scan path optimization
Title An algorithm for physics informed scan path optimization in additive manufacturing
URI https://dx.doi.org/10.1016/j.commatsci.2022.111566
https://www.osti.gov/servlets/purl/1872871
Volume 212
WOSCitedRecordID wos000822953300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016982
  issn: 0927-0256
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7RwKEcKl4Vj4L20FtkZHs3--AWVSDggKqKSrlZ9q5NG5FNRALi5zPjXbuG8iiHKpIVeTXJZr7x7MxkHoR8lWDCD1IpwDexKuJwYMMjVZhIyLTAdmjcFqYeNiEvLtRopL-HIYjzepyAdE7d3-vZf4Ua7gHYWDr7DrjbD4Ub8B5AhyvADtd_An7o-vn11RSc_l-TOonQBy_qvCswUMHAnKPmw1HE_SkojEmoxMTIB2YX1blEk9zdYs1DXcTYNWD9FIgmggjmrv9J_XCStgGbBYhJLTulG-cTLC087AYYwDdtMqhC1Csc0d3QYSojtJX8GeIVp5JApQJd0Kxpkj4Vob80tg8ejJHhsGfY7CHuATX5QDzpke2dFiXRyftAllNwdVSPLA_Pjkfn7T9HQtcDwto9Psrpe_ZLXrJIelNQsh1j43KNfApeAh16dNfJUuk2yGqnd-Qm-TF0tMWZArI04EwbnCniTBFn2sUZ1mmDM32E8xb5eXJ8-e00CgMyIsN0soiMSKyIWZ4UA1kyZSudmFjLnCemFJLlQrPK8gE38CoK0O2wIKxlieV5UVSCfSY9N3XlNqE8NpUt40qkhnNuwQvmuTYmVmWsWcL4DhENkzITusfjEJPrrEkTHGctdzPkbua5u0PilnDmG6i8TXLUoJAF6fX2XQZC8zbxHuKGhNgF2WC6GFAGsdl9dXWPfPzzAHwhvcXNbblPVszd4vf85iBI2gOIbolE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+physics+informed+scan+path+optimization+in+additive+manufacturing&rft.jtitle=Computational+materials+science&rft.au=Stump%2C+Benjamin+C.&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=212&rft.issue=1&rft_id=info:doi/10.1016%2Fj.commatsci.2022.111566&rft.externalDocID=1872871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon