Learning Unsupervised Visual Representations using 3D Convolutional Autoencoder with Temporal Contrastive Modeling for Video Retrieval
The rapid growth of tag-free user-generated videos (on the Internet), surgical recorded videos, and surveillance videos has necessitated the need for effective content-based video retrieval systems. Earlier methods for video representations are based on hand-crafted, which hardly performed well on t...
Gespeichert in:
| Veröffentlicht in: | International journal of mathematical, engineering and management sciences Jg. 7; H. 2; S. 272 - 287 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dehradun
International Journal of Mathematical, Engineering and Management Sciences
01.04.2022
Ram Arti Publishers |
| Schlagworte: | |
| ISSN: | 2455-7749, 2455-7749 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The rapid growth of tag-free user-generated videos (on the Internet), surgical recorded videos, and surveillance videos has necessitated the need for effective content-based video retrieval systems. Earlier methods for video representations are based on hand-crafted, which hardly performed well on the video retrieval tasks. Subsequently, deep learning methods have successfully demonstrated their effectiveness in both image and video-related tasks, but at the cost of creating massively labeled datasets. Thus, the economic solution is to use freely available unlabeled web videos for representation learning. In this regard, most of the recently developed methods are based on solving a single pretext task using 2D or 3D convolutional network. However, this paper designs and studies a 3D convolutional autoencoder (3D-CAE) for video representation learning (since it does not require labels). Further, this paper proposes a new unsupervised video feature learning method based on joint learning of past and future prediction using 3D-CAE with temporal contrastive learning. The experiments are conducted on UCF-101 and HMDB-51 datasets, where the proposed approach achieves better retrieval performance than state-of-the-art. In the ablation study, the action recognition task is performed by fine-tuning the unsupervised pre-trained model where it outperforms other methods, which further confirms the superiority of our method in learning underlying features. Such an unsupervised representation learning approach could also benefit the medical domain, where it is expensive to create large label datasets. |
|---|---|
| AbstractList | The rapid growth of tag-free user-generated videos (on the Internet), surgical recorded videos, and surveillance videos has necessitated the need for effective content-based video retrieval systems. Earlier methods for video representations are based on hand-crafted, which hardly performed well on the video retrieval tasks. Subsequently, deep learning methods have successfully demonstrated their effectiveness in both image and video-related tasks, but at the cost of creating massively labeled datasets. Thus, the economic solution is to use freely available unlabeled web videos for representation learning. In this regard, most of the recently developed methods are based on solving a single pretext task using 2D or 3D convolutional network. However, this paper designs and studies a 3D convolutional autoencoder (3D-CAE) for video representation learning (since it does not require labels). Further, this paper proposes a new unsupervised video feature learning method based on joint learning of past and future prediction using 3D-CAE with temporal contrastive learning. The experiments are conducted on UCF-101 and HMDB-51 datasets, where the proposed approach achieves better retrieval performance than state-of-the-art. In the ablation study, the action recognition task is performed by fine-tuning the unsupervised pre-trained model where it outperforms other methods, which further confirms the superiority of our method in learning underlying features. Such an unsupervised representation learning approach could also benefit the medical domain, where it is expensive to create large label datasets. |
| Author | Kumar, Vidit Tripathi, Vikas Pant, Bhaskar |
| Author_xml | – sequence: 1 givenname: Vidit surname: Kumar fullname: Kumar, Vidit organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University Dehradun, India – sequence: 2 givenname: Vikas surname: Tripathi fullname: Tripathi, Vikas organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India – sequence: 3 givenname: Bhaskar surname: Pant fullname: Pant, Bhaskar organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India |
| BookMark | eNp9Uc1u1DAQtlCRKKVvwCES5w2Of9Y2t2ppYdGukKDlajn2pHiV2sF2FvECPDfeBiHEgZOtme9nZr7n6CzEAAi97HBLqZTq9fbD_nr_uSWYkFa0pMWdfILOCeN8JQRTZ3_9n6HLnA8YYyIU5R05Rz93YFLw4b65C3meIB19Btd88Xk2Y_MJpgQZQjHFx5CbOZ-Q9G2zieEYx_lUrbCruUQINjpIzXdfvja38DDFVDsVV5LJxR-h2df-eOIPMVUDB7Hql-ThaMYX6OlgxgyXv98LdHdzfbt5v9p9fLfdXO1WlqqurCwThitJesYkNpKBxUQRQzAf6tbWuX7t3JpT2UtDmKJWGMqF7KgbuFU9phdou-i6aA56Sv7BpB86Gq8fCzHda5OKtyPoAYNhtgeieM-oo72p7ozTQYDDridV69WiNaX4bYZc9CHOqd4ja7JmdUy15rKi2IKyKeacYPjj2mH9GKBeAtSnALXQRNdVKu3NPzTrlxTqPf34f_Ivu1CmXg |
| CitedBy_id | crossref_primary_10_1007_s10489_024_05460_8 |
| Cites_doi | 10.1145/3204949.3208141 10.1016/j.neucom.2015.09.114 10.1109/iccv.2017.79 10.1007/s12046-016-0574-8 10.1609/aaai.v33i01.33018545 10.1145/3439950 10.1109/icme46284.2020.9102724 10.1109/icacc.2013.49 10.1162/neco.2006.18.7.1527 10.1007/978-981-16-2354-7_46 10.1145/3444693 10.1109/dicta51227.2020.9363408 10.1109/CONECCT52877.2021.9622562. 10.1007/s11548-021-02493-z 10.1109/spin48934.2020.9071334 10.21236/ada164453 10.1609/aaai.v34i07.6840 10.1109/cvpr.2014.223 10.1109/dcc.2017.31 10.1007/978-3-319-46466-4_5 10.1109/cvpr.2018.00675 10.1109/tpami.2016.2572683 10.1109/conecct52877.2021.9622562 10.1007/s11042-019-07805-9 10.1007/978-3-319-10590-1_38 10.1145/2396761.2398433 10.1007/978-3-030-01267-0_47 10.7551/mitpress/7503.003.0024 10.1109/cvpr.2019.01058 10.1145/1282280.1282352 10.1007/s11042-019-07793-w 10.1109/cvpr.2017.607 10.1109/iccv.2015.510 10.1109/iccv.2011.6126543 10.1007/978-3-030-58520-4_30 10.1023/A:1007379606734 10.1109/tcsvt.2017.2667710 10.1007/978-3-319-46448-0_32 10.1007/s00521-020-04742-9 10.1007/978-3-319-56991-8_27 10.1109/access.2021.3084840 10.1109/tpami.2016.2577031 10.1109/76.718510 10.1109/icpr.2018.8546122 10.1007/s11042-017-4962-9 10.1109/cvpr42600.2020.00994 10.1007/s11548-021-02343-y 10.1145/3078971.3079041 10.1007/978-3-030-81462-5_61 10.1145/3065386 10.1145/3204949 10.1109/tits.2014.2311123 10.1007/s00799-018-0236-z 10.1007/978-3-030-42699-6_8 |
| ContentType | Journal Article |
| Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.33889/IJMEMS.2022.7.2.018 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2455-7749 |
| EndPage | 287 |
| ExternalDocumentID | oai_doaj_org_article_f0ea4cbe295b43d3bac47453f7ed0db2 10_33889_IJMEMS_2022_7_2_018 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | 7WY 8FL AAYXX ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ M0C M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA 3V. 7XB 8FK AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c391t-c47a5982b4480a84ec0292a205f018cddb6dd6538b8a2493c7a357813df5c9b03 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770306000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2455-7749 |
| IngestDate | Mon Nov 10 04:35:35 EST 2025 Wed Oct 08 14:10:34 EDT 2025 Tue Nov 18 21:36:27 EST 2025 Sat Nov 29 05:40:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-c47a5982b4480a84ec0292a205f018cddb6dd6538b8a2493c7a357813df5c9b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2645989658?pq-origsite=%requestingapplication% |
| PQID | 2645989658 |
| PQPubID | 5363605 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f0ea4cbe295b43d3bac47453f7ed0db2 proquest_journals_2645989658 crossref_primary_10_33889_IJMEMS_2022_7_2_018 crossref_citationtrail_10_33889_IJMEMS_2022_7_2_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dehradun |
| PublicationPlace_xml | – name: Dehradun |
| PublicationTitle | International journal of mathematical, engineering and management sciences |
| PublicationYear | 2022 |
| Publisher | International Journal of Mathematical, Engineering and Management Sciences Ram Arti Publishers |
| Publisher_xml | – name: International Journal of Mathematical, Engineering and Management Sciences – name: Ram Arti Publishers |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref0 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref1 – ident: ref12 doi: 10.1145/3204949.3208141 – ident: ref68 doi: 10.1016/j.neucom.2015.09.114 – ident: ref66 – ident: ref37 doi: 10.1109/iccv.2017.79 – ident: ref6 doi: 10.1007/s12046-016-0574-8 – ident: ref28 doi: 10.1609/aaai.v33i01.33018545 – ident: ref24 – ident: ref47 doi: 10.1145/3439950 – ident: ref65 doi: 10.1109/icme46284.2020.9102724 – ident: ref2 doi: 10.1109/icacc.2013.49 – ident: ref17 – ident: ref20 doi: 10.1162/neco.2006.18.7.1527 – ident: ref36 doi: 10.1007/978-981-16-2354-7_46 – ident: ref42 doi: 10.1145/3444693 – ident: ref13 – ident: ref23 doi: 10.1109/dicta51227.2020.9363408 – ident: ref35 doi: 10.1109/CONECCT52877.2021.9622562. – ident: ref48 doi: 10.1007/s11548-021-02493-z – ident: ref32 doi: 10.1109/spin48934.2020.9071334 – ident: ref26 – ident: ref53 doi: 10.21236/ada164453 – ident: ref39 doi: 10.1609/aaai.v34i07.6840 – ident: ref27 doi: 10.1109/cvpr.2014.223 – ident: ref38 doi: 10.1109/dcc.2017.31 – ident: ref46 doi: 10.1007/978-3-319-46466-4_5 – ident: ref59 doi: 10.1109/cvpr.2018.00675 – ident: ref54 doi: 10.1109/tpami.2016.2572683 – ident: ref34 doi: 10.1109/conecct52877.2021.9622562 – ident: ref50 doi: 10.1007/s11042-019-07805-9 – ident: ref3 doi: 10.1007/978-3-319-10590-1_38 – ident: ref62 doi: 10.1145/2396761.2398433 – ident: ref7 doi: 10.1007/978-3-030-01267-0_47 – ident: ref5 doi: 10.7551/mitpress/7503.003.0024 – ident: ref64 doi: 10.1109/cvpr.2019.01058 – ident: ref25 doi: 10.1145/1282280.1282352 – ident: ref57 doi: 10.1007/s11042-019-07793-w – ident: ref45 – ident: ref16 doi: 10.1109/cvpr.2017.607 – ident: ref29 doi: 10.1609/aaai.v33i01.33018545 – ident: ref58 doi: 10.1109/iccv.2015.510 – ident: ref31 doi: 10.1109/iccv.2011.6126543 – ident: ref61 doi: 10.1007/978-3-030-58520-4_30 – ident: ref9 doi: 10.1023/A:1007379606734 – ident: ref0 doi: 10.1109/tcsvt.2017.2667710 – ident: ref19 – ident: ref55 – ident: ref41 doi: 10.1007/978-3-319-46448-0_32 – ident: ref15 – ident: ref22 doi: 10.1007/s00521-020-04742-9 – ident: ref49 doi: 10.1007/978-3-319-56991-8_27 – ident: ref11 doi: 10.1109/access.2021.3084840 – ident: ref51 doi: 10.1109/tpami.2016.2577031 – ident: ref52 doi: 10.1109/76.718510 – ident: ref60 doi: 10.1109/icpr.2018.8546122 – ident: ref67 – ident: ref43 doi: 10.1007/s11042-017-4962-9 – ident: ref4 doi: 10.1109/cvpr42600.2020.00994 – ident: ref63 doi: 10.1007/s11548-021-02343-y – ident: ref40 doi: 10.1145/3078971.3079041 – ident: ref33 doi: 10.1007/978-3-030-81462-5_61 – ident: ref56 – ident: ref18 – ident: ref30 doi: 10.1145/3065386 – ident: ref14 doi: 10.1145/3204949 – ident: ref21 doi: 10.1109/tits.2014.2311123 – ident: ref10 – ident: ref44 doi: 10.1007/s00799-018-0236-z – ident: ref8 doi: 10.1007/978-3-030-42699-6_8 |
| SSID | ssj0002793512 |
| Score | 2.2262428 |
| Snippet | The rapid growth of tag-free user-generated videos (on the Internet), surgical recorded videos, and surveillance videos has necessitated the need for effective... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 272 |
| SubjectTerms | content-based search contrastive learning convolutional autoencoder Datasets Deep learning future prediction Teaching methods unsupervised learning User generated content video retrieval |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEICtCvXQS9WKVl1e8oFrFq_txPGRpwoCVLVQcbNsj4NAKIs2WX5CfzczTkArceDSazRxHM947EnG3zC2q5tA2HMoNOhY6LKGwnrTFDPVlNHMvDI-Q1zPzeVlfXNjf62U-qKcsAEPPAzcXiOS1zEkacugFajgoza6VI1JICBk74u7npVg6j7_TrMKl7LhrBxGYbXdOz27OL74gxGhlFMzlVNBdT5W1qKM7H_jkfMyc_KFfR73h3x_6NdX9iG16-zfSEG95ddtt3yk6d0l4H_vuiXK_s7JrOMZorbjlMp-y9URP5y3T6NlUZPLfk7USkgLTl9f-dVApXoguX7hO3J8nGqj0Ql1jptZfACkObZPRbfQIr-x65Pjq8OfxVhAoYjKzvoCR8oToC9gDCZ8rVMU0kovRdng20eAUAFU6PJC7TEMU9F4gt_MFKCibBDqO1tr5236wXjlJYBXlRfaa1WFIGwgeFeAyqdGpglTL0Pp4kgXpyIXDw6jjKwANyjAkQKccdJhFyaseL3rcaBrvCN_QFp6lSU2dr6AFuNGi3HvWcyEbb3o2I0TtnOSoDo1kXA2_sczNtkn6veQ4rPF1vrFMm2zj_Gpv-sWO9lWnwGjq_GO priority: 102 providerName: Directory of Open Access Journals |
| Title | Learning Unsupervised Visual Representations using 3D Convolutional Autoencoder with Temporal Contrastive Modeling for Video Retrieval |
| URI | https://www.proquest.com/docview/2645989658 https://doaj.org/article/f0ea4cbe295b43d3bac47453f7ed0db2 |
| Volume | 7 |
| WOSCitedRecordID | wos000770306000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: 7WY dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: M0C dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2455-7749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793512 issn: 2455-7749 databaseCode: PIMPY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYx4ELHwJEx6h84JrOtZ04OSFWOjFEq2pssJ0sf6WaNCWlSfcn8HfzXuIWJCQ4cMnBeXEs_56f816ef4-Qt7K0SHvuE-mlS2Sa-6QwqkwmokydmhihTEfi-lktFvn1dbGMAbcmplXubGJnqH3tMEZ-wpH1JEeqknfr7wlWjcK_q7GExgE5RKYyOSCHp7PF8mIfZeGgfrCl9WfmwBvLi5PzT_PZ_At4hpyP1ZiPGdb7-G1P6qj7_7DM3XZz9uR_B_qUPI4fmvR9rxnPyINQPSc_Ip3qil5VzXaNdqIJnn69bbYge9FlxcbDSFVDMSd-RcUHOq2r-6ii2OW2rZH-0ocNxTAuvezpre5Qrt2YBi0oxSJreNSdwlcxvMCHGvrH6l2g2i_I1dnscvoxiZUYEieKSZs4qQwy_Vlw5pjJZXCMF9xwlpYwfc57m3mfge20uQF_TjhlkEVnIjwgXlgmXpJBVVfhFaGZ4d4bkRkmjRSZtaywyAJmfWZCycOQiB0W2kWacqyWcafBXekQ1D2CGhHUSnMNQxiSZP_Uuqfp-If8KcK8l0WS7a6h3qx0XLO6ZMFIZwMvUiuFF9bAPMhUlCp45i0fkuOdBui48hv9C_6jv99-TR7hiPosoGMyaDfb8IY8dPftbbMZkQP17WYU1XnURQrgOmdTaFuez5c3PwF6HQRT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwFioYAPcMzWsZ3XASHYturS3RWCLerN-JVVpSpZkmwRf4Cfw29kJo8FCQlOPXBNHMexv5nxODPfEPJC5gZpz10gnbSBjFIXZDrJg1DkkU1CLRLdkrjOksUiPTvL3u-QH0MuDIZVDjqxVdSutHhGvs-R9SRFqpLX6y8BVo3Cv6tDCY0OFif-21dw2epX0wNY35ecHx0uJ8dBX1UgsCILm8DKRCNrnQHHhOlUest4xjVnUc7C1DpnYudi0AMm1eCbCJtoZIQJhYPRZ4YJ6PcauS4liAOGCrLJ9kyHA9jBgHYZeuD7pdn-9N38cP4R_FDOx8mYjxlWF_nNAraFAv6wA61xO7rzv03LXXK730bTNx3u75EdX9wn33uy2BU9LerNGrVg7R39dF5voO2HNua3T7UqaooR_ysqDuikLC57AcQuN02J5J7OVxQPqemyI--6wHZNpWu0DxRLyGEiP4U9P7zA-RL6x9pkILgPyOmVfPpDsluUhX9EaKy5c1rEmkktRWwMywxynBkXa59zPyJiWHtlexJ2rAVyocAZaxGjOsQoRIxKFFcwhBEJtk-tOxKSf7R_i7DatkUK8fZCWa1Ur5FUzryW1nieRUYKJ4yGeZCRyBPvmDN8RPYGxKler9XqF9we__32c3LzeDmfqdl0cfKE3MLRdfFOe2S3qTb-KblhL5vzunrWihAln68anD8BddlZwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Unsupervised+Visual+Representations+using+3D+Convolutional+Autoencoder+with+Temporal+Contrastive+Modeling+for+Video+Retrieval&rft.jtitle=International+journal+of+mathematical%2C+engineering+and+management+sciences&rft.au=Kumar%2C+Vidit&rft.au=Tripathi%2C+Vikas&rft.au=Pant%2C+Bhaskar&rft.date=2022-04-01&rft.issn=2455-7749&rft.eissn=2455-7749&rft.volume=7&rft.issue=2&rft.spage=272&rft.epage=287&rft_id=info:doi/10.33889%2FIJMEMS.2022.7.2.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_33889_IJMEMS_2022_7_2_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2455-7749&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2455-7749&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2455-7749&client=summon |