Empty Triangles in Good Drawings of the Complete Graph

A good drawing of a simple graph is a drawing on the sphere or, equivalently, in the plane in which vertices are drawn as distinct points, edges are drawn as Jordan arcs connecting their end vertices, and any pair of edges intersects at most once. In any good drawing, the edges of three pairwise con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Graphs and combinatorics Ročník 31; číslo 2; s. 335 - 345
Hlavní autoři: Aichholzer, Oswin, Hackl, Thomas, Pilz, Alexander, Ramos, Pedro, Sacristán, Vera, Vogtenhuber, Birgit
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.03.2015
Springer Nature B.V
Témata:
ISSN:0911-0119, 1435-5914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A good drawing of a simple graph is a drawing on the sphere or, equivalently, in the plane in which vertices are drawn as distinct points, edges are drawn as Jordan arcs connecting their end vertices, and any pair of edges intersects at most once. In any good drawing, the edges of three pairwise connected vertices form a Jordan curve which we call a triangle. We say that a triangle is empty if one of the two connected components it induces does not contain any of the remaining vertices of the drawing of the graph. We show that the number of empty triangles in any good drawing of the complete graph K n with n vertices is at least n .
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-015-1550-5