Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors
[Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has...
Uloženo v:
| Vydáno v: | Sensors and actuators. A. Physical. Ročník 312; s. 112127 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
01.09.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0924-4247, 1873-3069 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has been experimentally validated on a MEMS device employing the gravity force.•Sensitivity from 2.34 to 8.43 V/μN with measurement range from [-217, 226] down to [-20.5, 21.4] nN.
This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN. |
|---|---|
| AbstractList | This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN. [Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has been experimentally validated on a MEMS device employing the gravity force.•Sensitivity from 2.34 to 8.43 V/μN with measurement range from [-217, 226] down to [-20.5, 21.4] nN. This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN. |
| ArticleNumber | 112127 |
| Author | Ferrari, Vittorio Ferrari, Marco Nastro, Alessandro |
| Author_xml | – sequence: 1 givenname: Alessandro surname: Nastro fullname: Nastro, Alessandro email: a.nastro002@unibs.it organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy – sequence: 2 givenname: Marco surname: Ferrari fullname: Ferrari, Marco organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy – sequence: 3 givenname: Vittorio surname: Ferrari fullname: Ferrari, Vittorio organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy |
| BookMark | eNp9kMtOwzAQRS0EEm3hA9hFYp3iR1o3YoVKeUggFsDamtgT4dDaxXYq8fc4CisWrCzr3mPPnCk5dt4hIReMzhlly6tuHh3MOeX5zjjj8ohM2EqKUtBlfUwmtOZVWfFKnpJpjB2lVAgpJ6S_9X2zxRJ06iH5UOx9tMl6V7aIpgH9WexQf4CzcVe0OQfT9TFBZoqIbugebPourCtwizoFn8NkdalhD3pIsXjePL8OrB4RH-IZOWlhG_H895yR97vN2_qhfHq5f1zfPJVa1CyVjVkJhrWRUNfQommZZE3dgkFJ9XIBK7HSmlfYiIbKvPOiRS6WC8EakSFuxIxcju_ug__qMSbV-T64_KXi1YIxmT2w3JJjS-fpY8BW5cFhkJAC2K1iVA2OVaeyYzU4VqPjTLI_5D7YHYTvf5nrkcG8-MFiUFFbdBqNDVmgMt7-Q_8A3wyY-Q |
| CitedBy_id | crossref_primary_10_1109_TIE_2022_3163538 crossref_primary_10_3390_s23063342 crossref_primary_10_3390_coatings11121551 crossref_primary_10_1016_j_measurement_2022_111634 crossref_primary_10_3390_s20236783 crossref_primary_10_1109_TIE_2022_3203756 crossref_primary_10_1088_1361_6501_ac83e1 crossref_primary_10_1007_s11465_023_0747_1 crossref_primary_10_1088_1361_6501_ac0743 crossref_primary_10_1177_10567895211033972 crossref_primary_10_1088_1402_4896_abb327 crossref_primary_10_1063_5_0211141 crossref_primary_10_1146_annurev_control_090623_115925 crossref_primary_10_1088_1361_6439_aded9a crossref_primary_10_1007_s00542_024_05834_5 crossref_primary_10_3390_s24113690 crossref_primary_10_3390_nano13192677 crossref_primary_10_1002_smtd_202401640 crossref_primary_10_20965_jrm_2025_p0895 crossref_primary_10_3390_s23042077 crossref_primary_10_1016_j_jeurceramsoc_2024_02_003 crossref_primary_10_1088_1361_6501_ac15dd crossref_primary_10_1016_j_ijheatmasstransfer_2023_124801 crossref_primary_10_1002_adma_202305121 crossref_primary_10_1299_transjsme_24_00252 |
| Cites_doi | 10.1126/science.1173851 10.1016/j.sna.2017.07.048 10.1109/JMEMS.2013.2287506 10.1016/j.sna.2018.03.031 10.1088/0960-1317/12/6/314 10.1063/1.1896103 10.1088/1361-6439/aaabf7 10.1038/s41378-019-0054-5 10.1109/JMEMS.2015.2388539 10.20965/ijat.2018.p0004 10.1016/j.sna.2018.01.007 10.1088/0960-1317/10/2/328 10.1016/j.actbio.2007.04.002 10.1016/j.sna.2006.05.019 10.1083/jcb.127.6.1957 10.1021/nl060275y 10.1109/JMEMS.2014.2382648 10.1016/S0924-4247(02)00298-4 10.1016/j.eml.2016.01.005 10.1016/j.mechatronics.2018.05.007 10.1146/annurev.biochem.66.1.785 10.1109/JMEMS.2011.2174425 10.1096/fj.05-5424rev 10.1109/MCD.2006.1615241 10.1146/annurev.physiol.59.1.575 10.1557/PROC-736-D4.5 10.1109/JMEMS.2012.2189361 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Sep 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Sep 1, 2020 |
| DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
| DOI | 10.1016/j.sna.2020.112127 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3069 |
| ExternalDocumentID | 10_1016_j_sna_2020_112127 S092442472030025X |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW WUQ ~HD 7TB 7U5 8FD AFXIZ AGCQF AGRNS BNPGV FR3 L7M SSH |
| ID | FETCH-LOGICAL-c391t-bd831e9d7a99afedf171b9fade70c65a838cc24eb3b071275fe236531b39d72d3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571664500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-4247 |
| IngestDate | Fri Jul 25 04:40:15 EDT 2025 Sat Nov 29 07:10:46 EST 2025 Tue Nov 18 22:32:08 EST 2025 Fri Feb 23 02:49:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Force sensor Electrostatic-capacitive MEMS Double-actuator position-feedback mechanism Adjustable sensitivity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-bd831e9d7a99afedf171b9fade70c65a838cc24eb3b071275fe236531b39d72d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2451170001 |
| PQPubID | 2045401 |
| ParticipantIDs | proquest_journals_2451170001 crossref_citationtrail_10_1016_j_sna_2020_112127 crossref_primary_10_1016_j_sna_2020_112127 elsevier_sciencedirect_doi_10_1016_j_sna_2020_112127 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Sensors and actuators. A. Physical. |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Gupta, Jensen, De Juan (bib0075) 1999 FT-S100000, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available Koo, Zhang, Dong, Salapaka, Ferreira (bib0160) 2012; 21 Ingber (bib0020) 2006; 20 Mohammadi, Fowler, Yong, Moheimani (bib0170) 2014; 23 Sun, Nelson, Potasek, Enikov (bib0130) 2002; 12 Maroufi, Alemansour, Coskun, Moheimani (bib0220) 2018; 56 Mohammadi, Fowler, Yong, Moheimani (bib0015) 2014; 23 Kohyama, Takahashi, Yoshida, Onoe, Hirayama-Shoji, Tsukagoshi, Takahata, Shimoyama (bib0145) 2018; 28 Lee, Leonard, Oliver, Ishihara, Jacobson (bib0065) 1994 Park, Kim, Kim, Kim, Kwon, Park, Lee (bib0080) 2004 f. Nastro, Ferrari, Russo, Ardito, Ferrari (bib0205) 2017; 1 Matsumoto, Shimoyama (bib0120) 2018; 12 Khan, Sheetz (bib0030) 1997; 66 Kim, Liu, Zhang, Sun (bib0035) 2008 Bargatin, Myers, Arlett, Gudlewsky, Roukes (bib0115) 2005; 86 Li, Wang, Chen, Chen, Chen, Xu (bib0175) 2017; 17 Kim, Cheng, Liu, Wu, Sun (bib0225) 2008 FT-S100, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available Engel, Chen, Liu, Flachsbart, Selby, Shannon (bib0050) 2002; 736 Zhi, Xin, Zhi, Shao, Yang (bib0045) 2016 Maroufi, Alemansour, Moheimani (bib0185) 2017 Requicha, Meltzer, Arce, Makaliwe, Sikén, Hsieh, Lewis, Koel, Thompson (bib0010) 2001 Grech, Tarazona, De Leon, Kiang, Zekonyte, Wood, Chong (bib0140) 2018; 275 Carrozza, Eisinberg, Menciassi, Campolo, Micera, Dario (bib0085) 2000 Thanh-Vinh, Takahashi, Matsumoto, Shimoyama (bib0100) 2014 Arlett, Maloney, Gudlewsky, Muluneh, Roukes (bib0110) 2006; 6 Cerini, Ferrari, Ferrari, Ardito, De Masi, Russo, Urquia, Serzanti, Dell’Era (bib0200) 2015 Yang, Taher, Saif (bib0105) 2007 Sun, Nelson, Potasek, Enikov (bib0155) 2002; 12 Radó, Dücső, Földesy, Szebényi, Nawrat, Rohr, Fürjes (bib0055) 2017 Bryzek, Roundy, Bircumshaw, Chung, Castellino, Stetter, Vestel (bib0005) 2006; 22 . Sun, Piyabongkarn, Sezen, Nelson, Rajamani (bib0125) 2002; 102 Ouyang, Zhu (bib0165) 2012; 21 Ingber (bib0025) 1997; 59 Moore, Biais, Sheetz (bib0070) 2009; 325 Gupta, Pierron (bib0150) 2016; 8 Cerini, Ferrari, Ferrari, Russo, Urquia, Ardito, De Masi, Sedmik (bib0195) 2017; 266 Kumar, Rab, Pant, Maji (bib0095) 2018 Moore, Coskun, Alan, Neild, Moheimani (bib0180) 2015; 24 Suresh (bib0040) 2007; 3 Chang, Shiu, Cheng (bib0060) 2013 Stange, Imboden, Javor, Barrett, Bishop (bib0090) 2019; 5 Piriyanont, Fowler, Moheimani (bib0190) 2015; 24 Takizawa, Kanno, Miyazaki, Tadano, Kawashima (bib0135) 2018; 271 Gupta (10.1016/j.sna.2020.112127_bib0075) 1999 Sun (10.1016/j.sna.2020.112127_bib0125) 2002; 102 Maroufi (10.1016/j.sna.2020.112127_bib0185) 2017 Matsumoto (10.1016/j.sna.2020.112127_bib0120) 2018; 12 Kim (10.1016/j.sna.2020.112127_bib0225) 2008 Maroufi (10.1016/j.sna.2020.112127_bib0220) 2018; 56 Yang (10.1016/j.sna.2020.112127_bib0105) 2007 Moore (10.1016/j.sna.2020.112127_bib0180) 2015; 24 10.1016/j.sna.2020.112127_bib0210 Radó (10.1016/j.sna.2020.112127_bib0055) 2017 Kumar (10.1016/j.sna.2020.112127_bib0095) 2018 Engel (10.1016/j.sna.2020.112127_bib0050) 2002; 736 10.1016/j.sna.2020.112127_bib0215 Zhi (10.1016/j.sna.2020.112127_bib0045) 2016 Nastro (10.1016/j.sna.2020.112127_bib0205) 2017; 1 Kim (10.1016/j.sna.2020.112127_bib0035) 2008 Mohammadi (10.1016/j.sna.2020.112127_bib0015) 2014; 23 Stange (10.1016/j.sna.2020.112127_bib0090) 2019; 5 Gupta (10.1016/j.sna.2020.112127_bib0150) 2016; 8 Lee (10.1016/j.sna.2020.112127_bib0065) 1994 Cerini (10.1016/j.sna.2020.112127_bib0195) 2017; 266 Moore (10.1016/j.sna.2020.112127_bib0070) 2009; 325 Ouyang (10.1016/j.sna.2020.112127_bib0165) 2012; 21 Kohyama (10.1016/j.sna.2020.112127_bib0145) 2018; 28 Sun (10.1016/j.sna.2020.112127_bib0155) 2002; 12 Li (10.1016/j.sna.2020.112127_bib0175) 2017; 17 Bargatin (10.1016/j.sna.2020.112127_bib0115) 2005; 86 Khan (10.1016/j.sna.2020.112127_bib0030) 1997; 66 Piriyanont (10.1016/j.sna.2020.112127_bib0190) 2015; 24 Park (10.1016/j.sna.2020.112127_bib0080) 2004 Grech (10.1016/j.sna.2020.112127_bib0140) 2018; 275 Suresh (10.1016/j.sna.2020.112127_bib0040) 2007; 3 Carrozza (10.1016/j.sna.2020.112127_bib0085) 2000 Bryzek (10.1016/j.sna.2020.112127_bib0005) 2006; 22 Sun (10.1016/j.sna.2020.112127_bib0130) 2002; 12 Thanh-Vinh (10.1016/j.sna.2020.112127_bib0100) 2014 Mohammadi (10.1016/j.sna.2020.112127_bib0170) 2014; 23 Arlett (10.1016/j.sna.2020.112127_bib0110) 2006; 6 Requicha (10.1016/j.sna.2020.112127_bib0010) 2001 Ingber (10.1016/j.sna.2020.112127_bib0025) 1997; 59 Chang (10.1016/j.sna.2020.112127_bib0060) 2013 Takizawa (10.1016/j.sna.2020.112127_bib0135) 2018; 271 Koo (10.1016/j.sna.2020.112127_bib0160) 2012; 21 Cerini (10.1016/j.sna.2020.112127_bib0200) 2015 Ingber (10.1016/j.sna.2020.112127_bib0020) 2006; 20 |
| References_xml | – reference: f. – reference: FT-S100, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available: – start-page: 3100 year: 2008 end-page: 3105 ident: bib0035 article-title: Micronewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback publication-title: Proc. IEEE Int. Conf. Robot. Autom. – volume: 86 start-page: 1 year: 2005 end-page: 3 ident: bib0115 article-title: Sensitive detection of nanomechanical motion using piezoresistive signal downmixing publication-title: Appl. Phys. Lett. – start-page: 5025 year: 2004 end-page: 5032 ident: bib0080 article-title: Advanced controller design and implementation of a sensorized microgripper for micromanipulation publication-title: Proceedings of the IEEE International Conference on Robotics and Automation – start-page: 211 year: 2018 end-page: 216 ident: bib0095 article-title: Design, development and characterization of MEMS silicon diaphragm force sensor publication-title: Sens. Actuators A: Phys. – start-page: 1 year: 2013 end-page: 12 ident: bib0060 article-title: Self-biased-SMA Drive PU microgripper with force sensing in visual servo publication-title: Int. J. Adv. Robot Syst. – volume: 266 start-page: 219 year: 2017 end-page: 231 ident: bib0195 article-title: Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device publication-title: Sens. Actuators A: Phys. – start-page: 1 year: 2017 end-page: 7 ident: bib0055 article-title: 3D force sensors for laparoscopic surgery tool publication-title: Microsyst. Technol. – volume: 275 start-page: 67 year: 2018 end-page: 74 ident: bib0140 article-title: A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties publication-title: Sens. Actuators A: Phys. – volume: 24 start-page: 1164 year: 2015 end-page: 1172 ident: bib0190 article-title: Force-controlled MEMS rotary microgripper publication-title: J. Microelectromech. Syst. – volume: 21 start-page: 596 year: 2012 end-page: 604 ident: bib0165 article-title: Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control publication-title: J. Microelectromech. Syst. – volume: 17 year: 2017 ident: bib0175 article-title: An electrochemical, low-frequency seismic micro-sensor based on MEMS with a force-balanced feedback system publication-title: Sensors – volume: 24 start-page: 1092 year: 2015 end-page: 1101 ident: bib0180 article-title: Feedback-controlled MEMS force sensor for characterization of microcantilevers publication-title: J. Microelectromech. Syst. – start-page: 1218 year: 1999 end-page: 1225 ident: bib0075 article-title: Surgical forces and tactile perception during retinal microsurgery publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 12 start-page: 832 year: 2002 end-page: 840 ident: bib0155 article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives publication-title: J. Micromech. Microeng. – volume: 102 start-page: 49 year: 2002 end-page: 60 ident: bib0125 article-title: A high-aspect-ratio two-axis electrostatic microactuator with extendend travel range publication-title: Sens. Actuators A: Phys. – volume: 3 start-page: 413 year: 2007 end-page: 438 ident: bib0040 article-title: Biomechanics and biophysics of cancer cells publication-title: Acta Biomater. – volume: 28 year: 2018 ident: bib0145 article-title: Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers publication-title: J. Micromech. Microeng. – volume: 20 start-page: 811 year: 2006 end-page: 827 ident: bib0020 article-title: Cellular mechanotransduction: putting all the pieces together again publication-title: FASEB J. – volume: 23 start-page: 610 year: 2014 end-page: 619 ident: bib0170 article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM publication-title: J. Microelectromech. Syst. – volume: 12 start-page: 832 year: 2002 end-page: 840 ident: bib0130 article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives publication-title: J. Micromech. Microeng. – volume: 12 start-page: 4 year: 2018 end-page: 14 ident: bib0120 article-title: MEMS sensor devices with a piezo-resistive cantilever publication-title: Int. J. of Automation Tech. – volume: 23 start-page: 610 year: 2014 end-page: 619 ident: bib0015 article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM publication-title: J. Microelectromech. Syst. – start-page: 9005 year: 2016 ident: bib0045 article-title: Vision and force feedback control for microassembly process publication-title: International Conference on Mechanics and Mechatronics Research (ICMMR 2016) – volume: 736 start-page: 1 year: 2002 end-page: 6 ident: bib0050 article-title: Development of polyimide-based flexible tactile sensing skin publication-title: MRS Proc. – start-page: 271 year: 2000 end-page: 276 ident: bib0085 article-title: Towards a force-controlled microgripper for assembling biomedical microdevices publication-title: J. Micromech. Microeng. – volume: 1 year: 2017 ident: bib0205 article-title: Servo-assisted position-feedback MEMS force sensor with tunable sensitivity and sub-nanonewton range publication-title: Proceedings – volume: 56 start-page: 198 year: 2018 end-page: 210 ident: bib0220 article-title: An adjustable-stiffness MEMS force sensor: design, characterization, and control publication-title: Mechatronics – start-page: 1957 year: 1994 end-page: 1964 ident: bib0065 article-title: Traction forces generated by locomoting keratocytes publication-title: J. Cell Biol. – volume: 8 start-page: 167 year: 2016 end-page: 176 ident: bib0150 article-title: MEMS based nanomechanical testing method with independent electronic sensing of stress and strain publication-title: Extreme Mech. Lett. – year: 2017 ident: bib0185 article-title: A closed-loop MEMS force sensor with adjustable stiffness publication-title: Conf. on Control Tech. and Appl. – volume: 325 start-page: 166 year: 2009 ident: bib0070 article-title: Traction on immobilized netrin-1 is sufficient to reorient axons publication-title: Science – reference: . – volume: 22 start-page: 8 year: 2006 end-page: 28 ident: bib0005 article-title: Marvelous MEMs: advanced IC sensors and microstructures for high volume applications publication-title: IEEE Circuits Devices Mag. – volume: 5 start-page: 14 year: 2019 ident: bib0090 article-title: Building a casimir metrology platform with a commercial MEMS sensor publication-title: Microsystems & Nanoengineering – reference: FT-S100000, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available: – start-page: 81 year: 2001 end-page: 86 ident: bib0010 article-title: Manipulation of nanoscale components with the AFM: principles and applications publication-title: Proc. IEEE Conf. Nanotechnol. – start-page: 35 year: 2014 end-page: 43 ident: bib0100 article-title: Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array publication-title: Sens. Actuators A: Phys. – volume: 6 start-page: 1000 year: 2006 end-page: 1006 ident: bib0110 article-title: Self-sensing micro- and nanocantilevers with attonewton-scale force resolution publication-title: Nano Lett. – year: 2008 ident: bib0225 article-title: Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor publication-title: J. Biomed. Mater. Res. Part A – volume: 271 start-page: 124 year: 2018 end-page: 130 ident: bib0135 article-title: Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor publication-title: Sens. Actuators A: Phys. – start-page: 1 year: 2015 end-page: 6 ident: bib0200 article-title: MEMS force microactuator with displacement sensing for mechanobiology experiments publication-title: AEIT – volume: 59 start-page: 575 year: 1997 end-page: 599 ident: bib0025 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu. Rev. Physiol. – volume: 66 start-page: 785 year: 1997 end-page: 805 ident: bib0030 article-title: Force effects on biochemical kinetics publication-title: Annu. Rev. Biochem – start-page: 16 year: 2007 end-page: 22 ident: bib0105 article-title: MEMS based force sensors for the study of indentation response of single living cells publication-title: Sens. Actuators A: Phys. – volume: 21 start-page: 13 year: 2012 end-page: 22 ident: bib0160 article-title: A 2 degree of freedom SOI-MEMS translation stage with closed-loop positioning publication-title: J. Microelectromech. Syst. – volume: 325 start-page: 166 year: 2009 ident: 10.1016/j.sna.2020.112127_bib0070 article-title: Traction on immobilized netrin-1 is sufficient to reorient axons publication-title: Science doi: 10.1126/science.1173851 – volume: 266 start-page: 219 year: 2017 ident: 10.1016/j.sna.2020.112127_bib0195 article-title: Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2017.07.048 – volume: 23 start-page: 610 year: 2014 ident: 10.1016/j.sna.2020.112127_bib0015 article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2013.2287506 – start-page: 9005 year: 2016 ident: 10.1016/j.sna.2020.112127_bib0045 article-title: Vision and force feedback control for microassembly process publication-title: International Conference on Mechanics and Mechatronics Research (ICMMR 2016) – volume: 275 start-page: 67 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0140 article-title: A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2018.03.031 – volume: 12 start-page: 832 year: 2002 ident: 10.1016/j.sna.2020.112127_bib0155 article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/12/6/314 – volume: 86 start-page: 1 year: 2005 ident: 10.1016/j.sna.2020.112127_bib0115 article-title: Sensitive detection of nanomechanical motion using piezoresistive signal downmixing publication-title: Appl. Phys. Lett. doi: 10.1063/1.1896103 – volume: 28 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0145 article-title: Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aaabf7 – start-page: 211 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0095 article-title: Design, development and characterization of MEMS silicon diaphragm force sensor publication-title: Sens. Actuators A: Phys. – start-page: 1218 year: 1999 ident: 10.1016/j.sna.2020.112127_bib0075 article-title: Surgical forces and tactile perception during retinal microsurgery publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 12 start-page: 832 year: 2002 ident: 10.1016/j.sna.2020.112127_bib0130 article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/12/6/314 – volume: 5 start-page: 14 year: 2019 ident: 10.1016/j.sna.2020.112127_bib0090 article-title: Building a casimir metrology platform with a commercial MEMS sensor publication-title: Microsystems & Nanoengineering doi: 10.1038/s41378-019-0054-5 – year: 2008 ident: 10.1016/j.sna.2020.112127_bib0225 article-title: Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor publication-title: J. Biomed. Mater. Res. Part A – volume: 1 year: 2017 ident: 10.1016/j.sna.2020.112127_bib0205 article-title: Servo-assisted position-feedback MEMS force sensor with tunable sensitivity and sub-nanonewton range publication-title: Proceedings – volume: 17 year: 2017 ident: 10.1016/j.sna.2020.112127_bib0175 article-title: An electrochemical, low-frequency seismic micro-sensor based on MEMS with a force-balanced feedback system publication-title: Sensors – volume: 24 start-page: 1164 year: 2015 ident: 10.1016/j.sna.2020.112127_bib0190 article-title: Force-controlled MEMS rotary microgripper publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2015.2388539 – start-page: 1 year: 2015 ident: 10.1016/j.sna.2020.112127_bib0200 article-title: MEMS force microactuator with displacement sensing for mechanobiology experiments publication-title: AEIT – volume: 12 start-page: 4 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0120 article-title: MEMS sensor devices with a piezo-resistive cantilever publication-title: Int. J. of Automation Tech. doi: 10.20965/ijat.2018.p0004 – volume: 271 start-page: 124 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0135 article-title: Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2018.01.007 – ident: 10.1016/j.sna.2020.112127_bib0215 – start-page: 271 year: 2000 ident: 10.1016/j.sna.2020.112127_bib0085 article-title: Towards a force-controlled microgripper for assembling biomedical microdevices publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/10/2/328 – volume: 3 start-page: 413 year: 2007 ident: 10.1016/j.sna.2020.112127_bib0040 article-title: Biomechanics and biophysics of cancer cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.04.002 – start-page: 81 year: 2001 ident: 10.1016/j.sna.2020.112127_bib0010 article-title: Manipulation of nanoscale components with the AFM: principles and applications publication-title: Proc. IEEE Conf. Nanotechnol. – start-page: 16 year: 2007 ident: 10.1016/j.sna.2020.112127_bib0105 article-title: MEMS based force sensors for the study of indentation response of single living cells publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2006.05.019 – start-page: 1957 year: 1994 ident: 10.1016/j.sna.2020.112127_bib0065 article-title: Traction forces generated by locomoting keratocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.127.6.1957 – start-page: 5025 year: 2004 ident: 10.1016/j.sna.2020.112127_bib0080 article-title: Advanced controller design and implementation of a sensorized microgripper for micromanipulation publication-title: Proceedings of the IEEE International Conference on Robotics and Automation – volume: 6 start-page: 1000 year: 2006 ident: 10.1016/j.sna.2020.112127_bib0110 article-title: Self-sensing micro- and nanocantilevers with attonewton-scale force resolution publication-title: Nano Lett. doi: 10.1021/nl060275y – volume: 24 start-page: 1092 year: 2015 ident: 10.1016/j.sna.2020.112127_bib0180 article-title: Feedback-controlled MEMS force sensor for characterization of microcantilevers publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2382648 – start-page: 35 year: 2014 ident: 10.1016/j.sna.2020.112127_bib0100 article-title: Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array publication-title: Sens. Actuators A: Phys. – ident: 10.1016/j.sna.2020.112127_bib0210 – start-page: 3100 year: 2008 ident: 10.1016/j.sna.2020.112127_bib0035 article-title: Micronewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback publication-title: Proc. IEEE Int. Conf. Robot. Autom. – start-page: 1 year: 2013 ident: 10.1016/j.sna.2020.112127_bib0060 article-title: Self-biased-SMA Drive PU microgripper with force sensing in visual servo publication-title: Int. J. Adv. Robot Syst. – volume: 102 start-page: 49 year: 2002 ident: 10.1016/j.sna.2020.112127_bib0125 article-title: A high-aspect-ratio two-axis electrostatic microactuator with extendend travel range publication-title: Sens. Actuators A: Phys. doi: 10.1016/S0924-4247(02)00298-4 – start-page: 1 year: 2017 ident: 10.1016/j.sna.2020.112127_bib0055 article-title: 3D force sensors for laparoscopic surgery tool publication-title: Microsyst. Technol. – volume: 8 start-page: 167 year: 2016 ident: 10.1016/j.sna.2020.112127_bib0150 article-title: MEMS based nanomechanical testing method with independent electronic sensing of stress and strain publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2016.01.005 – volume: 56 start-page: 198 year: 2018 ident: 10.1016/j.sna.2020.112127_bib0220 article-title: An adjustable-stiffness MEMS force sensor: design, characterization, and control publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.05.007 – volume: 66 start-page: 785 year: 1997 ident: 10.1016/j.sna.2020.112127_bib0030 article-title: Force effects on biochemical kinetics publication-title: Annu. Rev. Biochem doi: 10.1146/annurev.biochem.66.1.785 – volume: 23 start-page: 610 year: 2014 ident: 10.1016/j.sna.2020.112127_bib0170 article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2013.2287506 – volume: 21 start-page: 13 year: 2012 ident: 10.1016/j.sna.2020.112127_bib0160 article-title: A 2 degree of freedom SOI-MEMS translation stage with closed-loop positioning publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2011.2174425 – volume: 20 start-page: 811 issue: 7 year: 2006 ident: 10.1016/j.sna.2020.112127_bib0020 article-title: Cellular mechanotransduction: putting all the pieces together again publication-title: FASEB J. doi: 10.1096/fj.05-5424rev – volume: 22 start-page: 8 year: 2006 ident: 10.1016/j.sna.2020.112127_bib0005 article-title: Marvelous MEMs: advanced IC sensors and microstructures for high volume applications publication-title: IEEE Circuits Devices Mag. doi: 10.1109/MCD.2006.1615241 – volume: 59 start-page: 575 year: 1997 ident: 10.1016/j.sna.2020.112127_bib0025 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.59.1.575 – volume: 736 start-page: 1 year: 2002 ident: 10.1016/j.sna.2020.112127_bib0050 article-title: Development of polyimide-based flexible tactile sensing skin publication-title: MRS Proc. doi: 10.1557/PROC-736-D4.5 – volume: 21 start-page: 596 year: 2012 ident: 10.1016/j.sna.2020.112127_bib0165 article-title: Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2189361 – year: 2017 ident: 10.1016/j.sna.2020.112127_bib0185 article-title: A closed-loop MEMS force sensor with adjustable stiffness publication-title: Conf. on Control Tech. and Appl. |
| SSID | ssj0003377 |
| Score | 2.4476388 |
| Snippet | [Display omitted]
•Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently... This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112127 |
| SubjectTerms | Actuator position Adjustable sensitivity Double-actuator position-feedback mechanism Electrostatic-capacitive MEMS Electrostatics Feedback control systems Feedback loops Force measurement Force sensor Mechanical impedance Microelectromechanical systems Position measurement Position sensing Reproducibility Sensors Stiffness |
| Title | Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors |
| URI | https://dx.doi.org/10.1016/j.sna.2020.112127 https://www.proquest.com/docview/2451170001 |
| Volume | 312 |
| WOSCitedRecordID | wos000571664500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZu0kN7KOmLpk2CDj3VyHhXu97V0RSXttBQaAq-LXqCXWcdvE7In-h_7sxK2rhOHZpDLosRKyF2Po9mRjPfEPK-sM7mKkmYSdSQZc4KJmRpGPgaealzwwtp2mYTxelpOZ2K773e71gLc7Uo6rq8vhYXDypqGANhY-nsPcTdLQoD8BuEDk8QOzz_S_BgEquFZRIrQ8Ch7se0LObgoFJS_-qfWyz3xe4YbQqlmWMRFVZQNZjNHtpJIJWIb5GDNUczzTQcq9pnGn2bgPsPc7Wfsgw3QsHG_eGHPA1s2EUz6I8HbaMdBMWgC0HLZt0V2jSNRPaEjQg3OvKhoEj_axzvV5Yrn0kWQxfgp8bcrC4GmWYsSz3lZlTHPKRVe4UK5mDiyQNu6XofdpgPmhr5o9K2Giq8-zev9tZ512UhxgS3eQVLVLhE5Zd4RPbTIhegJPfHXybTr93RznnbyrPbd7wmbxMGt_axy9DZOvJbO-bsgDwLDggde-A8Jz1bvyBPN2gpX5LLLQjRWxCiHYQowIDeQIhuQIjOaroLQhQhRFsI0QChV-Tnp8nZx88stOdgmotkzZQpeWKFKaQQ0lnjkiJRwklji6Ee5bLkpdZpZhVXYMfCB3U25SPQ-YrDpNTw12SvXtb2DaHWomJQI-OQPahMhTWltjmXKrfDLHOHZBi_ZaUDdz22UFlUO2V4SD50Uy48cctdL2dRQFWwPL1FWQHY7pp2FIVZBQ3QVCky_hXoO729zxbekSc3f5EjsrdeXdpj8lhfrWfN6iQA8Q8IErQu |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-actuator+position-feedback+mechanism+for+adjustable+sensitivity+in+electrostatic-capacitive+MEMS+force+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Nastro%2C+Alessandro&rft.au=Ferrari%2C+Marco&rft.au=Ferrari%2C+Vittorio&rft.date=2020-09-01&rft.issn=0924-4247&rft.volume=312&rft.spage=112127&rft_id=info:doi/10.1016%2Fj.sna.2020.112127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2020_112127 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |