Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors

[Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and actuators. A. Physical. Ročník 312; s. 112127
Hlavní autoři: Nastro, Alessandro, Ferrari, Marco, Ferrari, Vittorio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 01.09.2020
Elsevier BV
Témata:
ISSN:0924-4247, 1873-3069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has been experimentally validated on a MEMS device employing the gravity force.•Sensitivity from 2.34 to 8.43 V/μN with measurement range from [-217, 226] down to [-20.5, 21.4] nN. This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN.
AbstractList This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN.
[Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently from the desired working position.•Servo-assisted position-feedback loop ideally offers infinite input mechanical impedance.•The mechanism has been experimentally validated on a MEMS device employing the gravity force.•Sensitivity from 2.34 to 8.43 V/μN with measurement range from [-217, 226] down to [-20.5, 21.4] nN. This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a single-actuator position-feedback operation, the innovative use of two independent electrostatic actuators allows to obtain electrically adjustable force sensitivity and measurement range independently from the working position and the stiffness of the internal mechanical movable structure of the device. Additionally, the proposed configuration allows to electrically set and keep fixed the working position of the force probe tip thanks to the position-feedback loop, thus ideally offering an infinite input mechanical impedance, irrespectively from the force measurement range and sensitivity adjusted to the desired values. The proposed mechanism has been experimentally validated on an electrostatic-capacitive MEMS device that includes a capacitive position sensor and a pair of electrostatic actuators, employing the gravity force to provide accurate and repeatable values for the external applied force. The obtained experimental results are in good agreement with both theoretical predictions and parametric numerical analyses. The proposed mechanism allows to adjust the sensitivity in the range from 2.34 up to 8.43 V/μN with a corresponding force measurement range, defined at a maximum nonlinearity error of 1% referred to the full scale, from [-217, 226] down to [-20.5, 21.4] nN, respectively. The measurement repeatability, which sets the resolution of the MEMS force sensor, has been estimated at one standard deviation σ resulting in 345 pN.
ArticleNumber 112127
Author Ferrari, Vittorio
Ferrari, Marco
Nastro, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Nastro
  fullname: Nastro, Alessandro
  email: a.nastro002@unibs.it
  organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy
– sequence: 2
  givenname: Marco
  surname: Ferrari
  fullname: Ferrari, Marco
  organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy
– sequence: 3
  givenname: Vittorio
  surname: Ferrari
  fullname: Ferrari, Vittorio
  organization: Dept. of Information Engineering, University of Brescia, Brescia, Italy
BookMark eNp9kMtOwzAQRS0EEm3hA9hFYp3iR1o3YoVKeUggFsDamtgT4dDaxXYq8fc4CisWrCzr3mPPnCk5dt4hIReMzhlly6tuHh3MOeX5zjjj8ohM2EqKUtBlfUwmtOZVWfFKnpJpjB2lVAgpJ6S_9X2zxRJ06iH5UOx9tMl6V7aIpgH9WexQf4CzcVe0OQfT9TFBZoqIbugebPourCtwizoFn8NkdalhD3pIsXjePL8OrB4RH-IZOWlhG_H895yR97vN2_qhfHq5f1zfPJVa1CyVjVkJhrWRUNfQommZZE3dgkFJ9XIBK7HSmlfYiIbKvPOiRS6WC8EakSFuxIxcju_ug__qMSbV-T64_KXi1YIxmT2w3JJjS-fpY8BW5cFhkJAC2K1iVA2OVaeyYzU4VqPjTLI_5D7YHYTvf5nrkcG8-MFiUFFbdBqNDVmgMt7-Q_8A3wyY-Q
CitedBy_id crossref_primary_10_1109_TIE_2022_3163538
crossref_primary_10_3390_s23063342
crossref_primary_10_3390_coatings11121551
crossref_primary_10_1016_j_measurement_2022_111634
crossref_primary_10_3390_s20236783
crossref_primary_10_1109_TIE_2022_3203756
crossref_primary_10_1088_1361_6501_ac83e1
crossref_primary_10_1007_s11465_023_0747_1
crossref_primary_10_1088_1361_6501_ac0743
crossref_primary_10_1177_10567895211033972
crossref_primary_10_1088_1402_4896_abb327
crossref_primary_10_1063_5_0211141
crossref_primary_10_1146_annurev_control_090623_115925
crossref_primary_10_1088_1361_6439_aded9a
crossref_primary_10_1007_s00542_024_05834_5
crossref_primary_10_3390_s24113690
crossref_primary_10_3390_nano13192677
crossref_primary_10_1002_smtd_202401640
crossref_primary_10_20965_jrm_2025_p0895
crossref_primary_10_3390_s23042077
crossref_primary_10_1016_j_jeurceramsoc_2024_02_003
crossref_primary_10_1088_1361_6501_ac15dd
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124801
crossref_primary_10_1002_adma_202305121
crossref_primary_10_1299_transjsme_24_00252
Cites_doi 10.1126/science.1173851
10.1016/j.sna.2017.07.048
10.1109/JMEMS.2013.2287506
10.1016/j.sna.2018.03.031
10.1088/0960-1317/12/6/314
10.1063/1.1896103
10.1088/1361-6439/aaabf7
10.1038/s41378-019-0054-5
10.1109/JMEMS.2015.2388539
10.20965/ijat.2018.p0004
10.1016/j.sna.2018.01.007
10.1088/0960-1317/10/2/328
10.1016/j.actbio.2007.04.002
10.1016/j.sna.2006.05.019
10.1083/jcb.127.6.1957
10.1021/nl060275y
10.1109/JMEMS.2014.2382648
10.1016/S0924-4247(02)00298-4
10.1016/j.eml.2016.01.005
10.1016/j.mechatronics.2018.05.007
10.1146/annurev.biochem.66.1.785
10.1109/JMEMS.2011.2174425
10.1096/fj.05-5424rev
10.1109/MCD.2006.1615241
10.1146/annurev.physiol.59.1.575
10.1557/PROC-736-D4.5
10.1109/JMEMS.2012.2189361
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Sep 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 1, 2020
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2020.112127
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2020_112127
S092442472030025X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
WUQ
~HD
7TB
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
L7M
SSH
ID FETCH-LOGICAL-c391t-bd831e9d7a99afedf171b9fade70c65a838cc24eb3b071275fe236531b39d72d3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571664500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-4247
IngestDate Fri Jul 25 04:40:15 EDT 2025
Sat Nov 29 07:10:46 EST 2025
Tue Nov 18 22:32:08 EST 2025
Fri Feb 23 02:49:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Force sensor
Electrostatic-capacitive MEMS
Double-actuator position-feedback mechanism
Adjustable sensitivity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-bd831e9d7a99afedf171b9fade70c65a838cc24eb3b071275fe236531b39d72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2451170001
PQPubID 2045401
ParticipantIDs proquest_journals_2451170001
crossref_citationtrail_10_1016_j_sna_2020_112127
crossref_primary_10_1016_j_sna_2020_112127
elsevier_sciencedirect_doi_10_1016_j_sna_2020_112127
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Gupta, Jensen, De Juan (bib0075) 1999
FT-S100000, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available
Koo, Zhang, Dong, Salapaka, Ferreira (bib0160) 2012; 21
Ingber (bib0020) 2006; 20
Mohammadi, Fowler, Yong, Moheimani (bib0170) 2014; 23
Sun, Nelson, Potasek, Enikov (bib0130) 2002; 12
Maroufi, Alemansour, Coskun, Moheimani (bib0220) 2018; 56
Mohammadi, Fowler, Yong, Moheimani (bib0015) 2014; 23
Kohyama, Takahashi, Yoshida, Onoe, Hirayama-Shoji, Tsukagoshi, Takahata, Shimoyama (bib0145) 2018; 28
Lee, Leonard, Oliver, Ishihara, Jacobson (bib0065) 1994
Park, Kim, Kim, Kim, Kwon, Park, Lee (bib0080) 2004
f.
Nastro, Ferrari, Russo, Ardito, Ferrari (bib0205) 2017; 1
Matsumoto, Shimoyama (bib0120) 2018; 12
Khan, Sheetz (bib0030) 1997; 66
Kim, Liu, Zhang, Sun (bib0035) 2008
Bargatin, Myers, Arlett, Gudlewsky, Roukes (bib0115) 2005; 86
Li, Wang, Chen, Chen, Chen, Xu (bib0175) 2017; 17
Kim, Cheng, Liu, Wu, Sun (bib0225) 2008
FT-S100, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available
Engel, Chen, Liu, Flachsbart, Selby, Shannon (bib0050) 2002; 736
Zhi, Xin, Zhi, Shao, Yang (bib0045) 2016
Maroufi, Alemansour, Moheimani (bib0185) 2017
Requicha, Meltzer, Arce, Makaliwe, Sikén, Hsieh, Lewis, Koel, Thompson (bib0010) 2001
Grech, Tarazona, De Leon, Kiang, Zekonyte, Wood, Chong (bib0140) 2018; 275
Carrozza, Eisinberg, Menciassi, Campolo, Micera, Dario (bib0085) 2000
Thanh-Vinh, Takahashi, Matsumoto, Shimoyama (bib0100) 2014
Arlett, Maloney, Gudlewsky, Muluneh, Roukes (bib0110) 2006; 6
Cerini, Ferrari, Ferrari, Ardito, De Masi, Russo, Urquia, Serzanti, Dell’Era (bib0200) 2015
Yang, Taher, Saif (bib0105) 2007
Sun, Nelson, Potasek, Enikov (bib0155) 2002; 12
Radó, Dücső, Földesy, Szebényi, Nawrat, Rohr, Fürjes (bib0055) 2017
Bryzek, Roundy, Bircumshaw, Chung, Castellino, Stetter, Vestel (bib0005) 2006; 22
.
Sun, Piyabongkarn, Sezen, Nelson, Rajamani (bib0125) 2002; 102
Ouyang, Zhu (bib0165) 2012; 21
Ingber (bib0025) 1997; 59
Moore, Biais, Sheetz (bib0070) 2009; 325
Gupta, Pierron (bib0150) 2016; 8
Cerini, Ferrari, Ferrari, Russo, Urquia, Ardito, De Masi, Sedmik (bib0195) 2017; 266
Kumar, Rab, Pant, Maji (bib0095) 2018
Moore, Coskun, Alan, Neild, Moheimani (bib0180) 2015; 24
Suresh (bib0040) 2007; 3
Chang, Shiu, Cheng (bib0060) 2013
Stange, Imboden, Javor, Barrett, Bishop (bib0090) 2019; 5
Piriyanont, Fowler, Moheimani (bib0190) 2015; 24
Takizawa, Kanno, Miyazaki, Tadano, Kawashima (bib0135) 2018; 271
Gupta (10.1016/j.sna.2020.112127_bib0075) 1999
Sun (10.1016/j.sna.2020.112127_bib0125) 2002; 102
Maroufi (10.1016/j.sna.2020.112127_bib0185) 2017
Matsumoto (10.1016/j.sna.2020.112127_bib0120) 2018; 12
Kim (10.1016/j.sna.2020.112127_bib0225) 2008
Maroufi (10.1016/j.sna.2020.112127_bib0220) 2018; 56
Yang (10.1016/j.sna.2020.112127_bib0105) 2007
Moore (10.1016/j.sna.2020.112127_bib0180) 2015; 24
10.1016/j.sna.2020.112127_bib0210
Radó (10.1016/j.sna.2020.112127_bib0055) 2017
Kumar (10.1016/j.sna.2020.112127_bib0095) 2018
Engel (10.1016/j.sna.2020.112127_bib0050) 2002; 736
10.1016/j.sna.2020.112127_bib0215
Zhi (10.1016/j.sna.2020.112127_bib0045) 2016
Nastro (10.1016/j.sna.2020.112127_bib0205) 2017; 1
Kim (10.1016/j.sna.2020.112127_bib0035) 2008
Mohammadi (10.1016/j.sna.2020.112127_bib0015) 2014; 23
Stange (10.1016/j.sna.2020.112127_bib0090) 2019; 5
Gupta (10.1016/j.sna.2020.112127_bib0150) 2016; 8
Lee (10.1016/j.sna.2020.112127_bib0065) 1994
Cerini (10.1016/j.sna.2020.112127_bib0195) 2017; 266
Moore (10.1016/j.sna.2020.112127_bib0070) 2009; 325
Ouyang (10.1016/j.sna.2020.112127_bib0165) 2012; 21
Kohyama (10.1016/j.sna.2020.112127_bib0145) 2018; 28
Sun (10.1016/j.sna.2020.112127_bib0155) 2002; 12
Li (10.1016/j.sna.2020.112127_bib0175) 2017; 17
Bargatin (10.1016/j.sna.2020.112127_bib0115) 2005; 86
Khan (10.1016/j.sna.2020.112127_bib0030) 1997; 66
Piriyanont (10.1016/j.sna.2020.112127_bib0190) 2015; 24
Park (10.1016/j.sna.2020.112127_bib0080) 2004
Grech (10.1016/j.sna.2020.112127_bib0140) 2018; 275
Suresh (10.1016/j.sna.2020.112127_bib0040) 2007; 3
Carrozza (10.1016/j.sna.2020.112127_bib0085) 2000
Bryzek (10.1016/j.sna.2020.112127_bib0005) 2006; 22
Sun (10.1016/j.sna.2020.112127_bib0130) 2002; 12
Thanh-Vinh (10.1016/j.sna.2020.112127_bib0100) 2014
Mohammadi (10.1016/j.sna.2020.112127_bib0170) 2014; 23
Arlett (10.1016/j.sna.2020.112127_bib0110) 2006; 6
Requicha (10.1016/j.sna.2020.112127_bib0010) 2001
Ingber (10.1016/j.sna.2020.112127_bib0025) 1997; 59
Chang (10.1016/j.sna.2020.112127_bib0060) 2013
Takizawa (10.1016/j.sna.2020.112127_bib0135) 2018; 271
Koo (10.1016/j.sna.2020.112127_bib0160) 2012; 21
Cerini (10.1016/j.sna.2020.112127_bib0200) 2015
Ingber (10.1016/j.sna.2020.112127_bib0020) 2006; 20
References_xml – reference: f.
– reference: FT-S100, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available:
– start-page: 3100
  year: 2008
  end-page: 3105
  ident: bib0035
  article-title: Micronewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– volume: 86
  start-page: 1
  year: 2005
  end-page: 3
  ident: bib0115
  article-title: Sensitive detection of nanomechanical motion using piezoresistive signal downmixing
  publication-title: Appl. Phys. Lett.
– start-page: 5025
  year: 2004
  end-page: 5032
  ident: bib0080
  article-title: Advanced controller design and implementation of a sensorized microgripper for micromanipulation
  publication-title: Proceedings of the IEEE International Conference on Robotics and Automation
– start-page: 211
  year: 2018
  end-page: 216
  ident: bib0095
  article-title: Design, development and characterization of MEMS silicon diaphragm force sensor
  publication-title: Sens. Actuators A: Phys.
– start-page: 1
  year: 2013
  end-page: 12
  ident: bib0060
  article-title: Self-biased-SMA Drive PU microgripper with force sensing in visual servo
  publication-title: Int. J. Adv. Robot Syst.
– volume: 266
  start-page: 219
  year: 2017
  end-page: 231
  ident: bib0195
  article-title: Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device
  publication-title: Sens. Actuators A: Phys.
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib0055
  article-title: 3D force sensors for laparoscopic surgery tool
  publication-title: Microsyst. Technol.
– volume: 275
  start-page: 67
  year: 2018
  end-page: 74
  ident: bib0140
  article-title: A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties
  publication-title: Sens. Actuators A: Phys.
– volume: 24
  start-page: 1164
  year: 2015
  end-page: 1172
  ident: bib0190
  article-title: Force-controlled MEMS rotary microgripper
  publication-title: J. Microelectromech. Syst.
– volume: 21
  start-page: 596
  year: 2012
  end-page: 604
  ident: bib0165
  article-title: Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control
  publication-title: J. Microelectromech. Syst.
– volume: 17
  year: 2017
  ident: bib0175
  article-title: An electrochemical, low-frequency seismic micro-sensor based on MEMS with a force-balanced feedback system
  publication-title: Sensors
– volume: 24
  start-page: 1092
  year: 2015
  end-page: 1101
  ident: bib0180
  article-title: Feedback-controlled MEMS force sensor for characterization of microcantilevers
  publication-title: J. Microelectromech. Syst.
– start-page: 1218
  year: 1999
  end-page: 1225
  ident: bib0075
  article-title: Surgical forces and tactile perception during retinal microsurgery
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 12
  start-page: 832
  year: 2002
  end-page: 840
  ident: bib0155
  article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives
  publication-title: J. Micromech. Microeng.
– volume: 102
  start-page: 49
  year: 2002
  end-page: 60
  ident: bib0125
  article-title: A high-aspect-ratio two-axis electrostatic microactuator with extendend travel range
  publication-title: Sens. Actuators A: Phys.
– volume: 3
  start-page: 413
  year: 2007
  end-page: 438
  ident: bib0040
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Biomater.
– volume: 28
  year: 2018
  ident: bib0145
  article-title: Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers
  publication-title: J. Micromech. Microeng.
– volume: 20
  start-page: 811
  year: 2006
  end-page: 827
  ident: bib0020
  article-title: Cellular mechanotransduction: putting all the pieces together again
  publication-title: FASEB J.
– volume: 23
  start-page: 610
  year: 2014
  end-page: 619
  ident: bib0170
  article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM
  publication-title: J. Microelectromech. Syst.
– volume: 12
  start-page: 832
  year: 2002
  end-page: 840
  ident: bib0130
  article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives
  publication-title: J. Micromech. Microeng.
– volume: 12
  start-page: 4
  year: 2018
  end-page: 14
  ident: bib0120
  article-title: MEMS sensor devices with a piezo-resistive cantilever
  publication-title: Int. J. of Automation Tech.
– volume: 23
  start-page: 610
  year: 2014
  end-page: 619
  ident: bib0015
  article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM
  publication-title: J. Microelectromech. Syst.
– start-page: 9005
  year: 2016
  ident: bib0045
  article-title: Vision and force feedback control for microassembly process
  publication-title: International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
– volume: 736
  start-page: 1
  year: 2002
  end-page: 6
  ident: bib0050
  article-title: Development of polyimide-based flexible tactile sensing skin
  publication-title: MRS Proc.
– start-page: 271
  year: 2000
  end-page: 276
  ident: bib0085
  article-title: Towards a force-controlled microgripper for assembling biomedical microdevices
  publication-title: J. Micromech. Microeng.
– volume: 1
  year: 2017
  ident: bib0205
  article-title: Servo-assisted position-feedback MEMS force sensor with tunable sensitivity and sub-nanonewton range
  publication-title: Proceedings
– volume: 56
  start-page: 198
  year: 2018
  end-page: 210
  ident: bib0220
  article-title: An adjustable-stiffness MEMS force sensor: design, characterization, and control
  publication-title: Mechatronics
– start-page: 1957
  year: 1994
  end-page: 1964
  ident: bib0065
  article-title: Traction forces generated by locomoting keratocytes
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 167
  year: 2016
  end-page: 176
  ident: bib0150
  article-title: MEMS based nanomechanical testing method with independent electronic sensing of stress and strain
  publication-title: Extreme Mech. Lett.
– year: 2017
  ident: bib0185
  article-title: A closed-loop MEMS force sensor with adjustable stiffness
  publication-title: Conf. on Control Tech. and Appl.
– volume: 325
  start-page: 166
  year: 2009
  ident: bib0070
  article-title: Traction on immobilized netrin-1 is sufficient to reorient axons
  publication-title: Science
– reference: .
– volume: 22
  start-page: 8
  year: 2006
  end-page: 28
  ident: bib0005
  article-title: Marvelous MEMs: advanced IC sensors and microstructures for high volume applications
  publication-title: IEEE Circuits Devices Mag.
– volume: 5
  start-page: 14
  year: 2019
  ident: bib0090
  article-title: Building a casimir metrology platform with a commercial MEMS sensor
  publication-title: Microsystems & Nanoengineering
– reference: FT-S100000, FemtoTools, Switzerland. [Online]. (viewed 27 April 2020). Available:
– start-page: 81
  year: 2001
  end-page: 86
  ident: bib0010
  article-title: Manipulation of nanoscale components with the AFM: principles and applications
  publication-title: Proc. IEEE Conf. Nanotechnol.
– start-page: 35
  year: 2014
  end-page: 43
  ident: bib0100
  article-title: Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array
  publication-title: Sens. Actuators A: Phys.
– volume: 6
  start-page: 1000
  year: 2006
  end-page: 1006
  ident: bib0110
  article-title: Self-sensing micro- and nanocantilevers with attonewton-scale force resolution
  publication-title: Nano Lett.
– year: 2008
  ident: bib0225
  article-title: Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 271
  start-page: 124
  year: 2018
  end-page: 130
  ident: bib0135
  article-title: Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor
  publication-title: Sens. Actuators A: Phys.
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0200
  article-title: MEMS force microactuator with displacement sensing for mechanobiology experiments
  publication-title: AEIT
– volume: 59
  start-page: 575
  year: 1997
  end-page: 599
  ident: bib0025
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu. Rev. Physiol.
– volume: 66
  start-page: 785
  year: 1997
  end-page: 805
  ident: bib0030
  article-title: Force effects on biochemical kinetics
  publication-title: Annu. Rev. Biochem
– start-page: 16
  year: 2007
  end-page: 22
  ident: bib0105
  article-title: MEMS based force sensors for the study of indentation response of single living cells
  publication-title: Sens. Actuators A: Phys.
– volume: 21
  start-page: 13
  year: 2012
  end-page: 22
  ident: bib0160
  article-title: A 2 degree of freedom SOI-MEMS translation stage with closed-loop positioning
  publication-title: J. Microelectromech. Syst.
– volume: 325
  start-page: 166
  year: 2009
  ident: 10.1016/j.sna.2020.112127_bib0070
  article-title: Traction on immobilized netrin-1 is sufficient to reorient axons
  publication-title: Science
  doi: 10.1126/science.1173851
– volume: 266
  start-page: 219
  year: 2017
  ident: 10.1016/j.sna.2020.112127_bib0195
  article-title: Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMS device
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2017.07.048
– volume: 23
  start-page: 610
  year: 2014
  ident: 10.1016/j.sna.2020.112127_bib0015
  article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2287506
– start-page: 9005
  year: 2016
  ident: 10.1016/j.sna.2020.112127_bib0045
  article-title: Vision and force feedback control for microassembly process
  publication-title: International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
– volume: 275
  start-page: 67
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0140
  article-title: A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2018.03.031
– volume: 12
  start-page: 832
  year: 2002
  ident: 10.1016/j.sna.2020.112127_bib0155
  article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/12/6/314
– volume: 86
  start-page: 1
  year: 2005
  ident: 10.1016/j.sna.2020.112127_bib0115
  article-title: Sensitive detection of nanomechanical motion using piezoresistive signal downmixing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1896103
– volume: 28
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0145
  article-title: Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aaabf7
– start-page: 211
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0095
  article-title: Design, development and characterization of MEMS silicon diaphragm force sensor
  publication-title: Sens. Actuators A: Phys.
– start-page: 1218
  year: 1999
  ident: 10.1016/j.sna.2020.112127_bib0075
  article-title: Surgical forces and tactile perception during retinal microsurgery
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 12
  start-page: 832
  year: 2002
  ident: 10.1016/j.sna.2020.112127_bib0130
  article-title: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/12/6/314
– volume: 5
  start-page: 14
  year: 2019
  ident: 10.1016/j.sna.2020.112127_bib0090
  article-title: Building a casimir metrology platform with a commercial MEMS sensor
  publication-title: Microsystems & Nanoengineering
  doi: 10.1038/s41378-019-0054-5
– year: 2008
  ident: 10.1016/j.sna.2020.112127_bib0225
  article-title: Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 1
  year: 2017
  ident: 10.1016/j.sna.2020.112127_bib0205
  article-title: Servo-assisted position-feedback MEMS force sensor with tunable sensitivity and sub-nanonewton range
  publication-title: Proceedings
– volume: 17
  year: 2017
  ident: 10.1016/j.sna.2020.112127_bib0175
  article-title: An electrochemical, low-frequency seismic micro-sensor based on MEMS with a force-balanced feedback system
  publication-title: Sensors
– volume: 24
  start-page: 1164
  year: 2015
  ident: 10.1016/j.sna.2020.112127_bib0190
  article-title: Force-controlled MEMS rotary microgripper
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2015.2388539
– start-page: 1
  year: 2015
  ident: 10.1016/j.sna.2020.112127_bib0200
  article-title: MEMS force microactuator with displacement sensing for mechanobiology experiments
  publication-title: AEIT
– volume: 12
  start-page: 4
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0120
  article-title: MEMS sensor devices with a piezo-resistive cantilever
  publication-title: Int. J. of Automation Tech.
  doi: 10.20965/ijat.2018.p0004
– volume: 271
  start-page: 124
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0135
  article-title: Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2018.01.007
– ident: 10.1016/j.sna.2020.112127_bib0215
– start-page: 271
  year: 2000
  ident: 10.1016/j.sna.2020.112127_bib0085
  article-title: Towards a force-controlled microgripper for assembling biomedical microdevices
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/10/2/328
– volume: 3
  start-page: 413
  year: 2007
  ident: 10.1016/j.sna.2020.112127_bib0040
  article-title: Biomechanics and biophysics of cancer cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.04.002
– start-page: 81
  year: 2001
  ident: 10.1016/j.sna.2020.112127_bib0010
  article-title: Manipulation of nanoscale components with the AFM: principles and applications
  publication-title: Proc. IEEE Conf. Nanotechnol.
– start-page: 16
  year: 2007
  ident: 10.1016/j.sna.2020.112127_bib0105
  article-title: MEMS based force sensors for the study of indentation response of single living cells
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2006.05.019
– start-page: 1957
  year: 1994
  ident: 10.1016/j.sna.2020.112127_bib0065
  article-title: Traction forces generated by locomoting keratocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.127.6.1957
– start-page: 5025
  year: 2004
  ident: 10.1016/j.sna.2020.112127_bib0080
  article-title: Advanced controller design and implementation of a sensorized microgripper for micromanipulation
  publication-title: Proceedings of the IEEE International Conference on Robotics and Automation
– volume: 6
  start-page: 1000
  year: 2006
  ident: 10.1016/j.sna.2020.112127_bib0110
  article-title: Self-sensing micro- and nanocantilevers with attonewton-scale force resolution
  publication-title: Nano Lett.
  doi: 10.1021/nl060275y
– volume: 24
  start-page: 1092
  year: 2015
  ident: 10.1016/j.sna.2020.112127_bib0180
  article-title: Feedback-controlled MEMS force sensor for characterization of microcantilevers
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2382648
– start-page: 35
  year: 2014
  ident: 10.1016/j.sna.2020.112127_bib0100
  article-title: Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array
  publication-title: Sens. Actuators A: Phys.
– ident: 10.1016/j.sna.2020.112127_bib0210
– start-page: 3100
  year: 2008
  ident: 10.1016/j.sna.2020.112127_bib0035
  article-title: Micronewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– start-page: 1
  year: 2013
  ident: 10.1016/j.sna.2020.112127_bib0060
  article-title: Self-biased-SMA Drive PU microgripper with force sensing in visual servo
  publication-title: Int. J. Adv. Robot Syst.
– volume: 102
  start-page: 49
  year: 2002
  ident: 10.1016/j.sna.2020.112127_bib0125
  article-title: A high-aspect-ratio two-axis electrostatic microactuator with extendend travel range
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/S0924-4247(02)00298-4
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2020.112127_bib0055
  article-title: 3D force sensors for laparoscopic surgery tool
  publication-title: Microsyst. Technol.
– volume: 8
  start-page: 167
  year: 2016
  ident: 10.1016/j.sna.2020.112127_bib0150
  article-title: MEMS based nanomechanical testing method with independent electronic sensing of stress and strain
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2016.01.005
– volume: 56
  start-page: 198
  year: 2018
  ident: 10.1016/j.sna.2020.112127_bib0220
  article-title: An adjustable-stiffness MEMS force sensor: design, characterization, and control
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.05.007
– volume: 66
  start-page: 785
  year: 1997
  ident: 10.1016/j.sna.2020.112127_bib0030
  article-title: Force effects on biochemical kinetics
  publication-title: Annu. Rev. Biochem
  doi: 10.1146/annurev.biochem.66.1.785
– volume: 23
  start-page: 610
  year: 2014
  ident: 10.1016/j.sna.2020.112127_bib0170
  article-title: A feedback controlled MEMS nanopositioner for on-chip high-speed AFM
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2287506
– volume: 21
  start-page: 13
  year: 2012
  ident: 10.1016/j.sna.2020.112127_bib0160
  article-title: A 2 degree of freedom SOI-MEMS translation stage with closed-loop positioning
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2011.2174425
– volume: 20
  start-page: 811
  issue: 7
  year: 2006
  ident: 10.1016/j.sna.2020.112127_bib0020
  article-title: Cellular mechanotransduction: putting all the pieces together again
  publication-title: FASEB J.
  doi: 10.1096/fj.05-5424rev
– volume: 22
  start-page: 8
  year: 2006
  ident: 10.1016/j.sna.2020.112127_bib0005
  article-title: Marvelous MEMs: advanced IC sensors and microstructures for high volume applications
  publication-title: IEEE Circuits Devices Mag.
  doi: 10.1109/MCD.2006.1615241
– volume: 59
  start-page: 575
  year: 1997
  ident: 10.1016/j.sna.2020.112127_bib0025
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.59.1.575
– volume: 736
  start-page: 1
  year: 2002
  ident: 10.1016/j.sna.2020.112127_bib0050
  article-title: Development of polyimide-based flexible tactile sensing skin
  publication-title: MRS Proc.
  doi: 10.1557/PROC-736-D4.5
– volume: 21
  start-page: 596
  year: 2012
  ident: 10.1016/j.sna.2020.112127_bib0165
  article-title: Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2012.2189361
– year: 2017
  ident: 10.1016/j.sna.2020.112127_bib0185
  article-title: A closed-loop MEMS force sensor with adjustable stiffness
  publication-title: Conf. on Control Tech. and Appl.
SSID ssj0003377
Score 2.4476388
Snippet [Display omitted] •Novel double-actuator position-feedback mechanism for MEMS force sensors.•Adjustable force sensitivity and measurement range independently...
This paper presents a novel double-actuator position-feedback mechanism for micro electro-mechanical electrostatic-capacitive force sensors. Compared to a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112127
SubjectTerms Actuator position
Adjustable sensitivity
Double-actuator position-feedback mechanism
Electrostatic-capacitive MEMS
Electrostatics
Feedback control systems
Feedback loops
Force measurement
Force sensor
Mechanical impedance
Microelectromechanical systems
Position measurement
Position sensing
Reproducibility
Sensors
Stiffness
Title Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors
URI https://dx.doi.org/10.1016/j.sna.2020.112127
https://www.proquest.com/docview/2451170001
Volume 312
WOSCitedRecordID wos000571664500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZu0kN7KOmLpk2CDj3VyHhXu97V0RSXttBQaAq-LXqCXWcdvE7In-h_7sxK2rhOHZpDLosRKyF2Po9mRjPfEPK-sM7mKkmYSdSQZc4KJmRpGPgaealzwwtp2mYTxelpOZ2K773e71gLc7Uo6rq8vhYXDypqGANhY-nsPcTdLQoD8BuEDk8QOzz_S_BgEquFZRIrQ8Ch7se0LObgoFJS_-qfWyz3xe4YbQqlmWMRFVZQNZjNHtpJIJWIb5GDNUczzTQcq9pnGn2bgPsPc7Wfsgw3QsHG_eGHPA1s2EUz6I8HbaMdBMWgC0HLZt0V2jSNRPaEjQg3OvKhoEj_axzvV5Yrn0kWQxfgp8bcrC4GmWYsSz3lZlTHPKRVe4UK5mDiyQNu6XofdpgPmhr5o9K2Giq8-zev9tZ512UhxgS3eQVLVLhE5Zd4RPbTIhegJPfHXybTr93RznnbyrPbd7wmbxMGt_axy9DZOvJbO-bsgDwLDggde-A8Jz1bvyBPN2gpX5LLLQjRWxCiHYQowIDeQIhuQIjOaroLQhQhRFsI0QChV-Tnp8nZx88stOdgmotkzZQpeWKFKaQQ0lnjkiJRwklji6Ee5bLkpdZpZhVXYMfCB3U25SPQ-YrDpNTw12SvXtb2DaHWomJQI-OQPahMhTWltjmXKrfDLHOHZBi_ZaUDdz22UFlUO2V4SD50Uy48cctdL2dRQFWwPL1FWQHY7pp2FIVZBQ3QVCky_hXoO729zxbekSc3f5EjsrdeXdpj8lhfrWfN6iQA8Q8IErQu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-actuator+position-feedback+mechanism+for+adjustable+sensitivity+in+electrostatic-capacitive+MEMS+force+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Nastro%2C+Alessandro&rft.au=Ferrari%2C+Marco&rft.au=Ferrari%2C+Vittorio&rft.date=2020-09-01&rft.issn=0924-4247&rft.volume=312&rft.spage=112127&rft_id=info:doi/10.1016%2Fj.sna.2020.112127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2020_112127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon