On-line learning of dynamical systems in the presence of model mismatch and disturbances

This paper is concerned with the online learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 11; H. 6; S. 1272 - 1283
Hauptverfasser: Jiang, D, Wang, J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2000
Schlagworte:
ISSN:1045-9227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is concerned with the online learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the /spl sigma/-modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.
AbstractList This paper is concerned with the on-line learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the sigma-modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.This paper is concerned with the on-line learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the sigma-modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.
This paper is concerned with the on-line learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the sigma-modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.
This paper is concerned with the online learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the /spl sigma/-modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.
This paper is concerned with the online learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are subject to disturbances and possibly unstable. The neural-network model used has a simple architecture with one layer of adaptive connection weights. Four learning rules are proposed for the cases where the system state is measurable in continuous or discrete time. Some of these learning rules extend the sigma -modification of the standard gradient learning rule. Convergence properties are given to show that the weight parameters of the recurrent neural network are bounded and the state estimation error converges exponentially to a bounded set, which depends on the modeling error and the disturbance bound. The effectiveness of the proposed learning rules for the recurrent neural network is demonstrated using an illustrative example of tracking a Brownian motion.
Author Jun Wang
Danchi Jiang
Author_xml – sequence: 1
  givenname: D
  surname: Jiang
  fullname: Jiang, D
  organization: Daedalian Systems Group Inc., Toronto, ON, M5C 1E5, Canada
– sequence: 2
  givenname: J
  surname: Wang
  fullname: Wang, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18249853$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAQAGAPRfQBAysD8gRiSOtXYmdEFS-pUheQ2CLHuVCjxCm2O_Tfk6oFJIRguuG-e-hujAauc4DQGSVTSkk-k2yqFBeMDNCIEpEmOWNyiMYhvBFCRUqyYzSkiolcpXyEXpYuaawD3ID2zrpX3NW42jrdWqMbHLYhQhuwdTiuAK89BHAGdqjtKmhwa0Oro1lh7Spc2RA3vtS9CCfoqNZNgNNDnKDnu9un-UOyWN4_zm8WieE5jUlZCaNJmUNZgyY1r6XIKDc6y7iUQpXcCKYzaQwXwFmVSyryWhlVZ7u0BD5BV_u-a9-9byDEol_JQNNoB90mFDkVGe-l-ldKzkXK037yBF3-KZkSlFFJe3hxgJuyhapYe9tqvy0-79uD6z0wvgvBQ_1NSLH7VyFZsf9Xb2c_rLFRR9u56LVtfq0431dYAPjqfEh-AAsloBk
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_ast_2011_07_008
crossref_primary_10_1109_TNN_2002_806610
Cites_doi 10.1162/neco.1989.1.2.270
10.1016/S0925-2312(96)00012-4
10.1109/72.80202
10.1109/5.58337
10.1016/0893-6080(89)90020-8
10.1109/72.485674
10.1007/BF02551274
10.1109/9.28018
10.1016/0893-6080(89)90003-8
10.1007/978-3-662-03295-4_9
10.1016/S0893-6080(96)00060-3
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/72.883420
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
PubMed

Technology Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
EndPage 1283
ExternalDocumentID 18249853
10_1109_72_883420
883420
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c391t-bd4ca0b9ebfea0f3f74613ca6637748b3c42a67cc34e32d97149f8c8f677487e3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000165265900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Sun Nov 23 09:40:11 EST 2025
Fri Sep 05 12:03:34 EDT 2025
Fri Sep 05 06:32:50 EDT 2025
Thu Apr 03 06:58:26 EDT 2025
Tue Nov 18 21:08:05 EST 2025
Sat Nov 29 03:59:17 EST 2025
Tue Aug 26 21:00:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-bd4ca0b9ebfea0f3f74613ca6637748b3c42a67cc34e32d97149f8c8f677487e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18249853
PQID 28412171
PQPubID 23500
PageCount 12
ParticipantIDs pubmed_primary_18249853
proquest_miscellaneous_733453566
proquest_miscellaneous_914634878
proquest_miscellaneous_28412171
crossref_primary_10_1109_72_883420
ieee_primary_883420
crossref_citationtrail_10_1109_72_883420
PublicationCentury 2000
PublicationDate 2000-11-01
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: 2000-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
References Krstic (13) 1995
12
15
Williams (6) 1989; 1
Rumelhart (4) 1986
Haykin (16) 1994
Cichocki (17) 1993
Kailath (18) 1980
2
3
Cybenko (1) 1989; 2
Narendra (14) 1989
5
7
8
9
Ljung (11) 1996
Pineda (10) 1995
References_xml – volume: 1
  start-page: 270
  year: 1989
  ident: 6
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– ident: 12
  doi: 10.1016/S0925-2312(96)00012-4
– year: 1994
  ident: 16
  publication-title: Neural Networks
– year: 1993
  ident: 17
  publication-title: Neural Networks for Optimization and Signal Processing
– year: 1989
  ident: 14
  publication-title: Stable Apadtive Systems
– year: 1986
  ident: 4
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Process: Explorations in the Mocrostructure of Cognition, Vol. 1: Foundations
– ident: 7
  doi: 10.1109/72.80202
– ident: 5
  doi: 10.1109/5.58337
– ident: 3
  doi: 10.1016/0893-6080(89)90020-8
– ident: 9
  doi: 10.1109/72.485674
– volume: 2
  start-page: 303
  year: 1989
  ident: 1
  article-title: Approximations by superpositions of a sigmoidal function
  publication-title: Math. Contr., Signals, Syst.
  doi: 10.1007/BF02551274
– year: 1995
  ident: 13
  publication-title: Nonlinear and Adaptive Control Design
– ident: 15
  doi: 10.1109/9.28018
– ident: 2
  doi: 10.1016/0893-6080(89)90003-8
– year: 1996
  ident: 11
  article-title: One neural networks model structure in system identification
  publication-title: Identification, Adaptation, Learning: The Science of Learning Models from Data
  doi: 10.1007/978-3-662-03295-4_9
– ident: 8
  doi: 10.1016/S0893-6080(96)00060-3
– year: 1980
  ident: 18
  publication-title: Linear Systems
– year: 1995
  ident: 10
  article-title: Recurrent backpropagation networks
  publication-title: Backpropagation: Theory, Architectures and Applications
SSID ssj0014506
Score 1.6855311
Snippet This paper is concerned with the online learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are...
This paper is concerned with the on-line learning of unknown dynamical systems using a recurrent neural network. The unknown dynamic systems to be learned are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1272
SubjectTerms Artificial neural networks
Backpropagation algorithms
Computer networks
Convergence
Cost function
Disturbances
Dynamical systems
Dynamics
Errors
Function approximation
Intelligent networks
Learning
Multi-layer neural network
Neural networks
On-line systems
Recurrent neural networks
Title On-line learning of dynamical systems in the presence of model mismatch and disturbances
URI https://ieeexplore.ieee.org/document/883420
https://www.ncbi.nlm.nih.gov/pubmed/18249853
https://www.proquest.com/docview/28412171
https://www.proquest.com/docview/733453566
https://www.proquest.com/docview/914634878
Volume 11
WOSCitedRecordID wos000165265900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4kAPXVgoXVqohVDFJWxiO7F9XCEQJ9pDkfYWxROnRYIs2g8k_j1jO7ttJfbAJYqSiWLHE817tmcewFmFee4aVSRFUbtEVsRZbZrbRKHFzBGETk0Um1C3t3o8Nj-7OtshF8Y5FzafuQt_Gtby6wku_FTZUGshOfHzTaWKmKq1WjCQeZDRJHKRJ4Zz1RURylIzVPwiPvhf6AlaKuthZQgv1713NWwXPnYoko3isO_Bhmv7sD9qiUE_vrDvLOzrDBPmfegthRtY9x_34cM_VQj3YfyjTTzYZJ2CxG82aVgdlerpJbHW84zdt4zAInsK-UrovFGQ0WHkKQR78Q-r2prV5DaLqfW-NDuAu-urX5c3SSe4kKAw2TyxtcQqtcbZxlVpIxolKdpjRaiEUKK2AiWvCoUopBO8NoroVaNRN4W_rZz4BFvtpHWfgdW5xtRyY-ngs-2tURxzIVUjrM5SPYDz5ViU2FUj96IYD2VgJakpFS_jZx3A6cr0KZbgeMuo74dlZbC8-m05viV9DL8WUrVuspiVFJUzYmPZANgaCyWEzAWh3fUmhsKMoI5Tbw6j8_xtoCZeS1Do6M12fYGdkNIfchq_wtZ8unDHsI3P8_vZ9IT8e6xPgn-_Akwy-Ag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VpRL0QMsWygJtLYQQl7SJH7F9rBBVK9othyLtLYonTqkE2WofSPx7xnZ2Aal74JJEyUSxPRPNN7ZnPoB3NSrlW11mZdn4TNYUs7pcuUyjw8IThM5tIpvQo5EZj-2Xvs52zIXx3sfNZ_44XMa1_GaCizBVdmKMkJzi80dK0jkla62WDKSKRJoUXqjMcq77MkJFbk80P06v_uN8IpvKemAZHczZzn81bRee9jiSnSbFP4MN3w1g77SjGPrHL_aexZ2dccp8ADtL6gbW_8kD2P6rDuEejK-7LMBN1nNI3LJJy5rEVU8fSdWeZ-yuYwQX2X3MWEIfhCKRDiNbIeCL31jdNawhw1lMXbCm2XP4evbp5uN51lMuZChsMc9cI7HOnfWu9XXeilZL8vdYEy4hnGicQMnrUiMK6QVvrKYAqzVo2jI81l68gM1u0vmXwBplMHfcOjqEfHtnNUclpG6FM0VuhvBhqYsK-3rkgRbjexXjktxWmldpWIfwdiV6n4pwPCQ0CGpZCSzvHi31W9FghNWQuvOTxawiv1xQPFYMga2R0EJIJQjvrhex5GgEdZx6s5-M508DDUW2BIZePdiuI3h8fnN1WV1ejD6_hicxwT9mOL6Bzfl04Q9gC3_O72bTw2jlvwF5YPpn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+learning+of+dynamical+systems+in+the+presence+of+model+mismatch+and+disturbances&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Jiang%2C+D&rft.au=Wang%2C+J&rft.date=2000-11-01&rft.issn=1045-9227&rft.volume=11&rft.issue=6&rft.spage=1272&rft_id=info:doi/10.1109%2F72.883420&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon