Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China

Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for add...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Plant and soil Ročník 498; číslo 1-2; s. 451 - 469
Hlavní autoři: Xiao, Sentian, Nurmemet, Ilyas, Zhao, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.05.2024
Springer
Springer Nature B.V
Témata:
ISSN:0032-079X, 1573-5036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem. Methods This study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models. Results The best accuracy corresponding to an R 2 of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity. Conclusion The radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
AbstractList AimsSoil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem.MethodsThis study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models.ResultsThe best accuracy corresponding to an R2 of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity.ConclusionThe radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
AIMS: Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem. METHODS: This study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models. RESULTS: The best accuracy corresponding to an R² of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity. CONCLUSION: The radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem. Methods This study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models. Results The best accuracy corresponding to an R.sup.2 of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity. Conclusion The radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem. Methods This study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models. Results The best accuracy corresponding to an R 2 of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity. Conclusion The radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
Audience Academic
Author Xiao, Sentian
Zhao, Jing
Nurmemet, Ilyas
Author_xml – sequence: 1
  givenname: Sentian
  surname: Xiao
  fullname: Xiao, Sentian
  organization: College of Geography and Remote Sensing Sciences, Xinjiang University, Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University
– sequence: 2
  givenname: Ilyas
  orcidid: 0000-0002-4731-1098
  surname: Nurmemet
  fullname: Nurmemet, Ilyas
  email: ilyas@xju.edu.cn
  organization: College of Geography and Remote Sensing Sciences, Xinjiang University, Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University
– sequence: 3
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: College of Geography and Remote Sensing Sciences, Xinjiang University, Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University
BookMark eNp9kcFq3DAQhkVJoZu0L9CToJceonRk2bJ0DEuThizkkBZyE2N7vNHilVPJPuwb9LGrXRcKOQTBSBr-b5iZ_5ydhTEQY58lXEmA-luSUkIpoFACdFlqAe_YSla1EhUofcZWAKoQUNunD-w8pR0c_1Kv2J_H0Q884eCDnw6c0uT3OPkx8AYTdTw_9tg--0B8IIzBhy2f0zFOz8Rvb4TiETuMHEPHNzkknIThHU7IfTiJ7in6A_IHTD5d8sdxzskY-JMPO49he8nXuTx-ZO97HBJ9-ndfsF8333-uf4jNw-3d-nojWmXlJBqpqeqo6U3X2qJD2Rm0pG0pdWOxqk3Rl4Ul05PtEaGWxrRoG7Cg0cpGqQv2dan7Esffc57X7X1qaRgw0Dgnp2SldF6mgSz98kq6G-cYcndOQWk0gK6rrLpaVFscyPnQj1PENp-O9r7NNvU-569rK0uwtdIZMAvQxjGlSL1r_XTaeQb94CS4o6du8dRlT93JU3fsqHiFvsTsVzy8DakFSlkcthT_j_EG9RfcTbVA
CitedBy_id crossref_primary_10_1016_j_agee_2024_109225
crossref_primary_10_3390_s25082512
crossref_primary_10_1080_01431161_2024_2412804
crossref_primary_10_5194_nhess_25_3505_2025
crossref_primary_10_1016_j_catena_2025_109461
crossref_primary_10_3390_land13111941
crossref_primary_10_1038_s41598_025_07944_0
crossref_primary_10_3390_agronomy15071590
crossref_primary_10_3390_rs16244812
crossref_primary_10_3390_land14030627
crossref_primary_10_3390_land14030649
crossref_primary_10_1002_ldr_5635
crossref_primary_10_5817_CPR2025_1_2
crossref_primary_10_1016_j_catena_2025_109116
Cites_doi 10.1016/j.comcom.2020.02.078
10.1016/j.geoderma.2014.09.011
10.1016/j.isprsjprs.2023.04.018
10.18637/jss.v036.i11
10.3390/rs14020363
10.1080/22797254.2019.1596756
10.1016/j.geoderma.2018.08.006
10.1016/j.ecolind.2016.11.043
10.3390/rs10040598
10.3390/app112311145
10.3390/rs14030512
10.3390/rs10121929
10.1109/JSTARS.2014.2333535
10.3390/s19030589
10.1023/A:1010933404324
10.1007/s00500-021-06095-4
10.1073/pnas.2013771117
10.3390/su10030656
10.3233/FI-2010-288
10.3390/s18030807
10.1016/j.petrol.2018.11.067
10.3390/rs12162601
10.1109/TGRS.2003.813499
10.1016/S0034-4257(98)00028-5
10.1016/j.jenvman.2020.111383
10.3390/rs12244118
10.1016/j.isprsjprs.2010.09.001
10.1007/s11769-014-0718-x
10.1016/j.agsy.2021.103220
10.1109/TGRS.2010.2041242
10.1016/j.geoderma.2014.03.025
10.1016/bs.agron.2021.03.001
10.1016/S0167-9473(01)00065-2
10.1016/j.asr.2021.10.024
10.1145/2939672.2939785
10.1007/978-981-15-8897-6
10.1016/j.asej.2022.101876
10.1214/aos/1013203451
10.1109/TGRS.2008.916220
10.1016/j.scitotenv.2016.08.177
10.1016/j.scitotenv.2019.134235
10.1007/s11430-012-4444-x
10.1021/acs.est.9b03334
10.1109/ACCESS.2020.2995458
10.3390/su10030799
10.1111/jvs.12693
10.1007/s12583-011-0227-0
10.1049/ip-rsn:20030566
10.3390/s18020611
10.1007/s002540100388
10.1016/j.geoderma.2020.114858
10.1016/j.scitotenv.2021.145865
10.3390/s22197226
10.1186/s13059-020-02052-w
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-023-06446-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 469
ExternalDocumentID A791409736
10_1007_s11104_023_06446_0
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7SN
7ST
7T7
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c391t-b16e5debf8dc92da1d8a9e69416b9a5782f429e8fe9faa07188ca9b0906a91b33
IEDL.DBID M7P
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131653300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-079X
IngestDate Sun Sep 28 12:13:17 EDT 2025
Thu Nov 06 12:22:25 EST 2025
Sat Nov 29 10:30:46 EST 2025
Tue Nov 18 21:13:31 EST 2025
Sat Nov 29 03:00:49 EST 2025
Fri Feb 21 02:40:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Random forest model
GF-3 data
Soil salinization estimation
Polarization decomposition
Multi-source data prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-b16e5debf8dc92da1d8a9e69416b9a5782f429e8fe9faa07188ca9b0906a91b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4731-1098
PQID 3048600675
PQPubID 54098
PageCount 19
ParticipantIDs proquest_miscellaneous_3153611080
proquest_journals_3048600675
gale_infotracacademiconefile_A791409736
crossref_citationtrail_10_1007_s11104_023_06446_0
crossref_primary_10_1007_s11104_023_06446_0
springer_journals_10_1007_s11104_023_06446_0
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Dan (CR16) 1998; 65
Mamat, Yimit, Lv (CR46) 2013; 44
Ma, Ding, Han, Zhang (CR45) 2020; 36
Emamgholizadeh, Bazoobandi, Mohammadi, Ghorbani, Sadeghi (CR21) 2023; 14
Li, Zhang, Huang, Jia (CR40) 2018; 10
CR37
Breiman (CR10) 2001; 45
Ge, Ding, Teng, Wang, Huo, Jin, Han (CR24) 2022; 212
CR33
Wu, Muhaimeed, Al-Shafie, Al-Quraishi (CR63) 2019; 1
Kursa, Rudnicki (CR35) 2010; 36
Huang, Ding, Zou, Liu, Zhang, Chen (CR31) 2019; 19
Ao, Li, Zhu, Ali, Yang (CR7) 2019; 174
Li, Ding, Sun, Wang, Wang (CR67) 2015; 22
Shaheen, Iqbal (CR54) 2018; 10
Shi, Du, Du, Jiang, Chai, Mao, Xu, Ni, Xiong, Liu (CR55) 2012; 55
Wang, Ding, Wu (CR57) 2010; 26
Nurmemet, Sagan, Ding, Halik, Abliz, Yakup (CR51) 2018; 10
Aldabaa, Weindorf, Chakraborty, Sharma, Li (CR4) 2015; 239
Dong, Na (CR19) 2021; 11
Ling, Zhang, Shi, Xu (CR41) 2011; 22
CR47
Aksoy, Yildirim, Gorji, Hamzehpour, Tanik, Sertel (CR2) 2022; 69
CR43
Wang, Yang, Yang, Yang, Ding (CR59) 2019; 52
Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (CR52) 2019; 337
Jiang, Qiu, Han, Hu (CR32) 2018; 18
Nabiollahi, Taghizadeh-Mehrjardi, Shahabi, Heung, Amirian-Chakan, Davari, Scholten (CR49) 2021; 385
Chen, Guestrin (CR12) 2016
Li (CR38) 2013; 50
Kursa, Jankowski, Rudnicki (CR36) 2010; 101
Hopmans, Qureshi, Kisekka, Munns, Grattan, Rengasamy, Ben-Gal, Assouline, Javaux, Minhas (CR30) 2021; 169
Muhetaer, Nurmemet, Abulaiti, Xiao, Zhao (CR48) 2022; 22
Cui, Wang, Zhao, Zhang (CR14) 2020; 155
Yang (CR65) 2001; 41
Emamgholizadeh, Mohammadi (CR20) 2021; 25
Nunez, Finkbeiner (CR50) 2020; 54
CR56
Koch (CR34) 2010; 65
Yi-Jie, Jia-Shan (CR13) 2019
Gorji, Sertel, Tanik (CR25) 2017; 74
Yang, Dai, Tan, Liu, Yang, Li (CR66) 2021
Seydehmet, Lv, Nurmemet, Aishan, Abliz, Sawut, Eziz (CR53) 2018; 10
Li, Song (CR39) 2022; 324
Ma, Wang, Li, Li (CR44) 2015; 31
Aa, Ra (CR1) 2019; 13
Wang, Chen, Luo, Han (CR58) 2015; 25
Han, Ding, Ge, He, Wang, Xie, Zhang (CR27) 2022; 111
Ling, Xu, Liu, Zhang, Fu, Bai (CR42) 2012; 23
Das, Bhattacharya, Setia, Jayasree, Das (CR17) 2023; 200
Akter, Bishop, Vervoort (CR3) 2021; 776
CR28
Ding, Yang, Shi, Wei, Wang (CR18) 2020; 12
Allbed, Kumar, Aldakheel (CR5) 2014; 230
CR68
CR22
Guo, Zang, Zhang (CR26) 2020; 8
Hassani, Azapagic, Shokri (CR29) 2020; 117
CR62
Friedman (CR23) 2002; 38
CR61
CR60
An, Cui, Yang (CR6) 2010; 48
Yanbing, Dunpeng, Fangfang, Zhefeng, Junling, Jian, Yue (CR64) 2008; 27
Boerner (CR9) 2003; 150
Chaieb, Abdelly, Michalet (CR11) 2019; 30
Daliakopoulos, Tsanis, Koutroulis, Kourgialas, Varouchakis, Karatzas, Ritsema (CR15) 2016; 573
Yun, Hu, Guo, Yuan, Han (CR69) 2003; 41
Barbouchi, Abdelfattah, Chokmani, Ben Aissa, Lhissou, El Harti (CR8) 2015; 8
J Cui (6446_CR14) 2020; 155
S Emamgholizadeh (6446_CR21) 2023; 14
M Nunez (6446_CR50) 2020; 54
A Allbed (6446_CR5) 2014; 230
MB Kursa (6446_CR35) 2010; 36
JH Friedman (6446_CR23) 2002; 38
I Nurmemet (6446_CR51) 2018; 10
Y Ao (6446_CR7) 2019; 174
J Peng (6446_CR52) 2019; 337
C Yi-Jie (6446_CR13) 2019
K Nabiollahi (6446_CR49) 2021; 385
J Shi (6446_CR55) 2012; 55
T Gorji (6446_CR25) 2017; 74
J Seydehmet (6446_CR53) 2018; 10
6446_CR56
6446_CR47
S Emamgholizadeh (6446_CR20) 2021; 25
H Ling (6446_CR42) 2012; 23
G Ma (6446_CR45) 2020; 36
WM Boerner (6446_CR9) 2003; 150
T Chen (6446_CR12) 2016
A Aa (6446_CR1) 2019; 13
F Akter (6446_CR3) 2021; 776
G Chaieb (6446_CR11) 2019; 30
A Hassani (6446_CR29) 2020; 117
X Yang (6446_CR65) 2001; 41
A Das (6446_CR17) 2023; 200
S Huang (6446_CR31) 2019; 19
Y Li (6446_CR67) 2015; 22
L Breiman (6446_CR10) 2001; 45
JW Hopmans (6446_CR30) 2021; 169
B Koch (6446_CR34) 2010; 65
6446_CR43
R Dong (6446_CR19) 2021; 11
F Wang (6446_CR58) 2015; 25
J Ding (6446_CR18) 2020; 12
6446_CR37
B Guo (6446_CR26) 2020; 8
A Shaheen (6446_CR54) 2018; 10
Z Mamat (6446_CR46) 2013; 44
F Wang (6446_CR59) 2019; 52
S Aksoy (6446_CR2) 2022; 69
QF Li (6446_CR39) 2022; 324
L Han (6446_CR27) 2022; 111
PAN Yanbing (6446_CR64) 2008; 27
MB Kursa (6446_CR36) 2010; 101
S Yun (6446_CR69) 2003; 41
T Ma (6446_CR44) 2015; 31
XM Li (6446_CR40) 2018; 10
N Muhetaer (6446_CR48) 2022; 22
R Yang (6446_CR66) 2021
6446_CR33
6446_CR68
AAA Aldabaa (6446_CR4) 2015; 239
X Ge (6446_CR24) 2022; 212
6446_CR28
W An (6446_CR6) 2010; 48
GB Dan (6446_CR16) 1998; 65
F Wang (6446_CR57) 2010; 26
H Ling (6446_CR41) 2011; 22
M Barbouchi (6446_CR8) 2015; 8
W Wu (6446_CR63) 2019; 1
I Daliakopoulos (6446_CR15) 2016; 573
6446_CR60
6446_CR61
6446_CR62
S Jiang (6446_CR32) 2018; 18
6446_CR22
X-H Li (6446_CR38) 2013; 50
References_xml – ident: CR22
– volume: 25
  start-page: 13451
  year: 2021
  end-page: 13464
  ident: CR20
  article-title: New hybrid nature-based algorithm to integration support vector machine for prediction of soil cation exchange capacity
  publication-title: Soft Comput
– ident: CR68
– volume: 65
  start-page: 204
  year: 1998
  end-page: 216
  ident: CR16
  article-title: Remote sensing of desert dune forms by Polarimetric synthetic aperture radar (SAR)
  publication-title: Remote Sens Environ
– volume: 10
  start-page: 799
  year: 2018
  ident: CR54
  article-title: Spatial distribution and mobility assessment of carcinogenic heavy metals in soil profiles using geostatistics and random forest, boruta algorithm
  publication-title: Sustainability
– volume: 12
  start-page: 2601
  issue: 16
  year: 2020
  ident: CR18
  article-title: Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in Southern Xinjiang, China
  publication-title: Remote Sens
– ident: CR61
– volume: 18
  start-page: 807
  issue: 3
  year: 2018
  ident: CR32
  article-title: A quality assessment method based on common distributed targets for GF-3 polarimetric SAR data
  publication-title: Sensors
– volume: 19
  start-page: 589
  issue: 3
  year: 2019
  ident: CR31
  article-title: Soil moisture retrival based on sentinel-1 imagery under sparse vegetation coverage
  publication-title: Sensors
– volume: 230
  start-page: 1
  year: 2014
  end-page: 8
  ident: CR5
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region
  publication-title: Geoderma
– volume: 36
  start-page: 124
  year: 2020
  end-page: 131
  ident: CR45
  article-title: Digital mapping of soil salinization in arid area wetland based on variable optimized selection and machine learning
  publication-title: Trans Chin Soc Agric Eng
– volume: 52
  start-page: 256
  year: 2019
  end-page: 276
  ident: CR59
  article-title: Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur autonomous region (XJUAR) of China
  publication-title: Eur J Remote Sens
– volume: 54
  start-page: 3082
  year: 2020
  end-page: 3090
  ident: CR50
  article-title: A regionalised life cycle assessment model to globally assess the environmental implications of soil salinization in irrigated agriculture
  publication-title: Environ Sci Technol
– volume: 55
  start-page: 1052
  year: 2012
  end-page: 1078
  ident: CR55
  article-title: Progresses on microwave remote sensing of land surface parameters
  publication-title: Sci China-Earth Sci
– volume: 8
  start-page: 94394
  year: 2020
  end-page: 94403
  ident: CR26
  article-title: Soil Salizanation information in the Yellow River Delta based on feature surface models using Landsat 8 OLI data
  publication-title: Ieee Access
– volume: 337
  start-page: 1309
  year: 2019
  end-page: 1319
  ident: CR52
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
– volume: 573
  start-page: 727
  year: 2016
  end-page: 739
  ident: CR15
  article-title: The threat of soil salinity: a European scale review
  publication-title: Sci Total Environ
– volume: 150
  start-page: 113
  year: 2003
  end-page: 124
  ident: CR9
  article-title: Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications
  publication-title: Iee Proc-Radar Sonar Navig
– volume: 324
  year: 2022
  ident: CR39
  article-title: High-performance concrete strength prediction based on ensemble learning
  publication-title: Constr Build Mater
– volume: 27
  start-page: 814
  year: 2008
  end-page: 822
  ident: CR64
  article-title: Geomorphological features of the Keriya River valley and the early-middle Pleistocene great lake of the Tarim basin
  publication-title: Geol Bull China
– volume: 10
  start-page: 598
  issue: 4
  year: 2018
  ident: CR51
  article-title: A WFS-SVM model for soil salinity mapping in Keriya Oasis, northwestern China using polarimetric decomposition and fully PolSAR data
  publication-title: Remote Sens
– volume: 776
  start-page: 145865
  year: 2021
  ident: CR3
  article-title: Space-time modelling of groundwater level and salinity
  publication-title: Sci Total Environ
– year: 2021
  ident: CR66
  publication-title: Polarimetric microwave imaging
– ident: CR60
– volume: 69
  start-page: 1072
  year: 2022
  end-page: 1086
  ident: CR2
  article-title: Assessing the performance of machine learning algorithms for soil salinity mapping in Google earth engine platform using sentinel-2A and Landsat-8 OLI data
  publication-title: Adv Space Res
– volume: 41
  start-page: 1879
  year: 2003
  end-page: 1888
  ident: CR69
  article-title: Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image
  publication-title: IEEE Trans Geosci Remote Sens
– year: 2019
  ident: CR13
  publication-title: Application of improved boruta algorithm in feature selection
– volume: 1
  issue: 8
  year: 2019
  ident: CR63
  article-title: Using L-band radar data for soil salinity mapping—a case study in Central Iraq
  publication-title: Environ Res Commun
– volume: 26
  start-page: 168
  year: 2010
  ident: CR57
  article-title: Remote sensing monitoring models of soil salinization based on NDVI-SI feature space
  publication-title: Trans Chin Soc Agric Eng
– volume: 200
  start-page: 191
  year: 2023
  end-page: 212
  ident: CR17
  article-title: A novel method for detecting soil salinity using AVIRIS-NG imaging spectroscopy and ensemble machine learning
  publication-title: ISPRS J Photogramm Remote Sens
– volume: 50
  start-page: 1190
  year: 2013
  end-page: 1197
  ident: CR38
  article-title: Using “random forest” for classification and regression
  publication-title: Chin J Appl Entomol
– volume: 117
  start-page: 33017
  year: 2020
  end-page: 33027
  ident: CR29
  article-title: Predicting long-term dynamics of soil salinity and sodicity on a global scale
  publication-title: Proc Natl Acad Sci U S A
– start-page: 785
  year: 2016
  end-page: 794
  ident: CR12
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 22
  start-page: 780
  year: 2011
  end-page: 791
  ident: CR41
  article-title: Runoff variation law and its response to climate change in the headstream area of the Keriya River basin, Xinjiang
  publication-title: J Earth Sci
– ident: CR43
– volume: 31
  start-page: 259
  year: 2015
  end-page: 265
  ident: CR44
  article-title: Land cover/land use classification based on polarimetric target decomposition of microwave remote sensing
  publication-title: Trans Chin Soc Agric Eng
– ident: CR47
– volume: 22
  start-page: 113
  issue: 4
  year: 2015
  end-page: 117
  ident: CR67
  article-title: Remote sensing monitoring models of soil salinization based on the three dimensional feature space of MSAVI-WI-SI
  publication-title: Res Soil Water Conservation
– volume: 30
  start-page: 312
  year: 2019
  end-page: 321
  ident: CR11
  article-title: Interactive effects of climate and topography on soil salinity and vegetation zonation in north-African continental saline depressions
  publication-title: J Veg Sci
– ident: CR37
– volume: 111
  year: 2022
  ident: CR27
  article-title: Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 44
  start-page: 1314
  year: 2013
  end-page: 1320
  ident: CR46
  article-title: Spatial distributing pattern of salinized soils and their salinity in typical area of Yutian Oasis
  publication-title: J Soil Sci
– volume: 101
  start-page: 271
  year: 2010
  end-page: 285
  ident: CR36
  article-title: Boruta - a system for feature selection
  publication-title: Fundame Inform
– ident: CR33
– volume: 174
  start-page: 776
  year: 2019
  end-page: 789
  ident: CR7
  article-title: The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling
  publication-title: J Pet Sci Eng
– ident: CR56
– volume: 212
  year: 2022
  ident: CR24
  article-title: Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches
  publication-title: Catena
– volume: 25
  start-page: 321
  year: 2015
  end-page: 336
  ident: CR58
  article-title: Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management
  publication-title: Chin Geogr Sci
– volume: 8
  start-page: 3823
  year: 2015
  end-page: 3832
  ident: CR8
  article-title: Soil salinity characterization using Polarimetric InSAR coherence: case studies in Tunisia and Morocco
  publication-title: Ieee J Sel Topics Appl Earth Observ Remote Sens
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: CR23
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal
– volume: 13
  start-page: 415
  year: 2019
  end-page: 425
  ident: CR1
  article-title: Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data - ScienceDirect
  publication-title: Remote Sens Appl: Soc Environ
– volume: 169
  start-page: 1
  year: 2021
  end-page: 191
  ident: CR30
  article-title: Critical knowledge gaps and research priorities in global soil salinity
  publication-title: Adv Agron
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR35
  article-title: Feature selection with the Boruta package
  publication-title: J Stat Softw
– volume: 10
  start-page: 1929
  issue: 12
  year: 2018
  ident: CR40
  article-title: Capabilities of Chinese Gaofen-3 synthetic aperture radar in selected topics for coastal and ocean observations
  publication-title: Remote Sens
– volume: 48
  start-page: 2732
  issue: 6
  year: 2010
  end-page: 2739
  ident: CR6
  article-title: Three-component model-based decomposition for polarimetric SAR data
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 10
  start-page: 656
  issue: 3
  year: 2018
  ident: CR53
  article-title: Model prediction of secondary soil salinization in the Keriya Oasis, Northwest China
  publication-title: Sustainability
– volume: 11
  start-page: 11145
  issue: 23
  year: 2021
  ident: CR19
  article-title: Quantitative retrieval of soil salinity using landsat 8 OLI imagery
  publication-title: Appl Sci
– volume: 239
  start-page: 34
  year: 2015
  end-page: 46
  ident: CR4
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: CR25
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol Indic
– volume: 65
  start-page: 581
  year: 2010
  end-page: 590
  ident: CR34
  article-title: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
  publication-title: ISPRS J Photogramm Remote Sens
– volume: 385
  year: 2021
  ident: CR49
  article-title: Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests
  publication-title: Geoderma
– volume: 155
  start-page: 125
  year: 2020
  end-page: 131
  ident: CR14
  article-title: Towards predictive analysis of android vulnerability using statistical codes and machine learning for IoT applications
  publication-title: Comput Commun
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR10
  article-title: Random forest
  publication-title: Mach Learn
– ident: CR28
– volume: 23
  start-page: 563
  year: 2012
  end-page: 568
  ident: CR42
  article-title: Suitable scale of oasis in Keriya River basin, Xinjiang
  publication-title: Adv Water Sci
– ident: CR62
– volume: 14
  issue: 2
  year: 2023
  ident: CR21
  article-title: Prediction of soil cation exchange capacity using enhanced machine learning approaches in the southern region of the Caspian Sea
  publication-title: Ain Shams Eng J
– volume: 41
  start-page: 314
  year: 2001
  end-page: 320
  ident: CR65
  article-title: The oases along the Keriya River in the Taklamakan Desert, China, and their evolution since the end of the last glaciation
  publication-title: Environ Geol
– volume: 22
  start-page: 7226
  year: 2022
  ident: CR48
  article-title: An efficient approach for inverting the soil salinity in Keriya Oasis, northwestern China, based on the optical-radar feature-space model
  publication-title: Sensors
– volume: 155
  start-page: 125
  year: 2020
  ident: 6446_CR14
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2020.02.078
– volume: 239
  start-page: 34
  year: 2015
  ident: 6446_CR4
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– volume: 111
  year: 2022
  ident: 6446_CR27
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 200
  start-page: 191
  year: 2023
  ident: 6446_CR17
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.04.018
– volume: 36
  start-page: 1
  year: 2010
  ident: 6446_CR35
  publication-title: J Stat Softw
  doi: 10.18637/jss.v036.i11
– ident: 6446_CR47
  doi: 10.3390/rs14020363
– volume: 52
  start-page: 256
  year: 2019
  ident: 6446_CR59
  publication-title: Eur J Remote Sens
  doi: 10.1080/22797254.2019.1596756
– volume: 337
  start-page: 1309
  year: 2019
  ident: 6446_CR52
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– volume: 27
  start-page: 814
  year: 2008
  ident: 6446_CR64
  publication-title: Geol Bull China
– volume: 74
  start-page: 384
  year: 2017
  ident: 6446_CR25
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 10
  start-page: 598
  issue: 4
  year: 2018
  ident: 6446_CR51
  publication-title: Remote Sens
  doi: 10.3390/rs10040598
– volume: 11
  start-page: 11145
  issue: 23
  year: 2021
  ident: 6446_CR19
  publication-title: Appl Sci
  doi: 10.3390/app112311145
– ident: 6446_CR62
  doi: 10.3390/rs14030512
– volume: 10
  start-page: 1929
  issue: 12
  year: 2018
  ident: 6446_CR40
  publication-title: Remote Sens
  doi: 10.3390/rs10121929
– volume: 8
  start-page: 3823
  year: 2015
  ident: 6446_CR8
  publication-title: Ieee J Sel Topics Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2014.2333535
– volume: 44
  start-page: 1314
  year: 2013
  ident: 6446_CR46
  publication-title: J Soil Sci
– volume: 19
  start-page: 589
  issue: 3
  year: 2019
  ident: 6446_CR31
  publication-title: Sensors
  doi: 10.3390/s19030589
– volume: 45
  start-page: 5
  year: 2001
  ident: 6446_CR10
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 25
  start-page: 13451
  year: 2021
  ident: 6446_CR20
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06095-4
– volume: 117
  start-page: 33017
  year: 2020
  ident: 6446_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2013771117
– volume: 36
  start-page: 124
  year: 2020
  ident: 6446_CR45
  publication-title: Trans Chin Soc Agric Eng
– volume: 10
  start-page: 656
  issue: 3
  year: 2018
  ident: 6446_CR53
  publication-title: Sustainability
  doi: 10.3390/su10030656
– volume: 101
  start-page: 271
  year: 2010
  ident: 6446_CR36
  publication-title: Fundame Inform
  doi: 10.3233/FI-2010-288
– volume: 22
  start-page: 113
  issue: 4
  year: 2015
  ident: 6446_CR67
  publication-title: Res Soil Water Conservation
– volume: 18
  start-page: 807
  issue: 3
  year: 2018
  ident: 6446_CR32
  publication-title: Sensors
  doi: 10.3390/s18030807
– volume: 174
  start-page: 776
  year: 2019
  ident: 6446_CR7
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2018.11.067
– volume: 12
  start-page: 2601
  issue: 16
  year: 2020
  ident: 6446_CR18
  publication-title: Remote Sens
  doi: 10.3390/rs12162601
– volume: 41
  start-page: 1879
  year: 2003
  ident: 6446_CR69
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2003.813499
– volume: 65
  start-page: 204
  year: 1998
  ident: 6446_CR16
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(98)00028-5
– ident: 6446_CR56
  doi: 10.1016/j.jenvman.2020.111383
– ident: 6446_CR60
  doi: 10.3390/rs12244118
– volume: 65
  start-page: 581
  year: 2010
  ident: 6446_CR34
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2010.09.001
– volume: 25
  start-page: 321
  year: 2015
  ident: 6446_CR58
  publication-title: Chin Geogr Sci
  doi: 10.1007/s11769-014-0718-x
– volume: 23
  start-page: 563
  year: 2012
  ident: 6446_CR42
  publication-title: Adv Water Sci
– ident: 6446_CR61
  doi: 10.1016/j.agsy.2021.103220
– volume: 48
  start-page: 2732
  issue: 6
  year: 2010
  ident: 6446_CR6
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2041242
– volume: 230
  start-page: 1
  year: 2014
  ident: 6446_CR5
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 324
  year: 2022
  ident: 6446_CR39
  publication-title: Constr Build Mater
– volume: 169
  start-page: 1
  year: 2021
  ident: 6446_CR30
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2021.03.001
– volume: 50
  start-page: 1190
  year: 2013
  ident: 6446_CR38
  publication-title: Chin J Appl Entomol
– volume: 38
  start-page: 367
  year: 2002
  ident: 6446_CR23
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 69
  start-page: 1072
  year: 2022
  ident: 6446_CR2
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2021.10.024
– volume: 1
  issue: 8
  year: 2019
  ident: 6446_CR63
  publication-title: Environ Res Commun
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2016
  ident: 6446_CR12
  doi: 10.1145/2939672.2939785
– volume: 212
  year: 2022
  ident: 6446_CR24
  publication-title: Catena
– volume-title: Polarimetric microwave imaging
  year: 2021
  ident: 6446_CR66
  doi: 10.1007/978-981-15-8897-6
– volume: 14
  issue: 2
  year: 2023
  ident: 6446_CR21
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.101876
– ident: 6446_CR22
  doi: 10.1214/aos/1013203451
– ident: 6446_CR37
  doi: 10.1109/TGRS.2008.916220
– volume: 573
  start-page: 727
  year: 2016
  ident: 6446_CR15
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.08.177
– ident: 6446_CR43
  doi: 10.1016/j.scitotenv.2019.134235
– volume: 55
  start-page: 1052
  year: 2012
  ident: 6446_CR55
  publication-title: Sci China-Earth Sci
  doi: 10.1007/s11430-012-4444-x
– volume: 54
  start-page: 3082
  year: 2020
  ident: 6446_CR50
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b03334
– volume: 8
  start-page: 94394
  year: 2020
  ident: 6446_CR26
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2995458
– volume: 31
  start-page: 259
  year: 2015
  ident: 6446_CR44
  publication-title: Trans Chin Soc Agric Eng
– volume: 10
  start-page: 799
  year: 2018
  ident: 6446_CR54
  publication-title: Sustainability
  doi: 10.3390/su10030799
– volume: 30
  start-page: 312
  year: 2019
  ident: 6446_CR11
  publication-title: J Veg Sci
  doi: 10.1111/jvs.12693
– volume: 22
  start-page: 780
  year: 2011
  ident: 6446_CR41
  publication-title: J Earth Sci
  doi: 10.1007/s12583-011-0227-0
– volume: 150
  start-page: 113
  year: 2003
  ident: 6446_CR9
  publication-title: Iee Proc-Radar Sonar Navig
  doi: 10.1049/ip-rsn:20030566
– volume-title: Application of improved boruta algorithm in feature selection
  year: 2019
  ident: 6446_CR13
– ident: 6446_CR28
  doi: 10.3390/s18020611
– volume: 41
  start-page: 314
  year: 2001
  ident: 6446_CR65
  publication-title: Environ Geol
  doi: 10.1007/s002540100388
– volume: 13
  start-page: 415
  year: 2019
  ident: 6446_CR1
  publication-title: Remote Sens Appl: Soc Environ
– volume: 385
  year: 2021
  ident: 6446_CR49
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114858
– volume: 776
  start-page: 145865
  year: 2021
  ident: 6446_CR3
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145865
– volume: 22
  start-page: 7226
  year: 2022
  ident: 6446_CR48
  publication-title: Sensors
  doi: 10.3390/s22197226
– ident: 6446_CR33
– ident: 6446_CR68
  doi: 10.1186/s13059-020-02052-w
– volume: 26
  start-page: 168
  year: 2010
  ident: 6446_CR57
  publication-title: Trans Chin Soc Agric Eng
SSID ssj0003216
Score 2.5178182
Snippet Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source...
Aims Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source...
AimsSoil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source...
AIMS: Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 451
SubjectTerms Agriculture
Algorithms
Analysis
Arid zones
Aridity
Biomedical and Life Sciences
China
Digital Elevation Models
Earth resources technology satellites
Ecology
Electrical conductivity
Electrical resistivity
Landsat
Learning algorithms
Life Sciences
Machine learning
Mapping
Oases
Plant Physiology
Plant Sciences
Radar
Radar data
Radar systems
Remote sensing
Research Article
Root-mean-square errors
Salinity
Salinity effects
Salinization
Soil chemistry
Soil mapping
Soil research
Soil salinity
soil salinization
Soil Science & Conservation
Soils
Soils, Salts in
SummonAdditionalLinks – databaseName: Springer Nature Link Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFL3ouoI--DEqjq4SQfDBCbSTTps8jrKjoKziqsxbuU3SobJ2pO0K8w_82d6baWfwE_St0DQN6U3OLbnnHIDHWRY7lxWZtDq2MklcJlGrRJqoUEoZZyJrg9lEdnKil0vztieFtUO1-3AkGXbqPdmNkCqRhDGSYDSh_-CLcIngTrNhw7vTj7v9V02D4SlfyCgzy54q8_s-foCjnzflX05HA-gsrv_fcG_AtT7JFPNtVNyEC74ewdX5qumFNvwIDp-tKS3cjODycdCt3tyCb6fr6ky0yFzJbiNYfmPLaxQMdU7QxedQeulF7zWxElw2vxKURIoXC6lEgw4bgbUTr5lCjJ3UgmtQRVWHRq8o3jco3mBbtRMR7Pt8U4tlVX-iMF1NRLDzvg0fFsfvn7-UvVGDtMrEnSzi1M-cL0rtrJk6jJ1G45kimxYGWTC_JNjzuvSmRKSkRmuLpohMlKKJKSjuwEG9rv1dEKmL-WjRF-inSYoJJrNSUR5YuJkpM6vHEA_fK7e9ijmbaZzle_1lnvicJj4PE59HY3i6e-bLVsPjr62fcBjkvMCpZ4s9T4HGx1JZ-TwzQSRMpWM4GiIl71d-m6tg68X_YWN4tLtNa5YPYrD263NqQzCTMv-CXjYZomffxZ_Hdu_fmt-HK1PKwbb1mUdw0DXn_gEc2q9d1TYPw6r5DlVTDlU
  priority: 102
  providerName: Springer Nature
Title Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China
URI https://link.springer.com/article/10.1007/s11104-023-06446-0
https://www.proquest.com/docview/3048600675
https://www.proquest.com/docview/3153611080
Volume 498
WOSCitedRecordID wos001131653300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1573-5036
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003216
  issn: 0032-079X
  databaseCode: M0K
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1573-5036
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003216
  issn: 0032-079X
  databaseCode: M7P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-5036
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003216
  issn: 0032-079X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-5036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003216
  issn: 0032-079X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZg2wM88GOAKIzKSEg8UIukSRP7CXVoBWmoVBugvkUX26mCRjKSDKn_AX82d47bChB74SWyFMe2dOe7i333fYy9SNPQmDRPhZahFnFsUgEyioUK8iiKlFGB1o5sIp3P5XKpFv7ArfVplRub6Ay1qTWdkb-OHF0SxbdvLr8LYo2i21VPoXGT7RNKwtil7i22ljgaO-pTaoggVUtfNNOXzqHfiwV6LIFOOca_6t8c05_m-a97Uud-Znf_d-H32B0fePJpryn32Q1bHbLb01XjwTfsITs4rjFUXD9gP8_r8oK3QFWT3ZoTEEdf4cjJ6RmOjW8uCdNyzzqx4pRAv-IYTvJ3MxHxBgw0HCrDP1AxMXRCcspG5WXlOp2i5q-Bf4S2bEfcEfnZpuLLsvqKCrsacUfs_ZB9np18evteeMoGoSMVdiIPEzsxNi-k0WpsIDQSlKVi2SRXQND5BTpAKwurCgAMb6TUoPJABQmoENXjEdur6so-ZjwxIV0y2hzsOE4ghnhSRBgR5maiilTLAQs38sq0xzMnWo2LbIfETDLOUMaZk3EWDNir7TeXPZrHtb1fkhpktNVxZA2-YgHXR6BZ2TRVDi4sSgbsaCP7zNuANtsJfsCeb1_j7qUrGahsfYV90OEkVImBk402GrYb4t9re3L9jE_ZrTFGX31m5hHb65or-4wd6B9d2TZDtn98Ml-cDXG3BKdDt2fweXb-5RfKxhko
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqUgk48CggFgoYCcSBtchrE_uA0PJYWu2yVKJIezOO7ayCSlKSFLT_gF_Db2TGSXYFiN564BYpThwln2fGmfnmI-RRkvjGJGnCNPc1iyKTMMXDiAkvDcNQGOFp7cQmkvmcLxbicIv87LkwWFbZ20RnqE2p8R_5s9DJJWF8--LkK0PVKMyu9hIaLSymdvUdtmz184PX8H0fB8HkzdGrfdapCjAdCr9hqR_bkbFpxo0WgVG-4UpY5HPGqVDY3T0DG215ZkWmFHhgzrUSqSe8WAk_xR-gYPIvQBgRJK5U8HBt-cPASa3iAfMSsehIOi1VD_xsxMBDMggCItjF_-YI_3QHf-VlnbubXP3fXtQ1cqULrOm4XQnXyZYtdsnl8bLqmovYXbLzsoRQeHWD_PhQ5se0VsgKbVYUG420DE6KTt1QOPjiikwt7VQ1lhQJAksK4TJ9O2EhrZRRFVWFoTMkS6uGcYrVtjQv3KAprOyVou9VnddD6oQKbVXQRV58hgW5HFInXH6TfDyXd3KLbBdlYW8TGhsfk6g2VTaIYhWpaJSFEPGmZiSyRPMB8Xt8SN31a0fZkGO56TSNmJKAKekwJb0Bebq-5qTtVnLm6CcIO4mmDO6sVcfIgOfDpmBynAjXDi2MB2Svx5rsbFwtN0AbkIfr02CdMOWkCluewhhwqDEyTWCyYY_ozS3-_Wx3zp7xAbm4f_RuJmcH8-ldcimASLOtQt0j2011au-RHf2tyevqvluhlHw6b6T_AnXadCo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2q0grBgkcBkVJgkEAsyKh-xfYsEEppA1WqEPGQsnPHM-MoqLWLnYLyB3wTX8e9YzsRILrrgp0ljx-yz9xz7bnnHoBnUeRqHaURV7GreBDoiMvYD7hwUt_3hRaOUtZsIhqP4-lUTDbgZ6uFobLKNibaQK0LRf_I93xrl0T57V7WlEVMDoavz79ycpCildbWTqOGyMgsv-PnW_Xq6ADf9XPPGx5-evOONw4DXPnCXfDUDU1fmzSLtRKelq6OpTCk7QxTIanTe4bx2sSZEZmUyMZxrKRIHeGEUrgp_QzF8L8ZYZIRdGBz_3A8-bDiAd-zxqu0wZ1ITBvJTi3cQ9YNOPIlx5QgwG_632jxT3L4a5XWkt_w1v_82G7DzSblZoN6jtyBDZNvw43BrGzajpht2NovMEle3oUfH4v5Kask6UUXS0YtSGptJyO61ww3zmz5qWGN38aMkXRgxjCRZm-H3Gel1LJkMtfsmGTUcsFjRnW4bJ7bQSOc80vJ3stqXvWYtTA0Zc6m8_wLTtVZj1lL83vw-UqeyX3o5EVuHgALtUvLqyaVxgtCGcign_mYC6e6L7JIxV1wW6wkqunkToYip8m6BzXhK0F8JRZfidOFl6tjzus-JpeOfkEQTCjI4ZmVbLQaeH_ULiwZRMI2SvPDLuy2uEua6Fcla9B14elqN8YtWoySuSkucAxSbUgaFLxYr0X3-hT_vredy6_4BK4hwJPjo_HoIVz3MAWty1N3obMoL8wj2FLfFvOqfNxMVwYnVw31X4txfjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+salinity+estimation+based+on+machine+learning+using+the+GF-3+radar+and+Landsat-8+data+in+the+Keriya+Oasis%2C+Southern+Xinjiang%2C+China&rft.jtitle=Plant+and+soil&rft.au=Xiao%2C+Sentian&rft.au=Nurmemet%2C+Ilyas&rft.au=Zhao%2C+Jing&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=498&rft.issue=1-2&rft.spage=451&rft.epage=469&rft_id=info:doi/10.1007%2Fs11104-023-06446-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon