Least-squares approximation of affine mappings for sweep mesh generation: functional analysis and applications

Sweep methods are one of the most robust techniques to generate hexahedral meshes in extrusion volumes. The main issue in sweep algorithms is the projection of cap surface meshes along the sweep path. The most competitive technique to determine this projection is to find a least-squares approximatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering with computers Ročník 29; číslo 1; s. 1 - 15
Hlavní autoři: Roca, Xevi, Sarrate, Josep
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: London Springer-Verlag 01.01.2013
Springer Nature B.V
Témata:
ISSN:0177-0667, 1435-5663
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sweep methods are one of the most robust techniques to generate hexahedral meshes in extrusion volumes. The main issue in sweep algorithms is the projection of cap surface meshes along the sweep path. The most competitive technique to determine this projection is to find a least-squares approximation of an affine mapping. Several functional formulations have been defined to carry out this least-squares approximation. However, these functionals generate unacceptable meshes for several common geometries in CAD models. In this paper we present a new comparative analysis between these classical functional formulations and a new functional presented by the authors. In particular, we prove under which conditions the minimization of the analyzed functionals leads to a full rank linear system. Moreover, we also prove the equivalences between these formulations. These allow us to point out the advantages of the proposed functional. Finally, from this analysis we outline an automatic algorithm to compute the nodes location in the inner layers.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-012-0260-3