Solving a leader–follower facility problem via parallel evolutionary approaches

A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a competitor (the follower) will react by locating another single facility after the leader locates its own facility. A subpopulation-based evolutiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 70; H. 2; S. 600 - 611
Hauptverfasser: Arrondo, A. G., Redondo, J. L., Fernández, J., Ortigosa, P. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.11.2014
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a competitor (the follower) will react by locating another single facility after the leader locates its own facility. A subpopulation-based evolutionary algorithm called TLUEGO was recently proposed to cope with this hard-to-solve global optimization problem. However, it requires high computational effort, even to manage small-size problems. In this work, three parallelizations of TLUEGO are proposed, a distributed memory programming algorithm, a shared memory programming algorithm, and a hybrid of the two previous algorithms, which not only allow us to obtain the solution faster, but also to solve larger instances.
AbstractList A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a competitor (the follower) will react by locating another single facility after the leader locates its own facility. A subpopulation-based evolutionary algorithm called TLUEGO was recently proposed to cope with this hard-to-solve global optimization problem. However, it requires high computational effort, even to manage small-size problems. In this work, three parallelizations of TLUEGO are proposed, a distributed memory programming algorithm, a shared memory programming algorithm, and a hybrid of the two previous algorithms, which not only allow us to obtain the solution faster, but also to solve larger instances.
Author Fernández, J.
Arrondo, A. G.
Ortigosa, P. M.
Redondo, J. L.
Author_xml – sequence: 1
  givenname: A. G.
  surname: Arrondo
  fullname: Arrondo, A. G.
  email: agarrondo@um.es
  organization: Department of Statistics and Operations Research, University of Murcia
– sequence: 2
  givenname: J. L.
  surname: Redondo
  fullname: Redondo, J. L.
  organization: Department of Computer Architecture and Technology, University of Granada
– sequence: 3
  givenname: J.
  surname: Fernández
  fullname: Fernández, J.
  organization: Department of Statistics and Operations Research, University of Murcia
– sequence: 4
  givenname: P. M.
  surname: Ortigosa
  fullname: Ortigosa, P. M.
  organization: Department of Informatics, University of Almería, ceiA3
BookMark eNp9kMtOwzAQRS1UJMrjA9hlySYwkzhxskSIl4SEELC2Js6kuHLjYqdF3fEP_CFfQqqyYsFqNvfMnTmHYtL7noU4RThHAHUREbNMpYAyRYQyhT0xxULlKchKTsQU6gzSqpDZgTiMcQ4AMlf5VDw9e7e2_SyhxDG1HL4_vzrvnP_gkHRkrLPDJlkG3zheJGtLyZICOccu4bV3q8H6nsImoeWYIfPG8Vjsd-Qin_zOI_F6c_1ydZc-PN7eX10-pCavcUgJVVVg1SDJhlTZGYCiMkUNrIiparmri5ZM2TZgWlI5ty3KxnRQKKxKleVH4my3dyx-X3Ec9MJGw85Rz34VNZYFSlnnZTVGcRc1wccYuNPLYBfj2RpBb_XpnT496tNbfRpGRv1hjB1o--4QyLp_yWxHxrGln3HQc78K_ejiH-gHknmIuQ
CitedBy_id crossref_primary_10_1016_j_cie_2024_110008
crossref_primary_10_1016_j_ejor_2019_11_033
crossref_primary_10_1109_TPDS_2016_2645764
Cites_doi 10.1023/A:1011367930251
10.1016/j.omega.2011.02.007
10.1016/S0305-0548(99)00041-6
10.1016/0377-2217(83)90180-7
10.1007/s10898-012-9893-4
10.1023/A:1011224107143
10.1007/978-1-4612-5355-6
10.1016/S0377-2217(00)00169-7
10.1016/S0377-2217(96)00216-0
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Copyright_xml – notice: Springer Science+Business Media New York 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11227-014-1106-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 611
ExternalDocumentID 10_1007_s11227_014_1106_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-a178518b1a4ba76fc0058c590e7aea8def95dac6db0cda73edd14bcf057186723
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344552400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 09 09:54:00 EST 2025
Tue Nov 18 21:37:28 EST 2025
Sat Nov 29 06:13:05 EST 2025
Fri Feb 21 02:27:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Distributed memory
Nonlinear bi-level programming problem
High performance computing
Shared memory
Evolutionary algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-a178518b1a4ba76fc0058c590e7aea8def95dac6db0cda73edd14bcf057186723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651449368
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1651449368
crossref_primary_10_1007_s11227_014_1106_0
crossref_citationtrail_10_1007_s11227_014_1106_0
springer_journals_10_1007_s11227_014_1106_0
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2014
Publisher Springer US
Publisher_xml – name: Springer US
References DreznerZHamacherHWFacility location: applications and theory2002BerlinSpringer
PlastriaFStatic competitive facility location: an overview of optimisation approachesEur J Oper Res20011293461
OrtigosaPGarcíaIJelásityMReliability and performance of UEGO, a clustering-based global optimizerJ Glob Optim2001193265
Cantú-Paz E (1997) A survey of applications and methods. In: Tech. Rep. IlliGAL 97003, University of Illinois at Urbana-Champaign
EiseltHLaporteGSequential location problemsEur J Oper Res1996962217
RedondoJFernándezJArrondoAGarcíaIOrtigosaPA two-level evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on the plane with variable demandJ Glob Optim2013563983
KilkennyMThisseJEconomics of location: a selective surveyComput Oper Res199926141369
Redondo J, Fernández J, Arrondo A, García I, Ortigosa P (2012) Fixed or variable demand? Does it matter when locating a facility? Omega 40(1):9. doi:10.1016/j.omega.2011.02.007
Francis R, Lowe T, Tamir A (2002) Facility location: application and theory. In: Demand point aggregation for location models, Springer, pp 207–232
HakimiSOn locating new facilities in a competitive environmentEur J Oper Res198312129
JelásityMOrtigosaPGarcíaIUEGO, an abstract clustering technique for multimodal global optimizationJ Heuristics200173215
Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, Berlin
1106_CR1
1106_CR3
1106_CR4
1106_CR5
1106_CR6
1106_CR11
1106_CR7
1106_CR12
1106_CR8
(1106_CR2) 2002
1106_CR9
1106_CR10
References_xml – reference: Redondo J, Fernández J, Arrondo A, García I, Ortigosa P (2012) Fixed or variable demand? Does it matter when locating a facility? Omega 40(1):9. doi:10.1016/j.omega.2011.02.007
– reference: HakimiSOn locating new facilities in a competitive environmentEur J Oper Res198312129
– reference: Francis R, Lowe T, Tamir A (2002) Facility location: application and theory. In: Demand point aggregation for location models, Springer, pp 207–232
– reference: JelásityMOrtigosaPGarcíaIUEGO, an abstract clustering technique for multimodal global optimizationJ Heuristics200173215
– reference: RedondoJFernándezJArrondoAGarcíaIOrtigosaPA two-level evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on the plane with variable demandJ Glob Optim2013563983
– reference: EiseltHLaporteGSequential location problemsEur J Oper Res1996962217
– reference: KilkennyMThisseJEconomics of location: a selective surveyComput Oper Res199926141369
– reference: PlastriaFStatic competitive facility location: an overview of optimisation approachesEur J Oper Res20011293461
– reference: Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, Berlin
– reference: Cantú-Paz E (1997) A survey of applications and methods. In: Tech. Rep. IlliGAL 97003, University of Illinois at Urbana-Champaign
– reference: DreznerZHamacherHWFacility location: applications and theory2002BerlinSpringer
– reference: OrtigosaPGarcíaIJelásityMReliability and performance of UEGO, a clustering-based global optimizerJ Glob Optim2001193265
– ident: 1106_CR9
  doi: 10.1023/A:1011367930251
– ident: 1106_CR6
  doi: 10.1016/j.omega.2011.02.007
– ident: 1106_CR12
– ident: 1106_CR4
  doi: 10.1016/S0305-0548(99)00041-6
– ident: 1106_CR8
  doi: 10.1016/0377-2217(83)90180-7
– ident: 1106_CR10
– ident: 1106_CR7
  doi: 10.1007/s10898-012-9893-4
– ident: 1106_CR11
  doi: 10.1023/A:1011224107143
– ident: 1106_CR1
  doi: 10.1007/978-1-4612-5355-6
– ident: 1106_CR5
  doi: 10.1016/S0377-2217(00)00169-7
– ident: 1106_CR3
  doi: 10.1016/S0377-2217(96)00216-0
– volume-title: Facility location: applications and theory
  year: 2002
  ident: 1106_CR2
SSID ssj0004373
Score 2.0376413
Snippet A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a...
A leader-follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 600
SubjectTerms Algorithms
Chains
Compilers
Computation
Computer Science
Evolutionary
Interpreters
Mathematical models
Optimization
Parallel processing
Processor Architectures
Programming
Programming Languages
Title Solving a leader–follower facility problem via parallel evolutionary approaches
URI https://link.springer.com/article/10.1007/s11227-014-1106-0
https://www.proquest.com/docview/1651449368
Volume 70
WOSCitedRecordID wos000344552400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWJ9sYInZSHZbLPZo4jFU1Gr0tsy-wgIoZWmLfTmf_Af-kvczcOgqKD3zSbMzGa-ZGa-D6FTzRzOjU1EuMO3hEWJJYLZmCgtaMCBA6WmEJvg_X4yHIqbao47r7vd65Jk8aZuht1CSn2bJCMuZbnP4GW04rJd4vUa7gaPzTBkVJaV3b1I0mW0LmV-t8XnZNQgzC9F0SLX9Nr_esoNtF5BS3xRxsImWrKjLdSuZRtwdYq30e1gnPnfCBhwVjQyv728pi4cvF4aTkH7btkFrpRm8PwJsOcHzzKbYTuvIhUmC1zTkdt8Bz30ru4vr0mlrEB0JMIpgZA7pJWoEJgCHqfaqwvqrggsBwuJsanoGtCxUYE2wCNrTMiUTh248wR4NNpFrdF4ZPcQZozHOgCRCuAsDUEkKjDKcGpEpBSFDgpqE0td0Y579YtMNoTJ3mTSmUx6k8mgg84-LnkuOTd-W3xS-026k-HLHTCy41kuw9iBQSaiOOmg89pZsjqi-c877v9p9QFao6W3ndMPUWs6mdkjtKrn06d8clyE5jslpd8c
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL10aaF7WdqtY9lHp8KeNgS2LFvW4xgLGU3D2qQjb-Lqw1AwyYiTQN76H_oP90smOfbCxlbo3mXJ3Hule-x7dQ7AO8M9zs1sQoXHt5QnuaOSu4xqI1kkUCBjthabEKNRPp3Kr8097qrtdm9LkvVJvbvsFjMW2iQ59SnLfwY_gn2_UBoI86_G33aXIZNtWdmvRfOUs7aU-bcpfk9GO4T5R1G0zjX97n-95RE8aaAl-biNhWPYc7On0G1lG0izi5_B5Xheht8IBElZNzL_uL0rfDgEvTRSoAndshvSKM2Q9Q2SwA9elq4kbt1EKi42pKUjd9UJXPc_Tz4NaKOsQE0i4yXFWHiklesYuUaRFSaoC5pURk6gw9y6QqYWTWZ1ZCyKxFkbc20KD-4CAR5LnkNnNp-5F0A4F5mJUBYSBS9ilLmOrLaCWZlozbAHUWtiZRra8aB-UaodYXIwmfImU8FkKurB-1-PfN9ybtw3-Kz1m_I7I5Q7cObmq0rFmQeDXCZZ3oMPrbNUs0Wrf8_48kGj38LhYHIxVMMvo_NX8JhtPe8D4DV0louVewMHZr28qRandZj-BKPm4gA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7UrRRftN5wvdQp-KQMJpPZTOax2C4tyrJFLb4NZy4BIWRlsy745n_wH_pLnNkkXSwqFN8nk3AuzDc553wfwIHhHuemNqHC41vKk8xRyV1KtZEsEiiQMTsTmxCDQXZ1JYeNzmnVdru3Jcl6piGwNJWT4xubH88H32LGQsskp_748lfiBfjIQx99uK6f_5kPRiZ1idm_l2Y9ztqy5ktbPD-Y5mjznwLp7Nzpr7z7iz_DcgM5ybc6RlbhgyvXYKWVcyBNdq_D7_NREX4vECTFrMH58f4h92ESdNRIjiZ00d6RRoGGTK-RBN7wonAFcdMmgnF8R1qacldtwGX_x8XJT9ooLlCTyHhCMRYegWU6Rq5RpLkJqoOmJyMn0GFmXS57Fk1qdWQsisRZG3Ntcg_6AjEeSzahU45KtwWEc5GaCGUuUfA8RpnpyGormJWJ1gy7ELXmVqahIw-qGIWaEykHkylvMhVMpqIuHP595Kbm4nhr8dfWh8pnTCiDYOlGt5WKUw8SuUzSrAtHreNUk7rV6ztu_9fqffg0_N5XZ78GpzuwxGrHe__vQmcyvnV7sGimk-tq_GUWsU_3t-rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+a+leader%E2%80%93follower+facility+problem+via+parallel+evolutionary+approaches&rft.jtitle=The+Journal+of+supercomputing&rft.au=Arrondo%2C+A.+G.&rft.au=Redondo%2C+J.+L.&rft.au=Fern%C3%A1ndez%2C+J.&rft.au=Ortigosa%2C+P.+M.&rft.date=2014-11-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=70&rft.issue=2&rft.spage=600&rft.epage=611&rft_id=info:doi/10.1007%2Fs11227-014-1106-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_014_1106_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon