Solving a leader–follower facility problem via parallel evolutionary approaches
A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a competitor (the follower) will react by locating another single facility after the leader locates its own facility. A subpopulation-based evolutiona...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 70; H. 2; S. 600 - 611 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.11.2014
|
| Schlagworte: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A leader–follower facility problem is considered in this paper. The objective is to maximize the profit obtained by a chain (the leader) knowing that a competitor (the follower) will react by locating another single facility after the leader locates its own facility. A subpopulation-based evolutionary algorithm called TLUEGO was recently proposed to cope with this hard-to-solve global optimization problem. However, it requires high computational effort, even to manage small-size problems. In this work, three parallelizations of TLUEGO are proposed, a distributed memory programming algorithm, a shared memory programming algorithm, and a hybrid of the two previous algorithms, which not only allow us to obtain the solution faster, but also to solve larger instances. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0920-8542 1573-0484 |
| DOI: | 10.1007/s11227-014-1106-0 |