Can a Spatially Distributed Hydrological Model Effectively Analyze Hydrological Processes in the Nepal Himalaya River Basin?
In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of N...
Uloženo v:
| Vydáno v: | Environmental modeling & assessment Ročník 29; číslo 6; s. 1037 - 1058 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2024
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1420-2026, 1573-2967 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions. |
|---|---|
| AbstractList | In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions. In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m x 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996-2004) and validation (2005-2012) using a manual approach due to the limited parameters requiring calibration. The model's performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE [greater than or equal to] 70%, VD 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model's responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions. In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions. |
| Audience | Academic |
| Author | Shrestha, Suchita Huynh, Thanh-Canh Dawadi, Sarita Pradhan, Ananta Man Singh Silwal, Gunjan |
| Author_xml | – sequence: 1 givenname: Ananta Man Singh surname: Pradhan fullname: Pradhan, Ananta Man Singh email: anantageo@hotmail.com organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal – sequence: 2 givenname: Gunjan surname: Silwal fullname: Silwal, Gunjan organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal – sequence: 3 givenname: Suchita surname: Shrestha fullname: Shrestha, Suchita organization: Department of Mines and Geology, Ministry of Industry, Commerce and Supplies, Government of Nepal – sequence: 4 givenname: Thanh-Canh surname: Huynh fullname: Huynh, Thanh-Canh organization: Institute of Research and Development, Duy Tan University, Faculty of Civil Engineering, Duy Tan University – sequence: 5 givenname: Sarita surname: Dawadi fullname: Dawadi, Sarita organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal |
| BookMark | eNp9kctr3DAQh01JoHn0H-hJ0EsvTvWwZetUtpu0W0gf9HEWsjzaKmilreQtOPSP76QOlOYQdJAYvm-G0e-0OoopQlU9Z_SCUdq9KoxKKWvKm5oq1bW1elKdsLYTNVeyO8J3w2nNKZdPq9NSbihFnrYn1e-1icSQr3szeRPCTC59mbIfDhOMZDOPOYW09dYE8iGNEMiVc2An_wsQXUUT5lv4H_uck4VSoBAfyfQDyEfYY3njdyaY2ZAv6GbyxhQfX59Xx86EAs_u77Pq-9urb-tNff3p3fv16rq2QrGpViM3nRwMbxTrnejbETg4DsIAuEE5J2TPDVNW9AqGgYvWjVYOjHeqoRbLZ9XLpe8-p58HKJPe-WIhBBMhHYoWrMWuveQNoi8eoDfpkHHRO4rTjrJG9khdLNTWBNA-ujRlY_GMsPMWo3Ee66ueiY5yoSQKfBFsTqVkcHqf8UfyrBnVdwnqJUGNCeq_CWqFUv9Asn7CnFLEaT48ropFLTgnbiH_W-MR6w_7f7MD |
| CitedBy_id | crossref_primary_10_3390_rs17111819 |
| Cites_doi | 10.2166/wst.2013.100 10.53055/ICIMOD.551 10.5194/hess-19-4673-2015 10.1111/j.0033-0124.1988.00428.x 10.1016/j.jhydrol.2006.09.014 10.13031/2013.26773 10.1002/hyp.10005 10.1007/s10666-014-9400-z 10.53055/ICIMOD.591 10.1002/hyp.9627 10.1002/2014JD022666 10.3389/frwa.2022.909246 10.1007/978-981-16-5493-0_12 10.1007/s12665-019-8443-5 10.3390/W9010017 10.1659/MRD-JOURNAL-D-11-00092.1 10.1029/2018GL080158 10.5194/nhess-13-795-2013 10.1016/S0022-1694(03)00257-9 10.3189/172756411799096277 10.1080/02626667.2011.637042 10.1071/SR05136 10.1016/S0022-1694(02)00029-X 10.1002/hyp.10962 10.1002/joc.4608 10.1017/jog.2020.51 10.1016/j.catena.2019.104082 10.1016/j.envsoft.2014.08.003 10.1007/978-3-319-92288-1 10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 10.1371/journal.pone.0105992 10.3126/jhm.v7i1.5616 10.5194/gmd-8-2009-2015 10.1038/ngeo1896 10.1038/S41558-022-01355-Z 10.3389/feart.2019.00354 10.1371/journal.pone.0190224 10.1016/j.advwatres.2015.01.013 10.1002/hyp.10055 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION 3V. 7SC 7ST 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s10666-024-09975-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Business Premium Collection ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1573-2967 |
| EndPage | 1058 |
| ExternalDocumentID | A813702396 10_1007_s10666_024_09975_9 |
| GeographicLocations | Nepal Himalayan region |
| GeographicLocations_xml | – name: Nepal – name: Himalayan region |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67M 67Z 6NX 7WY 7XC 88I 8AO 8FE 8FG 8FH 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V L8X LAK LLZTM M0C M0N M2P M4Y M7S MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7SC 7ST 7XB 8AL 8FD 8FK C1K FR3 JQ2 KR7 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c391t-9d2a76ba24918f385de2ef2e3aeefb9ff3682a19c389ebb235fdc6b127940c9c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342231600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-2026 |
| IngestDate | Thu Oct 02 10:08:37 EDT 2025 Tue Dec 02 16:26:19 EST 2025 Tue Dec 02 03:51:44 EST 2025 Sat Nov 29 02:06:35 EST 2025 Tue Nov 18 20:20:14 EST 2025 Fri Feb 21 02:37:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Climate change Sensitivity Tamor River basin SPHY model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-9d2a76ba24918f385de2ef2e3aeefb9ff3682a19c389ebb235fdc6b127940c9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3120701468 |
| PQPubID | 25741 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_3153858624 proquest_journals_3120701468 gale_infotracacademiconefile_A813702396 crossref_primary_10_1007_s10666_024_09975_9 crossref_citationtrail_10_1007_s10666_024_09975_9 springer_journals_10_1007_s10666_024_09975_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationTitle | Environmental modeling & assessment |
| PublicationTitleAbbrev | Environ Model Assess |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
| References | ShresthaMKoikeTHirabayashiYXueYWangLRasulGAhmadBIntegrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram regionJournal of Geophysical Research: Atmospheres2015120104889491910.1002/2014JD022666 Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & Leroy, M. (2006). GLOBCOVER: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of ISPRS Commission VII Mid-Term Symposium: Remote Sensing: from Pixels to Processes, Enschede (NL) (pp. 8–11). Citeseer. PellicciottiFBuergiCImmerzeelWWKonzMShresthaABChallenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: Suggestions for calibration strategiesMountain Research and Development2012321395010.1659/MRD-JOURNAL-D-11-00092.1 NormandSKonzMMerzJAn application of the HBV model to the Tamor Basin in Eastern NepalJournal of Hydrology and Meteorology20117December495810.3126/jhm.v7i1.5616 PandayPKWilliamsCAFreyKEBrownMEApplication and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approachHydrological Processes201328215337535310.1002/hyp.10005 Lutz, A. F., Immerzeel, W. W., Siderius, C., Wijngaard, R. R., Nepal, S., Shrestha, A. B., . . . Biemans, H. (2022). South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change. https://doi.org/10.1038/S41558-022-01355-Z ImmerzeelWWPellicciottiFBierkensMFPRising river flows throughout the twenty-first century in two Himalayan glacierized watershedsNature geoscience2013697427451:CAS:528:DC%2BC3sXht1Whs77M10.1038/ngeo1896 Kokkonen, T., Koivusalo, H., Jakeman, T., & Norton, J. P. (2006). Construction of a degree-day snow model in the light of the ten iterative steps in model development. KayasthaRBSteinerNKayasthaRMishraSKMcDonaldKComparative study of hydrology and icemelt in three Nepal river basins using the Glacio-Hydrological Degree-Day Model (GDM) and observations from the Advanced Scatterometer (ASCAT)Frontiers in Earth Science2020735410.3389/feart.2019.00354 NeitschSLArnoldJGKiniryJRWilliamsJRSoil and water assessment tool theoretical documentation version 20092011Texas Water Resources Institute BajracharyaMS., Shrestha, F., Bajracharya, O., & Baidya, S. Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data2014ICIMOD10.53055/ICIMOD.591 GabrielMKnightesCCooterEDennisRThe impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed modelEnvironmental Modeling & Assessment20141930131410.1007/s10666-014-9400-z NepalSChenJPentonDJNeumannLEZhengHWahidSSpatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extentHydrological Processes2017311516810.1002/hyp.10962 Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. LuoQLiYWangKWuJApplication of the SWAT model to the Xiangjiang river watershed in subtropical central ChinaWater science and technology20136792110211610.2166/wst.2013.100 Zurick, D. N., & Zurick, D. N. (2010). Resource needs and land stress in Rapti Zone, Nepal. 0124. https://doi.org/10.1111/j.0033-0124.1988.00428.x LeeHCalvinKDasguptaDKrinnerGMukherjiAThornePTeamCore WritingLeeHRomeroJIPCC 2023: Climate change 2023: Synthesis report, summary for policymakersContribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2023IPC KonzMDevkotaLManual on snow and glacier runoff modeling in the Himalayas. Consultancy Report2009ICIMOD BhattGKumarMDuffyCJA tightly coupled GIS and distributed hydrologic modeling frameworkEnvironmental Modelling and Software201462708410.1016/j.envsoft.2014.08.003 VishwakarmaBDRamsankaranRAzamMFBolchTMandalASrivastavaSChallenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resourcesFrontiers in Water2022490924610.3389/frwa.2022.909246 Gupta, A., Kayastha, R. B., Ramanathan, A. L., & Dimri, A. P. (2019). Comparison of hydrological regime of glacierized Marshyangdi and Tamor river basins of Nepal. Environmental Earth Sciences, 78(14), 412–427. https://doi.org/10.1007/s12665-019-8443-5 KhadkaMKayasthaRBKayasthaRFuture projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological modelsJournal of Glaciology20206625983184510.1017/jog.2020.51 LutzAFter MaatHWBiemansHShresthaABWesterPImmerzeelWWSelecting representative climate models for climate change impact studies: An advanced envelope-based selection approachInternational Journal of Climatology201636123988400510.1002/joc.4608 ImmerzeelWWWandersNLutzAFSheaJMBierkensMFPReconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoffHydrology and Earth System Sciences201519114673468710.5194/hess-19-4673-2015 WesterPMishraAMukherjiAShresthaABChangeCThe Hindu Kush Himalaya AssessmentThe Hindu Kush Himalaya Assessment201910.1007/978-3-319-92288-1 AllenRGPereiraLSRaesDSmithMCrop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56Fao, Rome19983009D05109 RagettliSCortésGMcPheeJPellicciottiFAn evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watershedsHydrological Processes201428235674569510.1002/hyp.10055 Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., . . . Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.01.013 WijngaardRRLutzAFNepalSKhanalSPradhanangaSShresthaABImmerzeelWWFuture changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basinsPLoS ONE2017121210.1371/journal.pone.0190224 Nepal, S. (2012). Evaluating upstream downstream linkages of hydrological dynamics in the Himalayan Region. Retrieved from https://uri.gbv.de/document/gvk:ppn:721385168(Dissertation) de Boer, F. (2016). HiHydroSoil: A high resolution soil map of hydraulic properties. Wageningen, the Netherlands, 20. MinasnyBMcBratneyABMendonça-SantosMOdehIOAGuyonBPrediction and digital mapping of soil carbon storage in the Lower Namoi ValleySoil Research20064432332441:CAS:528:DC%2BD28XktFWitb0%3D10.1071/SR05136 GareeKChenXBaoAWangYMengFHydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment HunzaWater2017911710.3390/W9010017 Konz, M., Finger, D., Bürgi, C., Normand, S., Immerzeel, W. W., Merz, J., . . . Burlando, P. (2010). Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data. In Global Change: Facing Risks and Threats to Water Resources (Proc. of the Sixth World FRIEND Conference, Fez, Morocco), (October), 465–473. BhattaBShresthaSShresthaPKTalchabhadelREvaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River BasinCATENA201918110.1016/j.catena.2019.104082 CogleyJGPresent and future states of Himalaya and Karakoram glaciersAnnals of Glaciology20115259697310.3189/172756411799096277 NepalSKrausePFlügelWFinkMFischerCUnderstanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological modelHydrological Processes20142831329134410.1002/hyp.9627 ScherlerDWulfHGorelickNGlobal assessment of supraglacial debris-cover extentsGeophysical Research Letters201845211179810.1029/2018GL080158 HockRTemperature index melt modelling in mountain areasJournal of Hydrology20032821–410411510.1016/S0022-1694(03)00257-9 ChenNSHuGSDengWKhanalNZhuYHHanDOn the water hazards in the trans-boundary Kosi River basinNatural Hazards and Earth System Sciences201313379580810.5194/nhess-13-795-2013 ShresthaABWakeCPMayewskiPADibbJEMaximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 197194Journal of Climate19991292775278610.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 BajracharyaSRShresthaBRThe status of glaciers in the Hindu Kush-Himalayan region2011International Centre for Integrated Mountain Development (ICIMOD)10.53055/ICIMOD.551 FontaineTACruickshankTSArnoldJGHotchkissRHDevelopment of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)Journal of hydrology20022621–420922310.1016/S0022-1694(02)00029-X TerinkWLutzAFSimonsGWHImmerzeelWWDroogersPSPHY v2.0: Spatial processes in hydrologyGeoscientific Model Development2015872009203410.5194/gmd-8-2009-2015 HargreavesGHSamaniZAReference crop evapotranspiration from temperatureApplied Engineering in Agriculture198512969910.13031/2013.26773 Molden, D. J., Shrestha, A. B., Immerzeel, W. W., Maharjan, A., Rasul, G., Wester, P., . . . Nepal, S. (2022). The great glacier and snow-dependent rivers of Asia and climate change: Heading for troubled waters. Water Resources Development and Management. Springer Singapore. https://doi.org/10.1007/978-981-16-5493-0_12 Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., . . . Walsh, M. G. (2014). SoilGrids1km—Global soil information based on automated mapping. PloS One, 9(8), e105992. KarkiRSrivastavaPKalinLEvaluating climate change impacts in a heavily irrigated karst watershed using a coupled surface and groundwater modelJournal of Hydrology: Regional Studies202350 World Health Organization. (1999). Food s M Shrestha (9975_CR23) 2015; 120 9975_CR32 9975_CR31 AB Shrestha (9975_CR40) 1999; 12 9975_CR33 NS Chen (9975_CR30) 2013; 13 9975_CR35 PK Panday (9975_CR20) 2013; 28 9975_CR37 SR Bajracharya (9975_CR1) 2011 G Bhatt (9975_CR9) 2014; 62 M Gabriel (9975_CR12) 2014; 19 M Khadka (9975_CR4) 2020; 66 BD Vishwakarma (9975_CR11) 2022; 4 M Konz (9975_CR41) 2009 K Garee (9975_CR6) 2017; 9 S Normand (9975_CR25) 2011; 7 9975_CR3 9975_CR27 9975_CR2 Q Luo (9975_CR22) 2013; 67 9975_CR29 R Hock (9975_CR47) 2003; 282 S Ragettli (9975_CR14) 2014; 28 W Terink (9975_CR28) 2015; 8 GH Hargreaves (9975_CR44) 1985; 1 D Scherler (9975_CR36) 2018; 45 S Nepal (9975_CR5) 2017; 31 R Karki (9975_CR8) 2023; 50 B Minasny (9975_CR34) 2006; 44 SL Neitsch (9975_CR48) 2011 9975_CR13 S Nepal (9975_CR15) 2014; 28 9975_CR17 WW Immerzeel (9975_CR7) 2015; 19 RB Kayastha (9975_CR16) 2020; 7 B Bhatta (9975_CR26) 2019; 181 P Wester (9975_CR39) 2019 WW Immerzeel (9975_CR24) 2013; 6 MR Gautam (9975_CR38) 2012; 57 TA Fontaine (9975_CR21) 2002; 262 M Bajracharya (9975_CR10) 2014 RG Allen (9975_CR45) 1998; 300 9975_CR42 AF Lutz (9975_CR43) 2016; 36 9975_CR46 RR Wijngaard (9975_CR49) 2017; 12 JG Cogley (9975_CR18) 2011; 52 F Pellicciotti (9975_CR19) 2012; 32 H Lee (9975_CR50) 2023 |
| References_xml | – reference: Gupta, A., Kayastha, R. B., Ramanathan, A. L., & Dimri, A. P. (2019). Comparison of hydrological regime of glacierized Marshyangdi and Tamor river basins of Nepal. Environmental Earth Sciences, 78(14), 412–427. https://doi.org/10.1007/s12665-019-8443-5 – reference: PandayPKWilliamsCAFreyKEBrownMEApplication and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approachHydrological Processes201328215337535310.1002/hyp.10005 – reference: RagettliSCortésGMcPheeJPellicciottiFAn evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watershedsHydrological Processes201428235674569510.1002/hyp.10055 – reference: AllenRGPereiraLSRaesDSmithMCrop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56Fao, Rome19983009D05109 – reference: MinasnyBMcBratneyABMendonça-SantosMOdehIOAGuyonBPrediction and digital mapping of soil carbon storage in the Lower Namoi ValleySoil Research20064432332441:CAS:528:DC%2BD28XktFWitb0%3D10.1071/SR05136 – reference: NeitschSLArnoldJGKiniryJRWilliamsJRSoil and water assessment tool theoretical documentation version 20092011Texas Water Resources Institute – reference: PellicciottiFBuergiCImmerzeelWWKonzMShresthaABChallenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: Suggestions for calibration strategiesMountain Research and Development2012321395010.1659/MRD-JOURNAL-D-11-00092.1 – reference: Lutz, A. F., Immerzeel, W. W., Siderius, C., Wijngaard, R. R., Nepal, S., Shrestha, A. B., . . . Biemans, H. (2022). South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change. https://doi.org/10.1038/S41558-022-01355-Z – reference: LuoQLiYWangKWuJApplication of the SWAT model to the Xiangjiang river watershed in subtropical central ChinaWater science and technology20136792110211610.2166/wst.2013.100 – reference: NepalSKrausePFlügelWFinkMFischerCUnderstanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological modelHydrological Processes20142831329134410.1002/hyp.9627 – reference: ShresthaABWakeCPMayewskiPADibbJEMaximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 197194Journal of Climate19991292775278610.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 – reference: ShresthaMKoikeTHirabayashiYXueYWangLRasulGAhmadBIntegrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram regionJournal of Geophysical Research: Atmospheres2015120104889491910.1002/2014JD022666 – reference: BhattGKumarMDuffyCJA tightly coupled GIS and distributed hydrologic modeling frameworkEnvironmental Modelling and Software201462708410.1016/j.envsoft.2014.08.003 – reference: HockRTemperature index melt modelling in mountain areasJournal of Hydrology20032821–410411510.1016/S0022-1694(03)00257-9 – reference: VishwakarmaBDRamsankaranRAzamMFBolchTMandalASrivastavaSChallenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resourcesFrontiers in Water2022490924610.3389/frwa.2022.909246 – reference: Konz, M., Finger, D., Bürgi, C., Normand, S., Immerzeel, W. W., Merz, J., . . . Burlando, P. (2010). Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data. In Global Change: Facing Risks and Threats to Water Resources (Proc. of the Sixth World FRIEND Conference, Fez, Morocco), (October), 465–473. – reference: FontaineTACruickshankTSArnoldJGHotchkissRHDevelopment of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)Journal of hydrology20022621–420922310.1016/S0022-1694(02)00029-X – reference: BajracharyaSRShresthaBRThe status of glaciers in the Hindu Kush-Himalayan region2011International Centre for Integrated Mountain Development (ICIMOD)10.53055/ICIMOD.551 – reference: de Boer, F. (2016). HiHydroSoil: A high resolution soil map of hydraulic properties. Wageningen, the Netherlands, 20. – reference: KonzMDevkotaLManual on snow and glacier runoff modeling in the Himalayas. Consultancy Report2009ICIMOD – reference: LeeHCalvinKDasguptaDKrinnerGMukherjiAThornePTeamCore WritingLeeHRomeroJIPCC 2023: Climate change 2023: Synthesis report, summary for policymakersContribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2023IPC – reference: KarkiRSrivastavaPKalinLEvaluating climate change impacts in a heavily irrigated karst watershed using a coupled surface and groundwater modelJournal of Hydrology: Regional Studies202350 – reference: GabrielMKnightesCCooterEDennisRThe impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed modelEnvironmental Modeling & Assessment20141930131410.1007/s10666-014-9400-z – reference: ChenNSHuGSDengWKhanalNZhuYHHanDOn the water hazards in the trans-boundary Kosi River basinNatural Hazards and Earth System Sciences201313379580810.5194/nhess-13-795-2013 – reference: HargreavesGHSamaniZAReference crop evapotranspiration from temperatureApplied Engineering in Agriculture198512969910.13031/2013.26773 – reference: BajracharyaMS., Shrestha, F., Bajracharya, O., & Baidya, S. Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data2014ICIMOD10.53055/ICIMOD.591 – reference: ImmerzeelWWWandersNLutzAFSheaJMBierkensMFPReconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoffHydrology and Earth System Sciences201519114673468710.5194/hess-19-4673-2015 – reference: Kokkonen, T., Koivusalo, H., Jakeman, T., & Norton, J. P. (2006). Construction of a degree-day snow model in the light of the ten iterative steps in model development. – reference: GautamMRAcharyaKStreamflow trends in NepalHydrological Sciences Journal201257234435710.1080/02626667.2011.637042 – reference: Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., . . . Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.01.013 – reference: KhadkaMKayasthaRBKayasthaRFuture projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological modelsJournal of Glaciology20206625983184510.1017/jog.2020.51 – reference: KayasthaRBSteinerNKayasthaRMishraSKMcDonaldKComparative study of hydrology and icemelt in three Nepal river basins using the Glacio-Hydrological Degree-Day Model (GDM) and observations from the Advanced Scatterometer (ASCAT)Frontiers in Earth Science2020735410.3389/feart.2019.00354 – reference: BhattaBShresthaSShresthaPKTalchabhadelREvaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River BasinCATENA201918110.1016/j.catena.2019.104082 – reference: NepalSChenJPentonDJNeumannLEZhengHWahidSSpatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extentHydrological Processes2017311516810.1002/hyp.10962 – reference: World Health Organization. (1999). Food safety issues associated with products from aquaculture: Report of a joint FAO/NACA/WHO study group (Vol. 883). World Health Organization. – reference: Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., . . . Walsh, M. G. (2014). SoilGrids1km—Global soil information based on automated mapping. PloS One, 9(8), e105992. – reference: Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & Leroy, M. (2006). GLOBCOVER: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of ISPRS Commission VII Mid-Term Symposium: Remote Sensing: from Pixels to Processes, Enschede (NL) (pp. 8–11). Citeseer. – reference: ImmerzeelWWPellicciottiFBierkensMFPRising river flows throughout the twenty-first century in two Himalayan glacierized watershedsNature geoscience2013697427451:CAS:528:DC%2BC3sXht1Whs77M10.1038/ngeo1896 – reference: WijngaardRRLutzAFNepalSKhanalSPradhanangaSShresthaABImmerzeelWWFuture changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basinsPLoS ONE2017121210.1371/journal.pone.0190224 – reference: GareeKChenXBaoAWangYMengFHydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment HunzaWater2017911710.3390/W9010017 – reference: Molden, D. J., Shrestha, A. B., Immerzeel, W. W., Maharjan, A., Rasul, G., Wester, P., . . . Nepal, S. (2022). The great glacier and snow-dependent rivers of Asia and climate change: Heading for troubled waters. Water Resources Development and Management. Springer Singapore. https://doi.org/10.1007/978-981-16-5493-0_12 – reference: Nepal, S. (2012). Evaluating upstream downstream linkages of hydrological dynamics in the Himalayan Region. Retrieved from https://uri.gbv.de/document/gvk:ppn:721385168(Dissertation) – reference: Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. – reference: CogleyJGPresent and future states of Himalaya and Karakoram glaciersAnnals of Glaciology20115259697310.3189/172756411799096277 – reference: Zurick, D. N., & Zurick, D. N. (2010). Resource needs and land stress in Rapti Zone, Nepal. 0124. https://doi.org/10.1111/j.0033-0124.1988.00428.x – reference: NormandSKonzMMerzJAn application of the HBV model to the Tamor Basin in Eastern NepalJournal of Hydrology and Meteorology20117December495810.3126/jhm.v7i1.5616 – reference: TerinkWLutzAFSimonsGWHImmerzeelWWDroogersPSPHY v2.0: Spatial processes in hydrologyGeoscientific Model Development2015872009203410.5194/gmd-8-2009-2015 – reference: WesterPMishraAMukherjiAShresthaABChangeCThe Hindu Kush Himalaya AssessmentThe Hindu Kush Himalaya Assessment201910.1007/978-3-319-92288-1 – reference: ScherlerDWulfHGorelickNGlobal assessment of supraglacial debris-cover extentsGeophysical Research Letters201845211179810.1029/2018GL080158 – reference: LutzAFter MaatHWBiemansHShresthaABWesterPImmerzeelWWSelecting representative climate models for climate change impact studies: An advanced envelope-based selection approachInternational Journal of Climatology201636123988400510.1002/joc.4608 – volume: 67 start-page: 2110 issue: 9 year: 2013 ident: 9975_CR22 publication-title: Water science and technology doi: 10.2166/wst.2013.100 – volume-title: The status of glaciers in the Hindu Kush-Himalayan region year: 2011 ident: 9975_CR1 doi: 10.53055/ICIMOD.551 – volume: 19 start-page: 4673 issue: 11 year: 2015 ident: 9975_CR7 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-19-4673-2015 – ident: 9975_CR37 doi: 10.1111/j.0033-0124.1988.00428.x – ident: 9975_CR17 doi: 10.1016/j.jhydrol.2006.09.014 – volume: 1 start-page: 96 issue: 2 year: 1985 ident: 9975_CR44 publication-title: Applied Engineering in Agriculture doi: 10.13031/2013.26773 – volume: 28 start-page: 5337 issue: 21 year: 2013 ident: 9975_CR20 publication-title: Hydrological Processes doi: 10.1002/hyp.10005 – ident: 9975_CR31 – volume: 19 start-page: 301 year: 2014 ident: 9975_CR12 publication-title: Environmental Modeling & Assessment doi: 10.1007/s10666-014-9400-z – ident: 9975_CR35 – volume-title: Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data year: 2014 ident: 9975_CR10 doi: 10.53055/ICIMOD.591 – volume: 28 start-page: 1329 issue: 3 year: 2014 ident: 9975_CR15 publication-title: Hydrological Processes doi: 10.1002/hyp.9627 – volume: 120 start-page: 4889 issue: 10 year: 2015 ident: 9975_CR23 publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1002/2014JD022666 – volume: 4 start-page: 909246 year: 2022 ident: 9975_CR11 publication-title: Frontiers in Water doi: 10.3389/frwa.2022.909246 – ident: 9975_CR2 doi: 10.1007/978-981-16-5493-0_12 – ident: 9975_CR27 doi: 10.1007/s12665-019-8443-5 – volume: 9 start-page: 17 issue: 1 year: 2017 ident: 9975_CR6 publication-title: Water doi: 10.3390/W9010017 – volume: 32 start-page: 39 issue: 1 year: 2012 ident: 9975_CR19 publication-title: Mountain Research and Development doi: 10.1659/MRD-JOURNAL-D-11-00092.1 – volume: 45 start-page: 11 issue: 21 year: 2018 ident: 9975_CR36 publication-title: Geophysical Research Letters doi: 10.1029/2018GL080158 – volume: 13 start-page: 795 issue: 3 year: 2013 ident: 9975_CR30 publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-13-795-2013 – volume: 282 start-page: 104 issue: 1–4 year: 2003 ident: 9975_CR47 publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(03)00257-9 – volume-title: Soil and water assessment tool theoretical documentation version 2009 year: 2011 ident: 9975_CR48 – volume: 52 start-page: 69 issue: 59 year: 2011 ident: 9975_CR18 publication-title: Annals of Glaciology doi: 10.3189/172756411799096277 – ident: 9975_CR13 – volume: 57 start-page: 344 issue: 2 year: 2012 ident: 9975_CR38 publication-title: Hydrological Sciences Journal doi: 10.1080/02626667.2011.637042 – volume: 44 start-page: 233 issue: 3 year: 2006 ident: 9975_CR34 publication-title: Soil Research doi: 10.1071/SR05136 – volume: 262 start-page: 209 issue: 1–4 year: 2002 ident: 9975_CR21 publication-title: Journal of hydrology doi: 10.1016/S0022-1694(02)00029-X – volume: 31 start-page: 51 issue: 1 year: 2017 ident: 9975_CR5 publication-title: Hydrological Processes doi: 10.1002/hyp.10962 – ident: 9975_CR46 – volume: 36 start-page: 3988 issue: 12 year: 2016 ident: 9975_CR43 publication-title: International Journal of Climatology doi: 10.1002/joc.4608 – volume: 300 start-page: D05109 issue: 9 year: 1998 ident: 9975_CR45 publication-title: Fao, Rome – volume: 66 start-page: 831 issue: 259 year: 2020 ident: 9975_CR4 publication-title: Journal of Glaciology doi: 10.1017/jog.2020.51 – volume-title: Manual on snow and glacier runoff modeling in the Himalayas. Consultancy Report year: 2009 ident: 9975_CR41 – volume: 181 year: 2019 ident: 9975_CR26 publication-title: CATENA doi: 10.1016/j.catena.2019.104082 – volume: 62 start-page: 70 year: 2014 ident: 9975_CR9 publication-title: Environmental Modelling and Software doi: 10.1016/j.envsoft.2014.08.003 – year: 2019 ident: 9975_CR39 publication-title: The Hindu Kush Himalaya Assessment doi: 10.1007/978-3-319-92288-1 – volume: 12 start-page: 2775 issue: 9 year: 1999 ident: 9975_CR40 publication-title: Journal of Climate doi: 10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 – ident: 9975_CR33 doi: 10.1371/journal.pone.0105992 – volume: 50 year: 2023 ident: 9975_CR8 publication-title: Journal of Hydrology: Regional Studies – volume: 7 start-page: 49 issue: December year: 2011 ident: 9975_CR25 publication-title: Journal of Hydrology and Meteorology doi: 10.3126/jhm.v7i1.5616 – volume: 8 start-page: 2009 issue: 7 year: 2015 ident: 9975_CR28 publication-title: Geoscientific Model Development doi: 10.5194/gmd-8-2009-2015 – volume: 6 start-page: 742 issue: 9 year: 2013 ident: 9975_CR24 publication-title: Nature geoscience doi: 10.1038/ngeo1896 – ident: 9975_CR42 doi: 10.1038/S41558-022-01355-Z – volume: 7 start-page: 354 year: 2020 ident: 9975_CR16 publication-title: Frontiers in Earth Science doi: 10.3389/feart.2019.00354 – volume: 12 issue: 12 year: 2017 ident: 9975_CR49 publication-title: PLoS ONE doi: 10.1371/journal.pone.0190224 – ident: 9975_CR32 – ident: 9975_CR29 – ident: 9975_CR3 doi: 10.1016/j.advwatres.2015.01.013 – volume: 28 start-page: 5674 issue: 23 year: 2014 ident: 9975_CR14 publication-title: Hydrological Processes doi: 10.1002/hyp.10055 – volume-title: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2023 ident: 9975_CR50 |
| SSID | ssj0006605 |
| Score | 2.3781786 |
| Snippet | In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1037 |
| SubjectTerms | Applications of Mathematics Calibration Cell size climate Climate change Climate models Climatic changes Climatic conditions Discharge Earth and Environmental Science Environment Flow duration Flow duration curves Glacier melting Glaciers Glaciohydrology Global climate Goodness of fit Himalayan region Hydroclimate Hydrologic models Hydrology ice Impact analysis Math. Appl. in Environmental Science Mathematical Modeling and Industrial Mathematics Meteorological data Monsoons Nepal Operations Research/Decision Theory Parameter sensitivity Parameter uncertainty Precipitation prediction River basins Rivers runoff Sensitivity analysis Simulation methods simulation models Snow Surface-ice melting temperature Temperature dependence uncertainty watersheds |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA9aPXix9aM42koEwYMGTTKTSU6lrS17WoooFC8hySSwMM7Wna2w4h_ve7OZXarYi9dJJhN4n5mX3_sR8toHbYQyjoVkKlbqoJgRPjBVmdCY1IDKuIFsop5O9eWlucg_3Pp8rXL0iYOjbuYB_5G_l1yAdiJQ6OjqO0PWKKyuZgqNu-QedklA6oaL6uvGE6s1LpKXcESCQ77KoJkMnYPEnUGEYogdrZi5EZj-dM9_1UmH8HO--78b3yMPc-JJj9ea8ojcid1jsn-2xbnBYDb0_gn5deo66igSFoOCtiv6ERvsIjdWbOhk1SxGn0mRTK2l6ybI4Dlh6tDn5Ge8OS0DEmJPZx2FpJNOIQ62dDL75lq3cvQT3g-hJ66fdUdPyZfzs8-nE5aJGliQhi-ZaYSrlXdwlOM6SV01UcQkonQxJm9SkkoLx02A7Ch6L2SVmqA8F-AMPgR4vE92unkXnxHq66ii87HUyZfeSW9q7ysVuZdRg8MpCB-lZEPuYo5kGq3d9l9GyVqQrB0ka01B3m7euVr38Lh19hsUvkUDh5WDyzgF2B-2yrLHmssaIcGqIAejxG22_N5uxV2QV5thsFksxLguzq9xToX1WCXKgrwb9Wq7xL_39vz2L74gDwRq9HDb5oDsLBfX8ZDcDz-Ws37xcrCN3xUqFiA priority: 102 providerName: ProQuest |
| Title | Can a Spatially Distributed Hydrological Model Effectively Analyze Hydrological Processes in the Nepal Himalaya River Basin? |
| URI | https://link.springer.com/article/10.1007/s10666-024-09975-9 https://www.proquest.com/docview/3120701468 https://www.proquest.com/docview/3153858624 |
| Volume | 29 |
| WOSCitedRecordID | wos001342231600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006605 issn: 1420-2026 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wdg972Xepty5oMNjDJqhlW7KeRpulBMZCSPfR7cVIsgwBzx1xOsjYH787R07WfcH2cmDrLIR8X-L0uwN4Yl2uhdSGu0pnPM2d5FpYx2WmXamrEkXGdM0m1GSSn5_raQCFtf1t9z4l2VnqH8BuGGpz9Cmc0J4Z1zuwh-5OkSzPzt5t7K9coyHjFA9GeLSXASrz-zmuuKOfjfIv2dHO6Zze-r_l3oabIchkx2upuAPXfHMX9kdbTBsOBqVu78G3oWmYYdScGIWxXrGXVEyX-mD5ko1X5aK3j4wap9VsXfAYrSSydjVNvvqrbAF84Fs2bxgGmGyCPq9m4_knU5uVYTO6C8JOTDtvXtyHt6ejN8MxD00ZuEt0vOS6FEZJa_DYFudVkmelF74SPjHeV1ZXVSJzYWLtMBLy1ookq0onbSxQ8Y8cvt6H3eai8QfArPLSG-vTvLKpNYnVytpM-tgmPkfjEkHc_5vChYrl1DijLra1lmmTC9zkotvkQkfwbPPN53W9jr9yP6VfXpAy48zOBEwCro_KYhXHeZwogv_KCA57qSiClrdFEgu0mARei-DxZhj1k5IupvEXl8STUe5VijSC572kbKf489oe_Bv7Q7ghSNi6mzaHsLtcXPpHcN19Wc7bxQB21PsPA9g7GU2mM3x6pTjS10dDomJKVJ0hnWYfB502fQd93ROk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvvCsCBYwE4gAWxNk49gFVpQ9t1bJCUKTejO040kpptmy2oEX8Jn4jM3nsqiB664Fr7DiR882MJzPfDMAz55UWUlvuC53ygfKSa-E8l6n2uS5yhIxtmk1ko5E6PtYfVuBXz4WhtMpeJzaKOp94-kf-OokFopOIQpunXzl1jaLoat9Co4XFQZh_R5etfru_g9_3uRB7u0fbQ951FeA-0fGM61zYTDqLfkesikSleRChECGxIRROF0UilbCx9mjKg3MiSYvcSxcLRO4bj5dx3StwFY8RQjWpgp8Wml-2PMx4gC6ZQOemI-l0VD10FDhaRE5c1ZTrc4bwT3PwV1y2MXd7N_-3jboFN7qDNdtqJeE2rITqDqzvLnl8ONgpsvou_Ny2FbOMGjKjAJZztkMFhKn3V8jZcJ5Pe5vAqFlcydoiz2gZcGpTx-VHOD-tI1yEmo0rhodqNkI7X7Lh-MSWdm7ZR8p_Ye9sPa4278HnS9mJdVitJlW4D8xlQQbrwkAVbuBs4nTmXCpD7JKgUKFGEPeoML6r0k7NQkqzrC9NSDKIJNMgyegIXi7uOW1rlFw4-wWBzZACw5W97XgY-H5UCsxsqTjJiPIsI9joEWY6zVabJbwieLoYRp1EgSZbhckZzUkp3izFIIJXPY6XS_z73R5c_MQncH149P7QHO6PDh7CmiBpajKLNmB1Nj0Lj-Ca_zYb19PHjVwy-HLZ-P4NmFp1Mg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0Jc-J4IDDASiANYW5zEiQ9o2tZWnYaqagJpt2A7jlQppKPpQEX8Zfx1vJc6rQZitx24xi9O5PzeV-zfewCvjM2UkEpzW6qEx5mVXAljuUyULVRZIGR022wiHY2yszM13oBfHReGjlV2NrE11MXU0j_y3SgUiE4iCu2W_ljEuDfYP__KqYMU7bR27TSWEDlxi--YvjXvj3v4rV8LMeh_PBpy32GA20iFc64KoVNpNOYgYVZGWVI44UrhIu1caVRZRjITOlQW3bozRkRJWVhpQoEo3rN4Gee9AVspBhmoY1uH_dH4dOUH5JKVGcaYoAlMdTxlxxP3MG3g6B85MVcTri65xT-dw1-7tK3zG9z9n5ftHtzxITc7WOrIfdhw9QPY7q8ZfjjoTVzzEH4e6ZppRq2aUTWrBetRaWHqCuYKNlwUs85bMGojV7Fl-Wf0GSjaVnj54S6LeSqGa9ikZhhusxFGABUbTr7oSi80O6WTMexQN5N6_xF8upaV2IbNelq7x8BM6qTTxsVZaWKjI6NSYxLpQhO5DE1tAGGHkNz6-u3URqTK15WnCVU5oipvUZWrAN6u7jlfVi-5UvoNAS8n04YzW-0ZGvh-VCQsP8jCKCUytAxgp0Nb7m1ek6-hFsDL1TBaK9qC0rWbXpBMQjvRUsQBvOswvZ7i3-_25OonvoBbCOv8w_Ho5CncFqRY7ZGjHdiczy7cM7hpv80nzey5V1IGn68b4L8BRSl_OQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+a+Spatially+Distributed+Hydrological+Model+Effectively+Analyze+Hydrological+Processes+in+the+Nepal+Himalaya+River+Basin%3F&rft.jtitle=Environmental+modeling+%26+assessment&rft.au=Pradhan%2C+Ananta+Man+Singh&rft.au=Silwal%2C+Gunjan&rft.au=Shrestha%2C+Suchita&rft.au=Huynh%2C+Thanh-Canh&rft.date=2024-12-01&rft.issn=1420-2026&rft.volume=29&rft.issue=6+p.1037-1058&rft.spage=1037&rft.epage=1058&rft_id=info:doi/10.1007%2Fs10666-024-09975-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-2026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-2026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-2026&client=summon |