Can a Spatially Distributed Hydrological Model Effectively Analyze Hydrological Processes in the Nepal Himalaya River Basin?

In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental modeling & assessment Ročník 29; číslo 6; s. 1037 - 1058
Hlavní autoři: Pradhan, Ananta Man Singh, Silwal, Gunjan, Shrestha, Suchita, Huynh, Thanh-Canh, Dawadi, Sarita
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
Témata:
ISSN:1420-2026, 1573-2967
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions.
AbstractList In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions.
In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m x 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996-2004) and validation (2005-2012) using a manual approach due to the limited parameters requiring calibration. The model's performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE [greater than or equal to] 70%, VD 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model's responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions.
In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to heightened vulnerability to the impacts of global climate change. This study focuses on the Tamor River basin (TRB) in the Eastern Himalaya of Nepal, aiming to employ an advanced hydrological model to enhance understanding and prediction. We used the SPHY-cryo-hydro-climate-impact model to simulate the daily discharge and to estimate the contribution of different runoff components both annually and seasonally. The model was chosen based on physical processes representation, the ability to simulate snow and glacier melt, and the computational efficiency to project the daily discharge simulations in changing climate. Utilizing meteorological data with high temporal (daily) and spatial (250 m × 250 m grid cell size) resolution from 1995 to 2012, the model undergoes calibration (1996–2004) and validation (2005–2012) using a manual approach due to the limited parameters requiring calibration. The model’s performance is evaluated using goodness of fit (GoF) functions, including NSE, KGE, and VD, with satisfactory results (NSE ≥ 70%, VD < 10%, KGE > 0.7) for both calibration and validation periods at two monitoring stations (690 and 684). The study reveals that snow and ice melt significantly contribute to pre-monsoon flow (March, April, and May), constituting approximately 35% of the total flow, while their influence diminishes during post-monsoon seasons (October and November). Sensitivity analyses indicate the model’s responsiveness to both temperature and precipitation forcings, with temperature exerting a more pronounced impact, particularly on temperature-dependent melt modules and the state of precipitation at higher elevations. However, uncertainties persist in the model outputs, primarily attributed to input forcings, model structure, and parameters derived from literature rather than field measurements. The observed discrepancy between flow duration curves suggests that calibrated parameters remain partially optimized and subject to uncertainty. This study underscores the complexity of hydrological modeling in snow and glacier-dominated regions and emphasizes the need for continued refinement to enhance predictive accuracy amid evolving climatic conditions.
Audience Academic
Author Shrestha, Suchita
Huynh, Thanh-Canh
Dawadi, Sarita
Pradhan, Ananta Man Singh
Silwal, Gunjan
Author_xml – sequence: 1
  givenname: Ananta Man Singh
  surname: Pradhan
  fullname: Pradhan, Ananta Man Singh
  email: anantageo@hotmail.com
  organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal
– sequence: 2
  givenname: Gunjan
  surname: Silwal
  fullname: Silwal, Gunjan
  organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal
– sequence: 3
  givenname: Suchita
  surname: Shrestha
  fullname: Shrestha, Suchita
  organization: Department of Mines and Geology, Ministry of Industry, Commerce and Supplies, Government of Nepal
– sequence: 4
  givenname: Thanh-Canh
  surname: Huynh
  fullname: Huynh, Thanh-Canh
  organization: Institute of Research and Development, Duy Tan University, Faculty of Civil Engineering, Duy Tan University
– sequence: 5
  givenname: Sarita
  surname: Dawadi
  fullname: Dawadi, Sarita
  organization: Water Resources Research and Development Centre, Ministry of Energy, Water Resources and Irrigation, Government of Nepal
BookMark eNp9kctr3DAQh01JoHn0H-hJ0EsvTvWwZetUtpu0W0gf9HEWsjzaKmilreQtOPSP76QOlOYQdJAYvm-G0e-0OoopQlU9Z_SCUdq9KoxKKWvKm5oq1bW1elKdsLYTNVeyO8J3w2nNKZdPq9NSbihFnrYn1e-1icSQr3szeRPCTC59mbIfDhOMZDOPOYW09dYE8iGNEMiVc2An_wsQXUUT5lv4H_uck4VSoBAfyfQDyEfYY3njdyaY2ZAv6GbyxhQfX59Xx86EAs_u77Pq-9urb-tNff3p3fv16rq2QrGpViM3nRwMbxTrnejbETg4DsIAuEE5J2TPDVNW9AqGgYvWjVYOjHeqoRbLZ9XLpe8-p58HKJPe-WIhBBMhHYoWrMWuveQNoi8eoDfpkHHRO4rTjrJG9khdLNTWBNA-ujRlY_GMsPMWo3Ee66ueiY5yoSQKfBFsTqVkcHqf8UfyrBnVdwnqJUGNCeq_CWqFUv9Asn7CnFLEaT48ropFLTgnbiH_W-MR6w_7f7MD
CitedBy_id crossref_primary_10_3390_rs17111819
Cites_doi 10.2166/wst.2013.100
10.53055/ICIMOD.551
10.5194/hess-19-4673-2015
10.1111/j.0033-0124.1988.00428.x
10.1016/j.jhydrol.2006.09.014
10.13031/2013.26773
10.1002/hyp.10005
10.1007/s10666-014-9400-z
10.53055/ICIMOD.591
10.1002/hyp.9627
10.1002/2014JD022666
10.3389/frwa.2022.909246
10.1007/978-981-16-5493-0_12
10.1007/s12665-019-8443-5
10.3390/W9010017
10.1659/MRD-JOURNAL-D-11-00092.1
10.1029/2018GL080158
10.5194/nhess-13-795-2013
10.1016/S0022-1694(03)00257-9
10.3189/172756411799096277
10.1080/02626667.2011.637042
10.1071/SR05136
10.1016/S0022-1694(02)00029-X
10.1002/hyp.10962
10.1002/joc.4608
10.1017/jog.2020.51
10.1016/j.catena.2019.104082
10.1016/j.envsoft.2014.08.003
10.1007/978-3-319-92288-1
10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2
10.1371/journal.pone.0105992
10.3126/jhm.v7i1.5616
10.5194/gmd-8-2009-2015
10.1038/ngeo1896
10.1038/S41558-022-01355-Z
10.3389/feart.2019.00354
10.1371/journal.pone.0190224
10.1016/j.advwatres.2015.01.013
10.1002/hyp.10055
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
3V.
7SC
7ST
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s10666-024-09975-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1573-2967
EndPage 1058
ExternalDocumentID A813702396
10_1007_s10666_024_09975_9
GeographicLocations Nepal
Himalayan region
GeographicLocations_xml – name: Nepal
– name: Himalayan region
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5QI
5VS
67M
67Z
6NX
7WY
7XC
88I
8AO
8FE
8FG
8FH
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
L8X
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
ML.
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7ST
7XB
8AL
8FD
8FK
C1K
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c391t-9d2a76ba24918f385de2ef2e3aeefb9ff3682a19c389ebb235fdc6b127940c9c3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001342231600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-2026
IngestDate Thu Oct 02 10:08:37 EDT 2025
Tue Dec 02 16:26:19 EST 2025
Tue Dec 02 03:51:44 EST 2025
Sat Nov 29 02:06:35 EST 2025
Tue Nov 18 20:20:14 EST 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Climate change
Sensitivity
Tamor River basin
SPHY model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-9d2a76ba24918f385de2ef2e3aeefb9ff3682a19c389ebb235fdc6b127940c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3120701468
PQPubID 25741
PageCount 22
ParticipantIDs proquest_miscellaneous_3153858624
proquest_journals_3120701468
gale_infotracacademiconefile_A813702396
crossref_primary_10_1007_s10666_024_09975_9
crossref_citationtrail_10_1007_s10666_024_09975_9
springer_journals_10_1007_s10666_024_09975_9
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Environmental modeling & assessment
PublicationTitleAbbrev Environ Model Assess
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References ShresthaMKoikeTHirabayashiYXueYWangLRasulGAhmadBIntegrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram regionJournal of Geophysical Research: Atmospheres2015120104889491910.1002/2014JD022666
Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & Leroy, M. (2006). GLOBCOVER: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of ISPRS Commission VII Mid-Term Symposium: Remote Sensing: from Pixels to Processes, Enschede (NL) (pp. 8–11). Citeseer.
PellicciottiFBuergiCImmerzeelWWKonzMShresthaABChallenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: Suggestions for calibration strategiesMountain Research and Development2012321395010.1659/MRD-JOURNAL-D-11-00092.1
NormandSKonzMMerzJAn application of the HBV model to the Tamor Basin in Eastern NepalJournal of Hydrology and Meteorology20117December495810.3126/jhm.v7i1.5616
PandayPKWilliamsCAFreyKEBrownMEApplication and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approachHydrological Processes201328215337535310.1002/hyp.10005
Lutz, A. F., Immerzeel, W. W., Siderius, C., Wijngaard, R. R., Nepal, S., Shrestha, A. B., . . . Biemans, H. (2022). South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change. https://doi.org/10.1038/S41558-022-01355-Z
ImmerzeelWWPellicciottiFBierkensMFPRising river flows throughout the twenty-first century in two Himalayan glacierized watershedsNature geoscience2013697427451:CAS:528:DC%2BC3sXht1Whs77M10.1038/ngeo1896
Kokkonen, T., Koivusalo, H., Jakeman, T., & Norton, J. P. (2006). Construction of a degree-day snow model in the light of the ten iterative steps in model development.
KayasthaRBSteinerNKayasthaRMishraSKMcDonaldKComparative study of hydrology and icemelt in three Nepal river basins using the Glacio-Hydrological Degree-Day Model (GDM) and observations from the Advanced Scatterometer (ASCAT)Frontiers in Earth Science2020735410.3389/feart.2019.00354
NeitschSLArnoldJGKiniryJRWilliamsJRSoil and water assessment tool theoretical documentation version 20092011Texas Water Resources Institute
BajracharyaMS., Shrestha, F., Bajracharya, O., & Baidya, S. Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data2014ICIMOD10.53055/ICIMOD.591
GabrielMKnightesCCooterEDennisRThe impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed modelEnvironmental Modeling & Assessment20141930131410.1007/s10666-014-9400-z
NepalSChenJPentonDJNeumannLEZhengHWahidSSpatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extentHydrological Processes2017311516810.1002/hyp.10962
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430.
LuoQLiYWangKWuJApplication of the SWAT model to the Xiangjiang river watershed in subtropical central ChinaWater science and technology20136792110211610.2166/wst.2013.100
Zurick, D. N., & Zurick, D. N. (2010). Resource needs and land stress in Rapti Zone, Nepal. 0124. https://doi.org/10.1111/j.0033-0124.1988.00428.x
LeeHCalvinKDasguptaDKrinnerGMukherjiAThornePTeamCore WritingLeeHRomeroJIPCC 2023: Climate change 2023: Synthesis report, summary for policymakersContribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2023IPC
KonzMDevkotaLManual on snow and glacier runoff modeling in the Himalayas. Consultancy Report2009ICIMOD
BhattGKumarMDuffyCJA tightly coupled GIS and distributed hydrologic modeling frameworkEnvironmental Modelling and Software201462708410.1016/j.envsoft.2014.08.003
VishwakarmaBDRamsankaranRAzamMFBolchTMandalASrivastavaSChallenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resourcesFrontiers in Water2022490924610.3389/frwa.2022.909246
Gupta, A., Kayastha, R. B., Ramanathan, A. L., & Dimri, A. P. (2019). Comparison of hydrological regime of glacierized Marshyangdi and Tamor river basins of Nepal. Environmental Earth Sciences, 78(14), 412–427. https://doi.org/10.1007/s12665-019-8443-5
KhadkaMKayasthaRBKayasthaRFuture projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological modelsJournal of Glaciology20206625983184510.1017/jog.2020.51
LutzAFter MaatHWBiemansHShresthaABWesterPImmerzeelWWSelecting representative climate models for climate change impact studies: An advanced envelope-based selection approachInternational Journal of Climatology201636123988400510.1002/joc.4608
ImmerzeelWWWandersNLutzAFSheaJMBierkensMFPReconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoffHydrology and Earth System Sciences201519114673468710.5194/hess-19-4673-2015
WesterPMishraAMukherjiAShresthaABChangeCThe Hindu Kush Himalaya AssessmentThe Hindu Kush Himalaya Assessment201910.1007/978-3-319-92288-1
AllenRGPereiraLSRaesDSmithMCrop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56Fao, Rome19983009D05109
RagettliSCortésGMcPheeJPellicciottiFAn evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watershedsHydrological Processes201428235674569510.1002/hyp.10055
Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., . . . Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.01.013
WijngaardRRLutzAFNepalSKhanalSPradhanangaSShresthaABImmerzeelWWFuture changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basinsPLoS ONE2017121210.1371/journal.pone.0190224
Nepal, S. (2012). Evaluating upstream downstream linkages of hydrological dynamics in the Himalayan Region. Retrieved from https://uri.gbv.de/document/gvk:ppn:721385168(Dissertation)
de Boer, F. (2016). HiHydroSoil: A high resolution soil map of hydraulic properties. Wageningen, the Netherlands, 20.
MinasnyBMcBratneyABMendonça-SantosMOdehIOAGuyonBPrediction and digital mapping of soil carbon storage in the Lower Namoi ValleySoil Research20064432332441:CAS:528:DC%2BD28XktFWitb0%3D10.1071/SR05136
GareeKChenXBaoAWangYMengFHydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment HunzaWater2017911710.3390/W9010017
Konz, M., Finger, D., Bürgi, C., Normand, S., Immerzeel, W. W., Merz, J., . . . Burlando, P. (2010). Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data. In Global Change: Facing Risks and Threats to Water Resources (Proc. of the Sixth World FRIEND Conference, Fez, Morocco), (October), 465–473.
BhattaBShresthaSShresthaPKTalchabhadelREvaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River BasinCATENA201918110.1016/j.catena.2019.104082
CogleyJGPresent and future states of Himalaya and Karakoram glaciersAnnals of Glaciology20115259697310.3189/172756411799096277
NepalSKrausePFlügelWFinkMFischerCUnderstanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological modelHydrological Processes20142831329134410.1002/hyp.9627
ScherlerDWulfHGorelickNGlobal assessment of supraglacial debris-cover extentsGeophysical Research Letters201845211179810.1029/2018GL080158
HockRTemperature index melt modelling in mountain areasJournal of Hydrology20032821–410411510.1016/S0022-1694(03)00257-9
ChenNSHuGSDengWKhanalNZhuYHHanDOn the water hazards in the trans-boundary Kosi River basinNatural Hazards and Earth System Sciences201313379580810.5194/nhess-13-795-2013
ShresthaABWakeCPMayewskiPADibbJEMaximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 197194Journal of Climate19991292775278610.1175/1520-0442(1999)012<2775:mttith>2.0.co;2
BajracharyaSRShresthaBRThe status of glaciers in the Hindu Kush-Himalayan region2011International Centre for Integrated Mountain Development (ICIMOD)10.53055/ICIMOD.551
FontaineTACruickshankTSArnoldJGHotchkissRHDevelopment of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)Journal of hydrology20022621–420922310.1016/S0022-1694(02)00029-X
TerinkWLutzAFSimonsGWHImmerzeelWWDroogersPSPHY v2.0: Spatial processes in hydrologyGeoscientific Model Development2015872009203410.5194/gmd-8-2009-2015
HargreavesGHSamaniZAReference crop evapotranspiration from temperatureApplied Engineering in Agriculture198512969910.13031/2013.26773
Molden, D. J., Shrestha, A. B., Immerzeel, W. W., Maharjan, A., Rasul, G., Wester, P., . . . Nepal, S. (2022). The great glacier and snow-dependent rivers of Asia and climate change: Heading for troubled waters. Water Resources Development and Management. Springer Singapore. https://doi.org/10.1007/978-981-16-5493-0_12
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., . . . Walsh, M. G. (2014). SoilGrids1km—Global soil information based on automated mapping. PloS One, 9(8), e105992.
KarkiRSrivastavaPKalinLEvaluating climate change impacts in a heavily irrigated karst watershed using a coupled surface and groundwater modelJournal of Hydrology: Regional Studies202350
World Health Organization. (1999). Food s
M Shrestha (9975_CR23) 2015; 120
9975_CR32
9975_CR31
AB Shrestha (9975_CR40) 1999; 12
9975_CR33
NS Chen (9975_CR30) 2013; 13
9975_CR35
PK Panday (9975_CR20) 2013; 28
9975_CR37
SR Bajracharya (9975_CR1) 2011
G Bhatt (9975_CR9) 2014; 62
M Gabriel (9975_CR12) 2014; 19
M Khadka (9975_CR4) 2020; 66
BD Vishwakarma (9975_CR11) 2022; 4
M Konz (9975_CR41) 2009
K Garee (9975_CR6) 2017; 9
S Normand (9975_CR25) 2011; 7
9975_CR3
9975_CR27
9975_CR2
Q Luo (9975_CR22) 2013; 67
9975_CR29
R Hock (9975_CR47) 2003; 282
S Ragettli (9975_CR14) 2014; 28
W Terink (9975_CR28) 2015; 8
GH Hargreaves (9975_CR44) 1985; 1
D Scherler (9975_CR36) 2018; 45
S Nepal (9975_CR5) 2017; 31
R Karki (9975_CR8) 2023; 50
B Minasny (9975_CR34) 2006; 44
SL Neitsch (9975_CR48) 2011
9975_CR13
S Nepal (9975_CR15) 2014; 28
9975_CR17
WW Immerzeel (9975_CR7) 2015; 19
RB Kayastha (9975_CR16) 2020; 7
B Bhatta (9975_CR26) 2019; 181
P Wester (9975_CR39) 2019
WW Immerzeel (9975_CR24) 2013; 6
MR Gautam (9975_CR38) 2012; 57
TA Fontaine (9975_CR21) 2002; 262
M Bajracharya (9975_CR10) 2014
RG Allen (9975_CR45) 1998; 300
9975_CR42
AF Lutz (9975_CR43) 2016; 36
9975_CR46
RR Wijngaard (9975_CR49) 2017; 12
JG Cogley (9975_CR18) 2011; 52
F Pellicciotti (9975_CR19) 2012; 32
H Lee (9975_CR50) 2023
References_xml – reference: Gupta, A., Kayastha, R. B., Ramanathan, A. L., & Dimri, A. P. (2019). Comparison of hydrological regime of glacierized Marshyangdi and Tamor river basins of Nepal. Environmental Earth Sciences, 78(14), 412–427. https://doi.org/10.1007/s12665-019-8443-5
– reference: PandayPKWilliamsCAFreyKEBrownMEApplication and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approachHydrological Processes201328215337535310.1002/hyp.10005
– reference: RagettliSCortésGMcPheeJPellicciottiFAn evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watershedsHydrological Processes201428235674569510.1002/hyp.10055
– reference: AllenRGPereiraLSRaesDSmithMCrop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56Fao, Rome19983009D05109
– reference: MinasnyBMcBratneyABMendonça-SantosMOdehIOAGuyonBPrediction and digital mapping of soil carbon storage in the Lower Namoi ValleySoil Research20064432332441:CAS:528:DC%2BD28XktFWitb0%3D10.1071/SR05136
– reference: NeitschSLArnoldJGKiniryJRWilliamsJRSoil and water assessment tool theoretical documentation version 20092011Texas Water Resources Institute
– reference: PellicciottiFBuergiCImmerzeelWWKonzMShresthaABChallenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: Suggestions for calibration strategiesMountain Research and Development2012321395010.1659/MRD-JOURNAL-D-11-00092.1
– reference: Lutz, A. F., Immerzeel, W. W., Siderius, C., Wijngaard, R. R., Nepal, S., Shrestha, A. B., . . . Biemans, H. (2022). South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change. https://doi.org/10.1038/S41558-022-01355-Z
– reference: LuoQLiYWangKWuJApplication of the SWAT model to the Xiangjiang river watershed in subtropical central ChinaWater science and technology20136792110211610.2166/wst.2013.100
– reference: NepalSKrausePFlügelWFinkMFischerCUnderstanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological modelHydrological Processes20142831329134410.1002/hyp.9627
– reference: ShresthaABWakeCPMayewskiPADibbJEMaximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 197194Journal of Climate19991292775278610.1175/1520-0442(1999)012<2775:mttith>2.0.co;2
– reference: ShresthaMKoikeTHirabayashiYXueYWangLRasulGAhmadBIntegrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram regionJournal of Geophysical Research: Atmospheres2015120104889491910.1002/2014JD022666
– reference: BhattGKumarMDuffyCJA tightly coupled GIS and distributed hydrologic modeling frameworkEnvironmental Modelling and Software201462708410.1016/j.envsoft.2014.08.003
– reference: HockRTemperature index melt modelling in mountain areasJournal of Hydrology20032821–410411510.1016/S0022-1694(03)00257-9
– reference: VishwakarmaBDRamsankaranRAzamMFBolchTMandalASrivastavaSChallenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resourcesFrontiers in Water2022490924610.3389/frwa.2022.909246
– reference: Konz, M., Finger, D., Bürgi, C., Normand, S., Immerzeel, W. W., Merz, J., . . . Burlando, P. (2010). Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data. In Global Change: Facing Risks and Threats to Water Resources (Proc. of the Sixth World FRIEND Conference, Fez, Morocco), (October), 465–473.
– reference: FontaineTACruickshankTSArnoldJGHotchkissRHDevelopment of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)Journal of hydrology20022621–420922310.1016/S0022-1694(02)00029-X
– reference: BajracharyaSRShresthaBRThe status of glaciers in the Hindu Kush-Himalayan region2011International Centre for Integrated Mountain Development (ICIMOD)10.53055/ICIMOD.551
– reference: de Boer, F. (2016). HiHydroSoil: A high resolution soil map of hydraulic properties. Wageningen, the Netherlands, 20.
– reference: KonzMDevkotaLManual on snow and glacier runoff modeling in the Himalayas. Consultancy Report2009ICIMOD
– reference: LeeHCalvinKDasguptaDKrinnerGMukherjiAThornePTeamCore WritingLeeHRomeroJIPCC 2023: Climate change 2023: Synthesis report, summary for policymakersContribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change2023IPC
– reference: KarkiRSrivastavaPKalinLEvaluating climate change impacts in a heavily irrigated karst watershed using a coupled surface and groundwater modelJournal of Hydrology: Regional Studies202350
– reference: GabrielMKnightesCCooterEDennisRThe impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed modelEnvironmental Modeling & Assessment20141930131410.1007/s10666-014-9400-z
– reference: ChenNSHuGSDengWKhanalNZhuYHHanDOn the water hazards in the trans-boundary Kosi River basinNatural Hazards and Earth System Sciences201313379580810.5194/nhess-13-795-2013
– reference: HargreavesGHSamaniZAReference crop evapotranspiration from temperatureApplied Engineering in Agriculture198512969910.13031/2013.26773
– reference: BajracharyaMS., Shrestha, F., Bajracharya, O., & Baidya, S. Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data2014ICIMOD10.53055/ICIMOD.591
– reference: ImmerzeelWWWandersNLutzAFSheaJMBierkensMFPReconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoffHydrology and Earth System Sciences201519114673468710.5194/hess-19-4673-2015
– reference: Kokkonen, T., Koivusalo, H., Jakeman, T., & Norton, J. P. (2006). Construction of a degree-day snow model in the light of the ten iterative steps in model development.
– reference: GautamMRAcharyaKStreamflow trends in NepalHydrological Sciences Journal201257234435710.1080/02626667.2011.637042
– reference: Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., . . . Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.01.013
– reference: KhadkaMKayasthaRBKayasthaRFuture projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological modelsJournal of Glaciology20206625983184510.1017/jog.2020.51
– reference: KayasthaRBSteinerNKayasthaRMishraSKMcDonaldKComparative study of hydrology and icemelt in three Nepal river basins using the Glacio-Hydrological Degree-Day Model (GDM) and observations from the Advanced Scatterometer (ASCAT)Frontiers in Earth Science2020735410.3389/feart.2019.00354
– reference: BhattaBShresthaSShresthaPKTalchabhadelREvaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River BasinCATENA201918110.1016/j.catena.2019.104082
– reference: NepalSChenJPentonDJNeumannLEZhengHWahidSSpatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extentHydrological Processes2017311516810.1002/hyp.10962
– reference: World Health Organization. (1999). Food safety issues associated with products from aquaculture: Report of a joint FAO/NACA/WHO study group (Vol. 883). World Health Organization.
– reference: Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., . . . Walsh, M. G. (2014). SoilGrids1km—Global soil information based on automated mapping. PloS One, 9(8), e105992.
– reference: Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & Leroy, M. (2006). GLOBCOVER: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of ISPRS Commission VII Mid-Term Symposium: Remote Sensing: from Pixels to Processes, Enschede (NL) (pp. 8–11). Citeseer.
– reference: ImmerzeelWWPellicciottiFBierkensMFPRising river flows throughout the twenty-first century in two Himalayan glacierized watershedsNature geoscience2013697427451:CAS:528:DC%2BC3sXht1Whs77M10.1038/ngeo1896
– reference: WijngaardRRLutzAFNepalSKhanalSPradhanangaSShresthaABImmerzeelWWFuture changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basinsPLoS ONE2017121210.1371/journal.pone.0190224
– reference: GareeKChenXBaoAWangYMengFHydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment HunzaWater2017911710.3390/W9010017
– reference: Molden, D. J., Shrestha, A. B., Immerzeel, W. W., Maharjan, A., Rasul, G., Wester, P., . . . Nepal, S. (2022). The great glacier and snow-dependent rivers of Asia and climate change: Heading for troubled waters. Water Resources Development and Management. Springer Singapore. https://doi.org/10.1007/978-981-16-5493-0_12
– reference: Nepal, S. (2012). Evaluating upstream downstream linkages of hydrological dynamics in the Himalayan Region. Retrieved from https://uri.gbv.de/document/gvk:ppn:721385168(Dissertation)
– reference: Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430.
– reference: CogleyJGPresent and future states of Himalaya and Karakoram glaciersAnnals of Glaciology20115259697310.3189/172756411799096277
– reference: Zurick, D. N., & Zurick, D. N. (2010). Resource needs and land stress in Rapti Zone, Nepal. 0124. https://doi.org/10.1111/j.0033-0124.1988.00428.x
– reference: NormandSKonzMMerzJAn application of the HBV model to the Tamor Basin in Eastern NepalJournal of Hydrology and Meteorology20117December495810.3126/jhm.v7i1.5616
– reference: TerinkWLutzAFSimonsGWHImmerzeelWWDroogersPSPHY v2.0: Spatial processes in hydrologyGeoscientific Model Development2015872009203410.5194/gmd-8-2009-2015
– reference: WesterPMishraAMukherjiAShresthaABChangeCThe Hindu Kush Himalaya AssessmentThe Hindu Kush Himalaya Assessment201910.1007/978-3-319-92288-1
– reference: ScherlerDWulfHGorelickNGlobal assessment of supraglacial debris-cover extentsGeophysical Research Letters201845211179810.1029/2018GL080158
– reference: LutzAFter MaatHWBiemansHShresthaABWesterPImmerzeelWWSelecting representative climate models for climate change impact studies: An advanced envelope-based selection approachInternational Journal of Climatology201636123988400510.1002/joc.4608
– volume: 67
  start-page: 2110
  issue: 9
  year: 2013
  ident: 9975_CR22
  publication-title: Water science and technology
  doi: 10.2166/wst.2013.100
– volume-title: The status of glaciers in the Hindu Kush-Himalayan region
  year: 2011
  ident: 9975_CR1
  doi: 10.53055/ICIMOD.551
– volume: 19
  start-page: 4673
  issue: 11
  year: 2015
  ident: 9975_CR7
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-19-4673-2015
– ident: 9975_CR37
  doi: 10.1111/j.0033-0124.1988.00428.x
– ident: 9975_CR17
  doi: 10.1016/j.jhydrol.2006.09.014
– volume: 1
  start-page: 96
  issue: 2
  year: 1985
  ident: 9975_CR44
  publication-title: Applied Engineering in Agriculture
  doi: 10.13031/2013.26773
– volume: 28
  start-page: 5337
  issue: 21
  year: 2013
  ident: 9975_CR20
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.10005
– ident: 9975_CR31
– volume: 19
  start-page: 301
  year: 2014
  ident: 9975_CR12
  publication-title: Environmental Modeling & Assessment
  doi: 10.1007/s10666-014-9400-z
– ident: 9975_CR35
– volume-title: Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data
  year: 2014
  ident: 9975_CR10
  doi: 10.53055/ICIMOD.591
– volume: 28
  start-page: 1329
  issue: 3
  year: 2014
  ident: 9975_CR15
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.9627
– volume: 120
  start-page: 4889
  issue: 10
  year: 2015
  ident: 9975_CR23
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1002/2014JD022666
– volume: 4
  start-page: 909246
  year: 2022
  ident: 9975_CR11
  publication-title: Frontiers in Water
  doi: 10.3389/frwa.2022.909246
– ident: 9975_CR2
  doi: 10.1007/978-981-16-5493-0_12
– ident: 9975_CR27
  doi: 10.1007/s12665-019-8443-5
– volume: 9
  start-page: 17
  issue: 1
  year: 2017
  ident: 9975_CR6
  publication-title: Water
  doi: 10.3390/W9010017
– volume: 32
  start-page: 39
  issue: 1
  year: 2012
  ident: 9975_CR19
  publication-title: Mountain Research and Development
  doi: 10.1659/MRD-JOURNAL-D-11-00092.1
– volume: 45
  start-page: 11
  issue: 21
  year: 2018
  ident: 9975_CR36
  publication-title: Geophysical Research Letters
  doi: 10.1029/2018GL080158
– volume: 13
  start-page: 795
  issue: 3
  year: 2013
  ident: 9975_CR30
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-13-795-2013
– volume: 282
  start-page: 104
  issue: 1–4
  year: 2003
  ident: 9975_CR47
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(03)00257-9
– volume-title: Soil and water assessment tool theoretical documentation version 2009
  year: 2011
  ident: 9975_CR48
– volume: 52
  start-page: 69
  issue: 59
  year: 2011
  ident: 9975_CR18
  publication-title: Annals of Glaciology
  doi: 10.3189/172756411799096277
– ident: 9975_CR13
– volume: 57
  start-page: 344
  issue: 2
  year: 2012
  ident: 9975_CR38
  publication-title: Hydrological Sciences Journal
  doi: 10.1080/02626667.2011.637042
– volume: 44
  start-page: 233
  issue: 3
  year: 2006
  ident: 9975_CR34
  publication-title: Soil Research
  doi: 10.1071/SR05136
– volume: 262
  start-page: 209
  issue: 1–4
  year: 2002
  ident: 9975_CR21
  publication-title: Journal of hydrology
  doi: 10.1016/S0022-1694(02)00029-X
– volume: 31
  start-page: 51
  issue: 1
  year: 2017
  ident: 9975_CR5
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.10962
– ident: 9975_CR46
– volume: 36
  start-page: 3988
  issue: 12
  year: 2016
  ident: 9975_CR43
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.4608
– volume: 300
  start-page: D05109
  issue: 9
  year: 1998
  ident: 9975_CR45
  publication-title: Fao, Rome
– volume: 66
  start-page: 831
  issue: 259
  year: 2020
  ident: 9975_CR4
  publication-title: Journal of Glaciology
  doi: 10.1017/jog.2020.51
– volume-title: Manual on snow and glacier runoff modeling in the Himalayas. Consultancy Report
  year: 2009
  ident: 9975_CR41
– volume: 181
  year: 2019
  ident: 9975_CR26
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104082
– volume: 62
  start-page: 70
  year: 2014
  ident: 9975_CR9
  publication-title: Environmental Modelling and Software
  doi: 10.1016/j.envsoft.2014.08.003
– year: 2019
  ident: 9975_CR39
  publication-title: The Hindu Kush Himalaya Assessment
  doi: 10.1007/978-3-319-92288-1
– volume: 12
  start-page: 2775
  issue: 9
  year: 1999
  ident: 9975_CR40
  publication-title: Journal of Climate
  doi: 10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2
– ident: 9975_CR33
  doi: 10.1371/journal.pone.0105992
– volume: 50
  year: 2023
  ident: 9975_CR8
  publication-title: Journal of Hydrology: Regional Studies
– volume: 7
  start-page: 49
  issue: December
  year: 2011
  ident: 9975_CR25
  publication-title: Journal of Hydrology and Meteorology
  doi: 10.3126/jhm.v7i1.5616
– volume: 8
  start-page: 2009
  issue: 7
  year: 2015
  ident: 9975_CR28
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-8-2009-2015
– volume: 6
  start-page: 742
  issue: 9
  year: 2013
  ident: 9975_CR24
  publication-title: Nature geoscience
  doi: 10.1038/ngeo1896
– ident: 9975_CR42
  doi: 10.1038/S41558-022-01355-Z
– volume: 7
  start-page: 354
  year: 2020
  ident: 9975_CR16
  publication-title: Frontiers in Earth Science
  doi: 10.3389/feart.2019.00354
– volume: 12
  issue: 12
  year: 2017
  ident: 9975_CR49
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0190224
– ident: 9975_CR32
– ident: 9975_CR29
– ident: 9975_CR3
  doi: 10.1016/j.advwatres.2015.01.013
– volume: 28
  start-page: 5674
  issue: 23
  year: 2014
  ident: 9975_CR14
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.10055
– volume-title: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2023
  ident: 9975_CR50
SSID ssj0006605
Score 2.3781786
Snippet In regions characterized by snow and glaciers, the selection of appropriate methodologies and the use of suitable hydrological models are imperative due to...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1037
SubjectTerms Applications of Mathematics
Calibration
Cell size
climate
Climate change
Climate models
Climatic changes
Climatic conditions
Discharge
Earth and Environmental Science
Environment
Flow duration
Flow duration curves
Glacier melting
Glaciers
Glaciohydrology
Global climate
Goodness of fit
Himalayan region
Hydroclimate
Hydrologic models
Hydrology
ice
Impact analysis
Math. Appl. in Environmental Science
Mathematical Modeling and Industrial Mathematics
Meteorological data
Monsoons
Nepal
Operations Research/Decision Theory
Parameter sensitivity
Parameter uncertainty
Precipitation
prediction
River basins
Rivers
runoff
Sensitivity analysis
Simulation methods
simulation models
Snow
Surface-ice melting
temperature
Temperature dependence
uncertainty
watersheds
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA9aPXix9aM42koEwYMGTTKTSU6lrS17WoooFC8hySSwMM7Wna2w4h_ve7OZXarYi9dJJhN4n5mX3_sR8toHbYQyjoVkKlbqoJgRPjBVmdCY1IDKuIFsop5O9eWlucg_3Pp8rXL0iYOjbuYB_5G_l1yAdiJQ6OjqO0PWKKyuZgqNu-QedklA6oaL6uvGE6s1LpKXcESCQ77KoJkMnYPEnUGEYogdrZi5EZj-dM9_1UmH8HO--78b3yMPc-JJj9ea8ojcid1jsn-2xbnBYDb0_gn5deo66igSFoOCtiv6ERvsIjdWbOhk1SxGn0mRTK2l6ybI4Dlh6tDn5Ge8OS0DEmJPZx2FpJNOIQ62dDL75lq3cvQT3g-hJ66fdUdPyZfzs8-nE5aJGliQhi-ZaYSrlXdwlOM6SV01UcQkonQxJm9SkkoLx02A7Ch6L2SVmqA8F-AMPgR4vE92unkXnxHq66ii87HUyZfeSW9q7ysVuZdRg8MpCB-lZEPuYo5kGq3d9l9GyVqQrB0ka01B3m7euVr38Lh19hsUvkUDh5WDyzgF2B-2yrLHmssaIcGqIAejxG22_N5uxV2QV5thsFksxLguzq9xToX1WCXKgrwb9Wq7xL_39vz2L74gDwRq9HDb5oDsLBfX8ZDcDz-Ws37xcrCN3xUqFiA
  priority: 102
  providerName: ProQuest
Title Can a Spatially Distributed Hydrological Model Effectively Analyze Hydrological Processes in the Nepal Himalaya River Basin?
URI https://link.springer.com/article/10.1007/s10666-024-09975-9
https://www.proquest.com/docview/3120701468
https://www.proquest.com/docview/3153858624
Volume 29
WOSCitedRecordID wos001342231600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006605
  issn: 1420-2026
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_Wdg972Xepty5oMNjDJqhlW7KeRpulBMZCSPfR7cVIsgwBzx1xOsjYH787R07WfcH2cmDrLIR8X-L0uwN4Yl2uhdSGu0pnPM2d5FpYx2WmXamrEkXGdM0m1GSSn5_raQCFtf1t9z4l2VnqH8BuGGpz9Cmc0J4Z1zuwh-5OkSzPzt5t7K9coyHjFA9GeLSXASrz-zmuuKOfjfIv2dHO6Zze-r_l3oabIchkx2upuAPXfHMX9kdbTBsOBqVu78G3oWmYYdScGIWxXrGXVEyX-mD5ko1X5aK3j4wap9VsXfAYrSSydjVNvvqrbAF84Fs2bxgGmGyCPq9m4_knU5uVYTO6C8JOTDtvXtyHt6ejN8MxD00ZuEt0vOS6FEZJa_DYFudVkmelF74SPjHeV1ZXVSJzYWLtMBLy1ookq0onbSxQ8Y8cvt6H3eai8QfArPLSG-vTvLKpNYnVytpM-tgmPkfjEkHc_5vChYrl1DijLra1lmmTC9zkotvkQkfwbPPN53W9jr9yP6VfXpAy48zOBEwCro_KYhXHeZwogv_KCA57qSiClrdFEgu0mARei-DxZhj1k5IupvEXl8STUe5VijSC572kbKf489oe_Bv7Q7ghSNi6mzaHsLtcXPpHcN19Wc7bxQB21PsPA9g7GU2mM3x6pTjS10dDomJKVJ0hnWYfB502fQd93ROk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvvCsCBYwE4gAWxNk49gFVpQ9t1bJCUKTejO040kpptmy2oEX8Jn4jM3nsqiB664Fr7DiR882MJzPfDMAz55UWUlvuC53ygfKSa-E8l6n2uS5yhIxtmk1ko5E6PtYfVuBXz4WhtMpeJzaKOp94-kf-OokFopOIQpunXzl1jaLoat9Co4XFQZh_R5etfru_g9_3uRB7u0fbQ951FeA-0fGM61zYTDqLfkesikSleRChECGxIRROF0UilbCx9mjKg3MiSYvcSxcLRO4bj5dx3StwFY8RQjWpgp8Wml-2PMx4gC6ZQOemI-l0VD10FDhaRE5c1ZTrc4bwT3PwV1y2MXd7N_-3jboFN7qDNdtqJeE2rITqDqzvLnl8ONgpsvou_Ny2FbOMGjKjAJZztkMFhKn3V8jZcJ5Pe5vAqFlcydoiz2gZcGpTx-VHOD-tI1yEmo0rhodqNkI7X7Lh-MSWdm7ZR8p_Ye9sPa4278HnS9mJdVitJlW4D8xlQQbrwkAVbuBs4nTmXCpD7JKgUKFGEPeoML6r0k7NQkqzrC9NSDKIJNMgyegIXi7uOW1rlFw4-wWBzZACw5W97XgY-H5UCsxsqTjJiPIsI9joEWY6zVabJbwieLoYRp1EgSZbhckZzUkp3izFIIJXPY6XS_z73R5c_MQncH149P7QHO6PDh7CmiBpajKLNmB1Nj0Lj-Ca_zYb19PHjVwy-HLZ-P4NmFp1Mg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0Jc-J4IDDASiANYW5zEiQ9o2tZWnYaqagJpt2A7jlQppKPpQEX8Zfx1vJc6rQZitx24xi9O5PzeV-zfewCvjM2UkEpzW6qEx5mVXAljuUyULVRZIGR022wiHY2yszM13oBfHReGjlV2NrE11MXU0j_y3SgUiE4iCu2W_ljEuDfYP__KqYMU7bR27TSWEDlxi--YvjXvj3v4rV8LMeh_PBpy32GA20iFc64KoVNpNOYgYVZGWVI44UrhIu1caVRZRjITOlQW3bozRkRJWVhpQoEo3rN4Gee9AVspBhmoY1uH_dH4dOUH5JKVGcaYoAlMdTxlxxP3MG3g6B85MVcTri65xT-dw1-7tK3zG9z9n5ftHtzxITc7WOrIfdhw9QPY7q8ZfjjoTVzzEH4e6ZppRq2aUTWrBetRaWHqCuYKNlwUs85bMGojV7Fl-Wf0GSjaVnj54S6LeSqGa9ikZhhusxFGABUbTr7oSi80O6WTMexQN5N6_xF8upaV2IbNelq7x8BM6qTTxsVZaWKjI6NSYxLpQhO5DE1tAGGHkNz6-u3URqTK15WnCVU5oipvUZWrAN6u7jlfVi-5UvoNAS8n04YzW-0ZGvh-VCQsP8jCKCUytAxgp0Nb7m1ek6-hFsDL1TBaK9qC0rWbXpBMQjvRUsQBvOswvZ7i3-_25OonvoBbCOv8w_Ho5CncFqRY7ZGjHdiczy7cM7hpv80nzey5V1IGn68b4L8BRSl_OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+a+Spatially+Distributed+Hydrological+Model+Effectively+Analyze+Hydrological+Processes+in+the+Nepal+Himalaya+River+Basin%3F&rft.jtitle=Environmental+modeling+%26+assessment&rft.au=Pradhan%2C+Ananta+Man+Singh&rft.au=Silwal%2C+Gunjan&rft.au=Shrestha%2C+Suchita&rft.au=Huynh%2C+Thanh-Canh&rft.date=2024-12-01&rft.issn=1420-2026&rft.volume=29&rft.issue=6+p.1037-1058&rft.spage=1037&rft.epage=1058&rft_id=info:doi/10.1007%2Fs10666-024-09975-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-2026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-2026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-2026&client=summon