Spectral Minimal Partitions for a Family of Tori

We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Experimental mathematics Ročník 26; číslo 4; s. 381 - 395
Hlavní autoři: Bonnaillie-Noël, Virginie, Léna, Corentin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.10.2017
Témata:
ISSN:1058-6458, 1944-950X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here an improvement, when k is odd, of the results on transition values of b established by B. Helffer and T. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establish an improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of the torus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give better estimates near those transition values.
ISSN:1058-6458
1944-950X
DOI:10.1080/10586458.2016.1183154