Spectral Minimal Partitions for a Family of Tori

We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Experimental mathematics Ročník 26; číslo 4; s. 381 - 395
Hlavní autoři: Bonnaillie-Noël, Virginie, Léna, Corentin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.10.2017
Témata:
ISSN:1058-6458, 1944-950X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here an improvement, when k is odd, of the results on transition values of b established by B. Helffer and T. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establish an improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of the torus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give better estimates near those transition values.
AbstractList We study partitions of the rectangular two-dimensional flat torus of length 1 and width b into k domains, with b a parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, definedas the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are inparticular interested in the way these minimal partitions change when b is varied. We present herean improvement, when k is odd, of the results on transition values of b established by B. Helffer andT. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establishan improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of thetorus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give betterestimates near those transition values.
We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here an improvement, when k is odd, of the results on transition values of b established by B. Helffer and T. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establish an improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of the torus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give better estimates near those transition values.
Author Bonnaillie-Noël, Virginie
Léna, Corentin
Author_xml – sequence: 1
  givenname: Virginie
  surname: Bonnaillie-Noël
  fullname: Bonnaillie-Noël, Virginie
  organization: Département de Mathématiques et leurs Applications, PSL Research University, CNRS, ENS Paris
– sequence: 2
  givenname: Corentin
  surname: Léna
  fullname: Léna, Corentin
  email: clena@unito.it
  organization: Dipartimento di Matematica Giuseppe Peano, Università Degli Studi di Torino
BackLink https://hal.science/hal-01131601$$DView record in HAL
BookMark eNqFkMFKAzEQhoNUsK0-grBXD1szm2w2wYulWCtUFKzgLUyzG4xsNyW7KH37Zmn14EFPMwz_N8x8IzJofFMRcgl0AlTSa6C5FDyXk4yCmABIBjk_IUNQnKcqp2-D2MdM2ofOyKhtPygFnis5JPRlW5kuYJ08usZtYn3G0LnO-aZNrA8JJnPcuHqXeJusfHDn5NRi3VYXxzomr_O71WyRLp_uH2bTZWqYgi5VhQRp15KVwsCaZjKrQBRrXmaAIAxXWMrMFnlhrEKpUEgubMmYQDS2QGRjcnXY-4613oZ4Wthpj04vpkvdzygAA0Hhk8dsfsia4Ns2VPYHAKp7Rfpbke4V6aOiyN384ozrsP89GnH1v_TtgXZNFLXBLx_qUne4q32wARvjWs3-XrEHuMF_cg
CitedBy_id crossref_primary_10_1016_j_cam_2016_04_008
crossref_primary_10_1007_s11005_021_01438_6
crossref_primary_10_1112_jlms_70065
Cites_doi 10.1006/jdeq.1999.3726
10.3934/dcdsb.2014.19.27
10.1016/j.aim.2004.08.006
10.1007/s00526-004-0266-9
10.1016/j.anihpc.2007.07.004
10.1007/978-1-4419-1345-6_6
10.1007/s10915-006-9114-8
10.4171/JST/68
10.1088/1751-8113/42/18/185203
10.1016/j.crma.2015.03.014
10.1137/090747087
10.1016/j.cam.2016.04.008
10.4171/IFB/346
ContentType Journal Article
Copyright 2017 Taylor & Francis 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Taylor & Francis 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1080/10586458.2016.1183154
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1944-950X
EndPage 395
ExternalDocumentID oai:HAL:hal-01131601v4
10_1080_10586458_2016_1183154
1183154
Genre Article
GroupedDBID -~9
.7F
.QJ
0BK
0R~
2WC
30N
4.4
5GY
70C
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIPV
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFOW
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
E3Z
EBS
EJD
E~A
E~B
GTTXZ
H13
HDK
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
OK1
P2P
RBF
RBV
RIG
RNANH
ROSJB
RPE
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UKR
UT5
UU3
WH7
WS9
ZCA
ZGOLN
~S~
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c391t-97818fb83d6c1b0282e167b4d21a16c49ad82f757cf9a89a6846fd336aacf7aa3
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407599500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1058-6458
IngestDate Tue Oct 14 20:42:50 EDT 2025
Tue Nov 18 22:12:03 EST 2025
Sat Nov 29 02:37:01 EST 2025
Mon Oct 20 23:43:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Projected gradient algorithm
Minimal partitions
Dirichlet-Laplacian eigenvalues
Shape optimization
Finite difference method
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-97818fb83d6c1b0282e167b4d21a16c49ad82f757cf9a89a6846fd336aacf7aa3
ORCID 0000-0002-2474-8721
0000-0002-6763-6068
OpenAccessLink https://hal.science/hal-01131601
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_01131601v4
crossref_primary_10_1080_10586458_2016_1183154
informaworld_taylorfrancis_310_1080_10586458_2016_1183154
crossref_citationtrail_10_1080_10586458_2016_1183154
PublicationCentury 2000
PublicationDate 2017-10-02
PublicationDateYYYYMMDD 2017-10-02
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-02
  day: 02
PublicationDecade 2010
PublicationTitle Experimental mathematics
PublicationYear 2017
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0001
Bucur [Bucur et al. 98] D. (cit0007) 1998; 8
cit0010
Coxeter [Coxeter 89] H. S. M. (cit0012) 1989
cit0008
cit0009
cit0017
cit0004
cit0015
cit0005
Courant [Courant and Hilbert 53] R. (cit0011) 1953
cit0016
cit0002
cit0013
cit0003
cit0014
References_xml – volume: 8
  start-page: 571
  issue: 2
  year: 1998
  ident: cit0007
  publication-title: Adv. Math. Sci. Appl.
– ident: cit0005
  doi: 10.1006/jdeq.1999.3726
– ident: cit0003
  doi: 10.3934/dcdsb.2014.19.27
– ident: cit0009
  doi: 10.1016/j.aim.2004.08.006
– ident: cit0010
  doi: 10.1007/s00526-004-0266-9
– ident: cit0015
  doi: 10.1016/j.anihpc.2007.07.004
– ident: cit0016
  doi: 10.1007/978-1-4419-1345-6_6
– ident: cit0008
  doi: 10.1007/s10915-006-9114-8
– ident: cit0014
  doi: 10.4171/JST/68
– year: 1953
  ident: cit0011
  publication-title: Methods of Mathematical Physics
– ident: cit0002
  doi: 10.1088/1751-8113/42/18/185203
– ident: cit0017
  doi: 10.1016/j.crma.2015.03.014
– ident: cit0004
  doi: 10.1137/090747087
– year: 1989
  ident: cit0012
  publication-title: Introduction to Geometry
– ident: cit0001
  doi: 10.1016/j.cam.2016.04.008
– ident: cit0013
  doi: 10.4171/IFB/346
SSID ssj0014598
Score 2.147539
Snippet We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize...
We study partitions of the rectangular two-dimensional flat torus of length 1 and width b into k domains, with b a parameter in (0, 1] and k an integer. We...
SourceID hal
crossref
informaworld
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 381
SubjectTerms Dirichlet-Laplacian eigenvalues
finite difference method
Mathematics
minimal partitions
Numerical Analysis
Primary 49Q10
projected gradient algorithm
Secondary 35J05
shape optimization
Spectral Theory
Title Spectral Minimal Partitions for a Family of Tori
URI https://www.tandfonline.com/doi/abs/10.1080/10586458.2016.1183154
https://hal.science/hal-01131601
Volume 26
WOSCitedRecordID wos000407599500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1944-950X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014598
  issn: 1058-6458
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagYoCBG1EuWYg1KI6P2GOFqDq0VYciukWODxEJUtSE_n7sXCoDMMBkKfJLrOd3Os_fA-BOcJ7aSNhA0zh0CYoMA04NCaih2qhURcpWXUvG8XTKFwsxa6oJi6as0ufQtgaKqGy1V26ZFm1FnBspZ4RWhVnM6TzHLg5wVti5fq-a8-Fz9x-BUFFfhqM88CTtHZ7v3vLFO22_VLWRmwimG75nePAPqz4E-03gCQe1pByBLZMfg71Jh9panIDQN6P3Jx9wkuXZmxtnXrAqyYRudVDCuk8GXFo4X66yU_A0fJw_jIKmo0KgsEBl4AGuuE051kyh1KdbBrE4JTpCEjFFhNQ8sjGNlRWSC8lcdGI1xkxKZWMp8Rno5cvcnAPoJlKuqBJIEaJcmGkY0VoaZlkYRzLsA9JyMlEN3LjvevGaoAaVtGVI4hmSNAzpg_uO7L3G2_iN4NZtUzfXo2WPBuPEP3OmCyOXcK7dJLG5i0lZnYbYunVJgn_8wMUfaC_BbuTDAF9wEF2BXrn6MNdgR63LrFjdVKL6CZ004Pg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojxrBDXorZ5NDlOiGmIbuIwxG5RmiZiEnRoG_v9xH1pHIADnCJVdhs5TmK79meErgXnqY2E9TMaB85BUYHPqSE-NTQzOtWRtkXXkiQeDPhoJJZrYSCtEnxoWwJFFGc1bG4IRtcpcW6knBFaZGYxt-k5dobAKlqjAlPQ8mH3ufmTQKgoy-Eo94GnruL57jVf7qfVlyI7chnDdOn26e78x7x30XZle3qdUln20IrJ99FWvwFunR2gAPrRQ_DD64_z8ZsbH0G3CuX03PQ85ZWtMryJ9YaT6fgQPXXvhrc9v2qq4GsswrkPGFfcphxnTIcpeFwmZHFKsihUIdNEqIxHNqaxtkJxoZgzUGyGMVNK21gpfIRa-SQ3x8hzhJRrqkWoCdHO0jSMZJkyzLIgjlTQRqQWpdQV4jg0vniVYQVMWgtEgkBkJZA2umnY3kvIjd8Yrtw6NbQAmN3rJBKeudMLh87nXDgisbyMcl4ERGzZvUTiHz9w8gfeS7TRG_YTmdwPHk7RZgRWAeQfRGeoNZ9-mHO0rhfz8Wx6UejtJ_065SI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVoQQgO7IiyRohrUBbbsY8VEBXRVj0U0ZvleBGRIK3a0O_HzqZyAA5wshTNJNZ4bM84z28AuKGEJDqg2pUo8kyCwj2XIAVdpJBUIhGB0EXVkn40HJLJhI4qNOGiglXaHFqXRBHFWm0n90zqGhFnWkQwRAUwC5s5T0ITB7TAugmdoUV1jeOX5kcCRLS8DYeIa3XqSzzfvebL9tR6LcCRqxSmK5tPvPsP3d4DO1Xk6XRLV9kHayo7ANuDhrZ1cQg8W43eHn04gzRL3007sp5VuKZjeudwpyyU4Uy1M57O0yPwHD-M73puVVLBFSH1c9cyXBGdkFBi4Sc231I-jhIoA5_7WEDKJQl0hCKhKSeUYxOeaBmGmHOhI87DY9DOppk6AY4RREQgQX0BoTBxpsJQSq6wxl4UcK8DYG1JJiq-cVv24o35FS1pbRBmDcIqg3TAbaM2Kwk3flO4NsPUyFq67F63z-wzs3aFvsk4l0aIro4iy4vjEF3WLmHhjx84_YPuFdgc3ces_zh8OgNbgQ0JLPggOAftfP6hLsCGWObpYn5ZeO0nTrDj1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Minimal+Partitions+for+a+Family+of+Tori&rft.jtitle=Experimental+mathematics&rft.au=Bonnaillie-No%C3%ABl%2C+Virginie&rft.au=L%C3%A9na%2C+Corentin&rft.date=2017-10-02&rft.issn=1058-6458&rft.eissn=1944-950X&rft.volume=26&rft.issue=4&rft.spage=381&rft.epage=395&rft_id=info:doi/10.1080%2F10586458.2016.1183154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10586458_2016_1183154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-6458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-6458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-6458&client=summon