Spectral Minimal Partitions for a Family of Tori
We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interes...
Uložené v:
| Vydané v: | Experimental mathematics Ročník 26; číslo 4; s. 381 - 395 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
02.10.2017
|
| Predmet: | |
| ISSN: | 1058-6458, 1944-950X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study partitions of the two-dimensional flat torus
into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here an improvement, when k is odd, of the results on transition values of b established by B. Helffer and T. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establish an improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of the torus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give better estimates near those transition values. |
|---|---|
| AbstractList | We study partitions of the rectangular two-dimensional flat torus of length 1 and width b into k domains, with b a parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, definedas the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are inparticular interested in the way these minimal partitions change when b is varied. We present herean improvement, when k is odd, of the results on transition values of b established by B. Helffer andT. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establishan improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of thetorus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give betterestimates near those transition values. We study partitions of the two-dimensional flat torus into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here an improvement, when k is odd, of the results on transition values of b established by B. Helffer and T. Hoffmann-Ostenhof (2014) and state a conjecture on those transition values. We establish an improved upper bound of the minimal energy by explicitly constructing hexagonal tilings of the torus. These tilings are close to the partitions obtained from a systematic numerical study based on an optimization algorithm adapted from B. Bourdin, D. Bucur, and É. Oudet (2009). These numerical results also support our conjecture concerning the transition values and give better estimates near those transition values. |
| Author | Bonnaillie-Noël, Virginie Léna, Corentin |
| Author_xml | – sequence: 1 givenname: Virginie surname: Bonnaillie-Noël fullname: Bonnaillie-Noël, Virginie organization: Département de Mathématiques et leurs Applications, PSL Research University, CNRS, ENS Paris – sequence: 2 givenname: Corentin surname: Léna fullname: Léna, Corentin email: clena@unito.it organization: Dipartimento di Matematica Giuseppe Peano, Università Degli Studi di Torino |
| BackLink | https://hal.science/hal-01131601$$DView record in HAL |
| BookMark | eNqFkMFKAzEQhoNUsK0-grBXD1szm2w2wYulWCtUFKzgLUyzG4xsNyW7KH37Zmn14EFPMwz_N8x8IzJofFMRcgl0AlTSa6C5FDyXk4yCmABIBjk_IUNQnKcqp2-D2MdM2ofOyKhtPygFnis5JPRlW5kuYJ08usZtYn3G0LnO-aZNrA8JJnPcuHqXeJusfHDn5NRi3VYXxzomr_O71WyRLp_uH2bTZWqYgi5VhQRp15KVwsCaZjKrQBRrXmaAIAxXWMrMFnlhrEKpUEgubMmYQDS2QGRjcnXY-4613oZ4Wthpj04vpkvdzygAA0Hhk8dsfsia4Ns2VPYHAKp7Rfpbke4V6aOiyN384ozrsP89GnH1v_TtgXZNFLXBLx_qUne4q32wARvjWs3-XrEHuMF_cg |
| CitedBy_id | crossref_primary_10_1016_j_cam_2016_04_008 crossref_primary_10_1007_s11005_021_01438_6 crossref_primary_10_1112_jlms_70065 |
| Cites_doi | 10.1006/jdeq.1999.3726 10.3934/dcdsb.2014.19.27 10.1016/j.aim.2004.08.006 10.1007/s00526-004-0266-9 10.1016/j.anihpc.2007.07.004 10.1007/978-1-4419-1345-6_6 10.1007/s10915-006-9114-8 10.4171/JST/68 10.1088/1751-8113/42/18/185203 10.1016/j.crma.2015.03.014 10.1137/090747087 10.1016/j.cam.2016.04.008 10.4171/IFB/346 |
| ContentType | Journal Article |
| Copyright | 2017 Taylor & Francis 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Taylor & Francis 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1080/10586458.2016.1183154 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1944-950X |
| EndPage | 395 |
| ExternalDocumentID | oai:HAL:hal-01131601v4 10_1080_10586458_2016_1183154 1183154 |
| Genre | Article |
| GroupedDBID | -~9 .7F .QJ 0BK 0R~ 2WC 30N 4.4 5GY 70C AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACIPV ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFFOW AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 DGEBU DKSSO E3Z EBS EJD E~A E~B GTTXZ H13 HDK HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- OK1 P2P RBF RBV RIG RNANH ROSJB RPE RTWRZ S-T SJN SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UKR UT5 UU3 WH7 WS9 ZCA ZGOLN ~S~ AAYXX CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c391t-97818fb83d6c1b0282e167b4d21a16c49ad82f757cf9a89a6846fd336aacf7aa3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407599500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1058-6458 |
| IngestDate | Tue Oct 14 20:42:50 EDT 2025 Tue Nov 18 22:12:03 EST 2025 Sat Nov 29 02:37:01 EST 2025 Mon Oct 20 23:43:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Projected gradient algorithm Minimal partitions Dirichlet-Laplacian eigenvalues Shape optimization Finite difference method |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-97818fb83d6c1b0282e167b4d21a16c49ad82f757cf9a89a6846fd336aacf7aa3 |
| ORCID | 0000-0002-2474-8721 0000-0002-6763-6068 |
| OpenAccessLink | https://hal.science/hal-01131601 |
| PageCount | 15 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01131601v4 crossref_primary_10_1080_10586458_2016_1183154 informaworld_taylorfrancis_310_1080_10586458_2016_1183154 crossref_citationtrail_10_1080_10586458_2016_1183154 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-02 |
| PublicationDateYYYYMMDD | 2017-10-02 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | Experimental mathematics |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0001 Bucur [Bucur et al. 98] D. (cit0007) 1998; 8 cit0010 Coxeter [Coxeter 89] H. S. M. (cit0012) 1989 cit0008 cit0009 cit0017 cit0004 cit0015 cit0005 Courant [Courant and Hilbert 53] R. (cit0011) 1953 cit0016 cit0002 cit0013 cit0003 cit0014 |
| References_xml | – volume: 8 start-page: 571 issue: 2 year: 1998 ident: cit0007 publication-title: Adv. Math. Sci. Appl. – ident: cit0005 doi: 10.1006/jdeq.1999.3726 – ident: cit0003 doi: 10.3934/dcdsb.2014.19.27 – ident: cit0009 doi: 10.1016/j.aim.2004.08.006 – ident: cit0010 doi: 10.1007/s00526-004-0266-9 – ident: cit0015 doi: 10.1016/j.anihpc.2007.07.004 – ident: cit0016 doi: 10.1007/978-1-4419-1345-6_6 – ident: cit0008 doi: 10.1007/s10915-006-9114-8 – ident: cit0014 doi: 10.4171/JST/68 – year: 1953 ident: cit0011 publication-title: Methods of Mathematical Physics – ident: cit0002 doi: 10.1088/1751-8113/42/18/185203 – ident: cit0017 doi: 10.1016/j.crma.2015.03.014 – ident: cit0004 doi: 10.1137/090747087 – year: 1989 ident: cit0012 publication-title: Introduction to Geometry – ident: cit0001 doi: 10.1016/j.cam.2016.04.008 – ident: cit0013 doi: 10.4171/IFB/346 |
| SSID | ssj0014598 |
| Score | 2.1476433 |
| Snippet | We study partitions of the two-dimensional flat torus
into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize... We study partitions of the rectangular two-dimensional flat torus of length 1 and width b into k domains, with b a parameter in (0, 1] and k an integer. We... |
| SourceID | hal crossref informaworld |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 381 |
| SubjectTerms | Dirichlet-Laplacian eigenvalues finite difference method Mathematics minimal partitions Numerical Analysis Primary 49Q10 projected gradient algorithm Secondary 35J05 shape optimization Spectral Theory |
| Title | Spectral Minimal Partitions for a Family of Tori |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10586458.2016.1183154 https://hal.science/hal-01131601 |
| Volume | 26 |
| WOSCitedRecordID | wos000407599500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1944-950X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014598 issn: 1058-6458 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYoCBN6K8ZCHWoPoRP8YKUTHQqkMR3SLHiUUkSFET-vs556UyAANMViJfYp3vznf2-TuEbgS3xNrYBqlgNAD_H1QqhseB0jblSQjRmK2KTcjJRM3netpkExZNWqWPoV0NFFHZaq_cJi7ajDhoQyV4WCVmCdB5xcAPACsMS79XzdnouTtH4KGuL8OFKvAk7R2e777yZXXafKlyI9cRTNfWntHeP4x6H-02jice1pJygDbS_BDtjDvU1uIIDXwxer_zgcdZnr1BO_WCVUkmhtFhg-s6GXjh8GyxzI7R0-h-dvcQNBUVAss0KQMPcKVcrFgiLIl9uJUSIWOeUGKIsFybRFEnQ2mdNkobAd6JSxgTxlgnjWEnqJcv8vQU4RDInUgYVYJxKRKjKdWJAQPIZUxj2Ue85WRkG7hxX_XiNSINKmnLkMgzJGoY0ke3Hdl7jbfxG8E1TFPX16NlPwwfI_8OTBcjEHCuoJNen8WorHZDXF26JGI__uDsD7TnaJt6N8AnHNAL1CuXH-kl2rKrMiuWV5WofgI-vOAk |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojxrBDXojWvJscJMQ2xTRyK2K1K00ZUgg5tZb-fuC-VA3CAU9QqbiPHSWzH_ozQNafa0zrSbsIJdq3-b5dUZB97QuqExsxaY7ooNuFPJmI6le1cGAirBBvalEARxV4Nixuc0XVInG2Z4JQVkVncLnpBrCKwitaYJAykPBg8NzcJlMkyHY4JF2jqLJ7vPvPlfFp9KaIj2ximrdNnsPMf495F25Xu6fRLYdlDK0m2j7bGDXDr4gD1oB49OD-ccZqlb7Z9BNkqhNOxw3OUU5bKcGbGCWbz9BA9De6C26FbFVVwNZFe7gLGlTCRIDHXXgQWV-JxP6Ix9pTHNZUqFtj4zNdGKiEVtwqKiQnhSmnjK0WOUCebZckxcpglNzwmWHBCfR4ribGMld0DqR_hyO8iWrMy1BXiOBS-eA29Cpi0ZkgIDAkrhnTRTUP2XkJu_EZwZeep6QuA2cP-KIR3dvcinrU5l7aTbE9jmBcOEVNWLwnJjz84-QPtJdoYBuNROLqfPJyiTQxaAcQf4DPUyecfyTla18s8XcwvCrn9BJQw5E4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8MgFCduGqMHv43zszFea1agFI6Lusy4LTvMuFtDocQm2i1b3d_vo1-ZB_WgJ9KG15LHA96DH7-H0A2jylMqUm7MCHbB_4chFcFjmwsVU-1DNKbyZBPBcMgnEzEq0YSLElZpY2hTEEXkc7Ud3DNtKkQclD5n1M-BWQzGPCfgBzTQOrjO1KK6xt2X-iCB-qK4Dedz18pUl3i--8yX5anxmoMjVylMVxaf7u4_NHsP7ZSep9MpTGUfrcXpAdoe1LSti0PUttno7daHM0jS5B3KkbWs3DQdaJ0jnSJRhjM1zng6T47Qc_dhfNdzy5QKriLCy1zLcMVNxIlmyotsvBV7LIioxp70mKJCao5N4AfKCMmFZOCeGE0Ik1KZQEpyjJrpNI1PkOODuGGaYM4IDZiWAmOhJcyANIhwFLQQrTQZqpJv3Ka9eAu9kpa0UkhoFRKWCmmh21psVhBu_CZwDd1U17V02b1OP7TvYO4iHkScS6gkVnsxzPLtEFPkLgnJjz84_YPsFdoc3XfD_uPw6QxtYesSWPABPkfNbP4RX6ANtcySxfwyt9pP5tfjAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Minimal+Partitions+for+a+Family+of+Tori&rft.jtitle=Experimental+mathematics&rft.au=Bonnaillie-No%C3%ABl%2C+Virginie&rft.au=L%C3%A9na%2C+Corentin&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis&rft.issn=1058-6458&rft.eissn=1944-950X&rft.volume=26&rft.issue=4&rft.spage=381&rft.epage=395&rft_id=info:doi/10.1080%2F10586458.2016.1183154&rft.externalDocID=1183154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-6458&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-6458&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-6458&client=summon |