Near-Field Radiative Heat Transfer Eigenmodes

The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer i...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 126; no. 19; p. 1
Main Authors: Sanders, Stephen, Zundel, Lauren, Kort-Kamp, Wilton J. M., Dalvit, Diego A. R., Manjavacas, Alejandro
Format: Journal Article
Language:English
Published: College Park American Physical Society 12.05.2021
American Physical Society (APS)
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.
AbstractList The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Overall, our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.
The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.
The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.
ArticleNumber 193601
Author Zundel, Lauren
Kort-Kamp, Wilton J. M.
Manjavacas, Alejandro
Sanders, Stephen
Dalvit, Diego A. R.
Author_xml – sequence: 1
  givenname: Stephen
  orcidid: 0000-0001-6001-9828
  surname: Sanders
  fullname: Sanders, Stephen
– sequence: 2
  givenname: Lauren
  orcidid: 0000-0003-1850-5210
  surname: Zundel
  fullname: Zundel, Lauren
– sequence: 3
  givenname: Wilton J. M.
  surname: Kort-Kamp
  fullname: Kort-Kamp, Wilton J. M.
– sequence: 4
  givenname: Diego A. R.
  surname: Dalvit
  fullname: Dalvit, Diego A. R.
– sequence: 5
  givenname: Alejandro
  orcidid: 0000-0002-2379-1242
  surname: Manjavacas
  fullname: Manjavacas, Alejandro
BackLink https://www.osti.gov/servlets/purl/1822803$$D View this record in Osti.gov
BookMark eNqFkMtKBDEQRYMoOD5-QQbduOmxKkk_Am5EfMGgIroOmXS1RnoSTTKCf29kXIgbVwXFuZeqs8M2ffDE2AHCDBHEyf3LZ3qgjznlPEPezFCJBnCDTRBaVbWIcpNNAARWCqDdZjspvQJAQbsJq27JxOrS0dhPH0zvTHYfNL0mk6eP0fg0UJxeuGfyy9BT2mNbgxkT7f_MXfZ0efF4fl3N765uzs_mlRUKc9VRC3aQXLRS2hraAXvoucIFWKUs8kXZqU4ggbWdkIabuiZuOkkNLhZ1L3bZ4bo3pOx0si6TfbHBe7JZY8d5B6JAx2voLYb3FaWsly5ZGkfjKayS5rWQDdatxIIe_UFfwyr68sI3JSQo3tWFataUjSGlSIN-i25p4qdG0N-q9S_VuvjTa9UlePonWC4uJoPP0bjxv_gXTmOH6w
CitedBy_id crossref_primary_10_1063_5_0282686
crossref_primary_10_1016_j_rser_2025_115836
crossref_primary_10_1016_j_physrep_2022_07_002
crossref_primary_10_1016_j_colsurfa_2024_133982
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124163
crossref_primary_10_1515_nanoph_2024_0121
crossref_primary_10_1016_j_ultramic_2022_113494
crossref_primary_10_1103_PhysRevApplied_18_014052
crossref_primary_10_1103_PhysRevLett_129_260602
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123318
Cites_doi 10.1103/RevModPhys.79.1291
10.1103/PhysRevB.86.075466
10.1103/PhysRevB.96.165427
10.1038/nphoton.2009.144
10.1063/1.5093626
10.1021/nl503236k
10.1103/PhysRevApplied.13.054054
10.1038/s41467-016-0013-x
10.1103/PhysRevB.4.3303
10.1063/1.4941751
10.1103/PhysRevB.88.104307
10.1103/PhysRevLett.94.085901
10.1038/ncomms12900
10.1016/j.jqsrt.2016.10.015
10.1021/acs.nanolett.9b03269
10.1063/1.4928430
10.1038/nature16070
10.1038/nnano.2016.20
10.1103/PhysRevLett.117.134303
10.1103/PhysRevB.91.014302
10.1016/j.ijheatmasstransfer.2020.119346
10.1063/1.4894622
10.1103/PhysRevLett.107.014301
10.1098/rspa.2008.0471
10.1038/nnano.2016.17
10.1039/b711486a
10.1073/pnas.1701264114
10.1103/PhysRevLett.105.113601
10.1038/s42005-019-0163-3
10.1007/s00339-009-5203-5
10.1063/1.4902429
10.1021/acsphotonics.8b01031
10.1103/PhysRevA.100.053854
10.1103/PhysRevB.77.075417
10.1166/jctn.2010.1578
10.1209/0295-5075/110/14004
10.1039/C6CS00919K
10.1103/PhysRevB.102.115417
10.1103/PhysRevLett.107.114301
10.1103/PhysRevB.77.075125
10.1021/acsnano.8b01645
10.1103/PhysRevB.95.125411
ContentType Journal Article
Copyright Copyright American Physical Society May 14, 2021
Copyright_xml – notice: Copyright American Physical Society May 14, 2021
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
7X8
OIOZB
OTOTI
DOI 10.1103/PhysRevLett.126.193601
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 1822803
10_1103_PhysRevLett_126_193601
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
7U5
8FD
H8D
L7M
7X8
60C
AAPBV
ABCKA
ABPTK
ADETJ
OIOZB
OTOTI
UCJ
VQA
XFK
ID FETCH-LOGICAL-c391t-8e70cf423744c507f1d0d291b0c99c12b5079831e0cc834a2a55e2a84e61bb5d3
IEDL.DBID 3MX
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652838500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Mon Jul 10 02:30:33 EDT 2023
Fri Jul 11 08:11:49 EDT 2025
Sun Nov 09 07:23:37 EST 2025
Sat Nov 29 07:43:33 EST 2025
Tue Nov 18 21:24:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-8e70cf423744c507f1d0d291b0c99c12b5079831e0cc834a2a55e2a84e61bb5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
89233218CNA000001; SC0020347; PID2019-109502GA-I00; DMR-1941680
MICIUN
National Science Foundation (NSF)
LA-UR-21-20930
USDOE Laboratory Directed Research and Development (LDRD) Program
ORCID 0000-0003-1850-5210
0000-0002-2379-1242
0000-0001-6001-9828
0000000206796690
0000000252822896
0000000318505210
0000000223791242
0000000160019828
OpenAccessLink https://www.osti.gov/servlets/purl/1822803
PQID 2533409285
PQPubID 2048222
ParticipantIDs osti_scitechconnect_1822803
proquest_miscellaneous_2534615741
proquest_journals_2533409285
crossref_primary_10_1103_PhysRevLett_126_193601
crossref_citationtrail_10_1103_PhysRevLett_126_193601
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
– name: United States
PublicationTitle Physical review letters
PublicationYear 2021
Publisher American Physical Society
American Physical Society (APS)
Publisher_xml – name: American Physical Society
– name: American Physical Society (APS)
References PhysRevLett.126.193601Cc19R1
PhysRevLett.126.193601Cc11R1
PhysRevLett.126.193601Cc34R1
PhysRevLett.126.193601Cc12R1
PhysRevLett.126.193601Cc33R1
PhysRevLett.126.193601Cc13R1
PhysRevLett.126.193601Cc36R1
PhysRevLett.126.193601Cc14R1
PhysRevLett.126.193601Cc35R1
PhysRevLett.126.193601Cc15R1
PhysRevLett.126.193601Cc38R1
PhysRevLett.126.193601Cc16R1
PhysRevLett.126.193601Cc37R1
PhysRevLett.126.193601Cc17R1
PhysRevLett.126.193601Cc18R1
PhysRevLett.126.193601Cc39R1
PhysRevLett.126.193601Cc30R1
PhysRevLett.126.193601Cc32R1
PhysRevLett.126.193601Cc10R1
PhysRevLett.126.193601Cc31R1
F. Reif (PhysRevLett.126.193601Cc1R1) 1965
PhysRevLett.126.193601Cc4R1
PhysRevLett.126.193601Cc5R1
S. M. Rytov (PhysRevLett.126.193601Cc41R1) 1959
PhysRevLett.126.193601Cc2R1
PhysRevLett.126.193601Cc3R1
S. Friedberg (PhysRevLett.126.193601Cc43R1) 2003
E. D. Palik (PhysRevLett.126.193601Cc45R1) 1985
PhysRevLett.126.193601Cc8R1
PhysRevLett.126.193601Cc9R1
PhysRevLett.126.193601Cc6R1
PhysRevLett.126.193601Cc7R1
PhysRevLett.126.193601Cc22R1
PhysRevLett.126.193601Cc44R1
PhysRevLett.126.193601Cc24R1
PhysRevLett.126.193601Cc47R1
PhysRevLett.126.193601Cc25R1
PhysRevLett.126.193601Cc46R1
PhysRevLett.126.193601Cc26R1
PhysRevLett.126.193601Cc27R1
PhysRevLett.126.193601Cc48R1
PhysRevLett.126.193601Cc28R1
PhysRevLett.126.193601Cc29R1
PhysRevLett.126.193601Cc20R1
PhysRevLett.126.193601Cc21R1
PhysRevLett.126.193601Cc42R1
References_xml – ident: PhysRevLett.126.193601Cc12R1
  doi: 10.1103/RevModPhys.79.1291
– ident: PhysRevLett.126.193601Cc16R1
  doi: 10.1103/PhysRevB.86.075466
– ident: PhysRevLett.126.193601Cc18R1
  doi: 10.1103/PhysRevB.96.165427
– ident: PhysRevLett.126.193601Cc3R1
  doi: 10.1038/nphoton.2009.144
– ident: PhysRevLett.126.193601Cc48R1
  doi: 10.1063/1.5093626
– volume-title: Handbook of Optical Constants of Solids
  year: 1985
  ident: PhysRevLett.126.193601Cc45R1
– ident: PhysRevLett.126.193601Cc5R1
  doi: 10.1021/nl503236k
– ident: PhysRevLett.126.193601Cc34R1
  doi: 10.1103/PhysRevApplied.13.054054
– ident: PhysRevLett.126.193601Cc20R1
  doi: 10.1038/s41467-016-0013-x
– ident: PhysRevLett.126.193601Cc24R1
  doi: 10.1103/PhysRevB.4.3303
– ident: PhysRevLett.126.193601Cc32R1
  doi: 10.1063/1.4941751
– ident: PhysRevLett.126.193601Cc31R1
  doi: 10.1103/PhysRevB.88.104307
– ident: PhysRevLett.126.193601Cc11R1
  doi: 10.1103/PhysRevLett.94.085901
– ident: PhysRevLett.126.193601Cc19R1
  doi: 10.1038/ncomms12900
– ident: PhysRevLett.126.193601Cc29R1
  doi: 10.1016/j.jqsrt.2016.10.015
– ident: PhysRevLett.126.193601Cc10R1
  doi: 10.1021/acs.nanolett.9b03269
– ident: PhysRevLett.126.193601Cc28R1
  doi: 10.1063/1.4928430
– ident: PhysRevLett.126.193601Cc7R1
  doi: 10.1038/nature16070
– ident: PhysRevLett.126.193601Cc9R1
  doi: 10.1038/nnano.2016.20
– ident: PhysRevLett.126.193601Cc47R1
  doi: 10.1103/PhysRevLett.117.134303
– ident: PhysRevLett.126.193601Cc6R1
  doi: 10.1103/PhysRevB.91.014302
– ident: PhysRevLett.126.193601Cc33R1
  doi: 10.1016/j.ijheatmasstransfer.2020.119346
– volume-title: Fundamentals of Statistical and Thermal Physics
  year: 1965
  ident: PhysRevLett.126.193601Cc1R1
– ident: PhysRevLett.126.193601Cc26R1
  doi: 10.1063/1.4894622
– ident: PhysRevLett.126.193601Cc4R1
  doi: 10.1103/PhysRevLett.107.014301
– ident: PhysRevLett.126.193601Cc35R1
  doi: 10.1098/rspa.2008.0471
– volume-title: Theory of Electric Fluctuations and Thermal Radiation
  year: 1959
  ident: PhysRevLett.126.193601Cc41R1
– ident: PhysRevLett.126.193601Cc8R1
  doi: 10.1038/nnano.2016.17
– ident: PhysRevLett.126.193601Cc44R1
  doi: 10.1039/b711486a
– ident: PhysRevLett.126.193601Cc37R1
  doi: 10.1073/pnas.1701264114
– ident: PhysRevLett.126.193601Cc42R1
  doi: 10.1103/PhysRevLett.105.113601
– ident: PhysRevLett.126.193601Cc39R1
  doi: 10.1038/s42005-019-0163-3
– ident: PhysRevLett.126.193601Cc2R1
  doi: 10.1007/s00339-009-5203-5
– ident: PhysRevLett.126.193601Cc17R1
  doi: 10.1063/1.4902429
– ident: PhysRevLett.126.193601Cc22R1
  doi: 10.1021/acsphotonics.8b01031
– ident: PhysRevLett.126.193601Cc38R1
  doi: 10.1103/PhysRevA.100.053854
– ident: PhysRevLett.126.193601Cc13R1
  doi: 10.1103/PhysRevB.77.075417
– ident: PhysRevLett.126.193601Cc15R1
  doi: 10.1166/jctn.2010.1578
– ident: PhysRevLett.126.193601Cc27R1
  doi: 10.1209/0295-5075/110/14004
– ident: PhysRevLett.126.193601Cc36R1
  doi: 10.1039/C6CS00919K
– volume-title: Linear Algebra
  year: 2003
  ident: PhysRevLett.126.193601Cc43R1
– ident: PhysRevLett.126.193601Cc46R1
  doi: 10.1103/PhysRevB.102.115417
– ident: PhysRevLett.126.193601Cc25R1
  doi: 10.1103/PhysRevLett.107.114301
– ident: PhysRevLett.126.193601Cc14R1
  doi: 10.1103/PhysRevB.77.075125
– ident: PhysRevLett.126.193601Cc21R1
  doi: 10.1021/acsnano.8b01645
– ident: PhysRevLett.126.193601Cc30R1
  doi: 10.1103/PhysRevB.95.125411
SSID ssj0001268
Score 2.5093997
Snippet The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms ATOMIC AND MOLECULAR PHYSICS
Black body radiation
Electromagnetic interactions
Far fields
Heat transfer
Nanoparticles
nanophotonics
Nanostructure
nanostructures
Near fields
near-field optics
Radiative heat transfer
Thermalization (energy absorption)
Title Near-Field Radiative Heat Transfer Eigenmodes
URI https://www.proquest.com/docview/2533409285
https://www.proquest.com/docview/2534615741
https://www.osti.gov/servlets/purl/1822803
Volume 126
WOSCitedRecordID wos000652838500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals (OCUL)
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals (subscription)
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB6WRcGLb3FdlQpeq3m1SY8iLntxkUWht9JOUxCkK_vw9zvT1kVRES89NEkJk2TyNfnmG4BL57GMbOXJ-_FplUUf5jJyIYujxU6VlUPTJJuwk4lL0-ShB-LnG3wp9DUzIaf-jaNbrqSKrwhxxG3AljOcskDfp2vXS-Wt69XMOxC2Cwn-_TNfdqP-jFbVN5_cbDSjnf93cRe2O1AZ3LSzYA96vt6HzYbciYsDCCc0ncMRc9WCKWsRsIsLxuSFg2arqvw8uGNVTk6LsziEp9Hd4-047NIkhKgTuQydtwIrprcYgwTvKlmKUiWyEJgkKFVB7xKnpReITptc5VHkVe6Mj2VRRKU-gn49q_0xBDGjM4HSVwUa4y15wrgikKZKW1SRsQOIPsyVYachzqksXrLmX0Lo7JMpMjJF1ppiANfrdq-tisafLYY8GhnhABazRWb9IFVwLN-jB3D6MUhZt-YWmeKoYpEoFw3gYl1Mq4WvQPLaz1ZNHUMYjmDUyb-7NIQtxYQWlm5Vp9Bfzlf-DDbwbfm8mJ83E5GeNnXvJ4_Zbg
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Field+Radiative+Heat+Transfer+Eigenmodes&rft.jtitle=Physical+review+letters&rft.au=Sanders%2C+Stephen&rft.au=Zundel%2C+Lauren&rft.au=Kort-Kamp%2C+Wilton+J.%E2%80%89M.&rft.au=Dalvit%2C+Diego+A.%E2%80%89R.&rft.date=2021-05-12&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=126&rft.issue=19&rft_id=info:doi/10.1103%2FPhysRevLett.126.193601&rft.externalDocID=1822803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon