Near-Field Radiative Heat Transfer Eigenmodes
The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer i...
Saved in:
| Published in: | Physical review letters Vol. 126; no. 19; p. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
College Park
American Physical Society
12.05.2021
American Physical Society (APS) |
| Subjects: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles. |
|---|---|
| AbstractList | The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Overall, our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles. The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles.The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles. The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat transfer in systems containing a large number of nanoparticles. |
| ArticleNumber | 193601 |
| Author | Zundel, Lauren Kort-Kamp, Wilton J. M. Manjavacas, Alejandro Sanders, Stephen Dalvit, Diego A. R. |
| Author_xml | – sequence: 1 givenname: Stephen orcidid: 0000-0001-6001-9828 surname: Sanders fullname: Sanders, Stephen – sequence: 2 givenname: Lauren orcidid: 0000-0003-1850-5210 surname: Zundel fullname: Zundel, Lauren – sequence: 3 givenname: Wilton J. M. surname: Kort-Kamp fullname: Kort-Kamp, Wilton J. M. – sequence: 4 givenname: Diego A. R. surname: Dalvit fullname: Dalvit, Diego A. R. – sequence: 5 givenname: Alejandro orcidid: 0000-0002-2379-1242 surname: Manjavacas fullname: Manjavacas, Alejandro |
| BackLink | https://www.osti.gov/servlets/purl/1822803$$D View this record in Osti.gov |
| BookMark | eNqFkMtKBDEQRYMoOD5-QQbduOmxKkk_Am5EfMGgIroOmXS1RnoSTTKCf29kXIgbVwXFuZeqs8M2ffDE2AHCDBHEyf3LZ3qgjznlPEPezFCJBnCDTRBaVbWIcpNNAARWCqDdZjspvQJAQbsJq27JxOrS0dhPH0zvTHYfNL0mk6eP0fg0UJxeuGfyy9BT2mNbgxkT7f_MXfZ0efF4fl3N765uzs_mlRUKc9VRC3aQXLRS2hraAXvoucIFWKUs8kXZqU4ggbWdkIabuiZuOkkNLhZ1L3bZ4bo3pOx0si6TfbHBe7JZY8d5B6JAx2voLYb3FaWsly5ZGkfjKayS5rWQDdatxIIe_UFfwyr68sI3JSQo3tWFataUjSGlSIN-i25p4qdG0N-q9S_VuvjTa9UlePonWC4uJoPP0bjxv_gXTmOH6w |
| CitedBy_id | crossref_primary_10_1063_5_0282686 crossref_primary_10_1016_j_rser_2025_115836 crossref_primary_10_1016_j_physrep_2022_07_002 crossref_primary_10_1016_j_colsurfa_2024_133982 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124163 crossref_primary_10_1515_nanoph_2024_0121 crossref_primary_10_1016_j_ultramic_2022_113494 crossref_primary_10_1103_PhysRevApplied_18_014052 crossref_primary_10_1103_PhysRevLett_129_260602 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123318 |
| Cites_doi | 10.1103/RevModPhys.79.1291 10.1103/PhysRevB.86.075466 10.1103/PhysRevB.96.165427 10.1038/nphoton.2009.144 10.1063/1.5093626 10.1021/nl503236k 10.1103/PhysRevApplied.13.054054 10.1038/s41467-016-0013-x 10.1103/PhysRevB.4.3303 10.1063/1.4941751 10.1103/PhysRevB.88.104307 10.1103/PhysRevLett.94.085901 10.1038/ncomms12900 10.1016/j.jqsrt.2016.10.015 10.1021/acs.nanolett.9b03269 10.1063/1.4928430 10.1038/nature16070 10.1038/nnano.2016.20 10.1103/PhysRevLett.117.134303 10.1103/PhysRevB.91.014302 10.1016/j.ijheatmasstransfer.2020.119346 10.1063/1.4894622 10.1103/PhysRevLett.107.014301 10.1098/rspa.2008.0471 10.1038/nnano.2016.17 10.1039/b711486a 10.1073/pnas.1701264114 10.1103/PhysRevLett.105.113601 10.1038/s42005-019-0163-3 10.1007/s00339-009-5203-5 10.1063/1.4902429 10.1021/acsphotonics.8b01031 10.1103/PhysRevA.100.053854 10.1103/PhysRevB.77.075417 10.1166/jctn.2010.1578 10.1209/0295-5075/110/14004 10.1039/C6CS00919K 10.1103/PhysRevB.102.115417 10.1103/PhysRevLett.107.114301 10.1103/PhysRevB.77.075125 10.1021/acsnano.8b01645 10.1103/PhysRevB.95.125411 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society May 14, 2021 |
| Copyright_xml | – notice: Copyright American Physical Society May 14, 2021 |
| CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M 7X8 OIOZB OTOTI |
| DOI | 10.1103/PhysRevLett.126.193601 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 1822803 10_1103_PhysRevLett_126_193601 |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 7U5 8FD H8D L7M 7X8 60C AAPBV ABCKA ABPTK ADETJ OIOZB OTOTI UCJ VQA XFK |
| ID | FETCH-LOGICAL-c391t-8e70cf423744c507f1d0d291b0c99c12b5079831e0cc834a2a55e2a84e61bb5d3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652838500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Mon Jul 10 02:30:33 EDT 2023 Fri Jul 11 08:11:49 EDT 2025 Sun Nov 09 07:23:37 EST 2025 Sat Nov 29 07:43:33 EST 2025 Tue Nov 18 21:24:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-8e70cf423744c507f1d0d291b0c99c12b5079831e0cc834a2a55e2a84e61bb5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 89233218CNA000001; SC0020347; PID2019-109502GA-I00; DMR-1941680 MICIUN National Science Foundation (NSF) LA-UR-21-20930 USDOE Laboratory Directed Research and Development (LDRD) Program |
| ORCID | 0000-0003-1850-5210 0000-0002-2379-1242 0000-0001-6001-9828 0000000206796690 0000000252822896 0000000318505210 0000000223791242 0000000160019828 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1822803 |
| PQID | 2533409285 |
| PQPubID | 2048222 |
| ParticipantIDs | osti_scitechconnect_1822803 proquest_miscellaneous_2534615741 proquest_journals_2533409285 crossref_primary_10_1103_PhysRevLett_126_193601 crossref_citationtrail_10_1103_PhysRevLett_126_193601 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-12 |
| PublicationDateYYYYMMDD | 2021-05-12 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park – name: United States |
| PublicationTitle | Physical review letters |
| PublicationYear | 2021 |
| Publisher | American Physical Society American Physical Society (APS) |
| Publisher_xml | – name: American Physical Society – name: American Physical Society (APS) |
| References | PhysRevLett.126.193601Cc19R1 PhysRevLett.126.193601Cc11R1 PhysRevLett.126.193601Cc34R1 PhysRevLett.126.193601Cc12R1 PhysRevLett.126.193601Cc33R1 PhysRevLett.126.193601Cc13R1 PhysRevLett.126.193601Cc36R1 PhysRevLett.126.193601Cc14R1 PhysRevLett.126.193601Cc35R1 PhysRevLett.126.193601Cc15R1 PhysRevLett.126.193601Cc38R1 PhysRevLett.126.193601Cc16R1 PhysRevLett.126.193601Cc37R1 PhysRevLett.126.193601Cc17R1 PhysRevLett.126.193601Cc18R1 PhysRevLett.126.193601Cc39R1 PhysRevLett.126.193601Cc30R1 PhysRevLett.126.193601Cc32R1 PhysRevLett.126.193601Cc10R1 PhysRevLett.126.193601Cc31R1 F. Reif (PhysRevLett.126.193601Cc1R1) 1965 PhysRevLett.126.193601Cc4R1 PhysRevLett.126.193601Cc5R1 S. M. Rytov (PhysRevLett.126.193601Cc41R1) 1959 PhysRevLett.126.193601Cc2R1 PhysRevLett.126.193601Cc3R1 S. Friedberg (PhysRevLett.126.193601Cc43R1) 2003 E. D. Palik (PhysRevLett.126.193601Cc45R1) 1985 PhysRevLett.126.193601Cc8R1 PhysRevLett.126.193601Cc9R1 PhysRevLett.126.193601Cc6R1 PhysRevLett.126.193601Cc7R1 PhysRevLett.126.193601Cc22R1 PhysRevLett.126.193601Cc44R1 PhysRevLett.126.193601Cc24R1 PhysRevLett.126.193601Cc47R1 PhysRevLett.126.193601Cc25R1 PhysRevLett.126.193601Cc46R1 PhysRevLett.126.193601Cc26R1 PhysRevLett.126.193601Cc27R1 PhysRevLett.126.193601Cc48R1 PhysRevLett.126.193601Cc28R1 PhysRevLett.126.193601Cc29R1 PhysRevLett.126.193601Cc20R1 PhysRevLett.126.193601Cc21R1 PhysRevLett.126.193601Cc42R1 |
| References_xml | – ident: PhysRevLett.126.193601Cc12R1 doi: 10.1103/RevModPhys.79.1291 – ident: PhysRevLett.126.193601Cc16R1 doi: 10.1103/PhysRevB.86.075466 – ident: PhysRevLett.126.193601Cc18R1 doi: 10.1103/PhysRevB.96.165427 – ident: PhysRevLett.126.193601Cc3R1 doi: 10.1038/nphoton.2009.144 – ident: PhysRevLett.126.193601Cc48R1 doi: 10.1063/1.5093626 – volume-title: Handbook of Optical Constants of Solids year: 1985 ident: PhysRevLett.126.193601Cc45R1 – ident: PhysRevLett.126.193601Cc5R1 doi: 10.1021/nl503236k – ident: PhysRevLett.126.193601Cc34R1 doi: 10.1103/PhysRevApplied.13.054054 – ident: PhysRevLett.126.193601Cc20R1 doi: 10.1038/s41467-016-0013-x – ident: PhysRevLett.126.193601Cc24R1 doi: 10.1103/PhysRevB.4.3303 – ident: PhysRevLett.126.193601Cc32R1 doi: 10.1063/1.4941751 – ident: PhysRevLett.126.193601Cc31R1 doi: 10.1103/PhysRevB.88.104307 – ident: PhysRevLett.126.193601Cc11R1 doi: 10.1103/PhysRevLett.94.085901 – ident: PhysRevLett.126.193601Cc19R1 doi: 10.1038/ncomms12900 – ident: PhysRevLett.126.193601Cc29R1 doi: 10.1016/j.jqsrt.2016.10.015 – ident: PhysRevLett.126.193601Cc10R1 doi: 10.1021/acs.nanolett.9b03269 – ident: PhysRevLett.126.193601Cc28R1 doi: 10.1063/1.4928430 – ident: PhysRevLett.126.193601Cc7R1 doi: 10.1038/nature16070 – ident: PhysRevLett.126.193601Cc9R1 doi: 10.1038/nnano.2016.20 – ident: PhysRevLett.126.193601Cc47R1 doi: 10.1103/PhysRevLett.117.134303 – ident: PhysRevLett.126.193601Cc6R1 doi: 10.1103/PhysRevB.91.014302 – ident: PhysRevLett.126.193601Cc33R1 doi: 10.1016/j.ijheatmasstransfer.2020.119346 – volume-title: Fundamentals of Statistical and Thermal Physics year: 1965 ident: PhysRevLett.126.193601Cc1R1 – ident: PhysRevLett.126.193601Cc26R1 doi: 10.1063/1.4894622 – ident: PhysRevLett.126.193601Cc4R1 doi: 10.1103/PhysRevLett.107.014301 – ident: PhysRevLett.126.193601Cc35R1 doi: 10.1098/rspa.2008.0471 – volume-title: Theory of Electric Fluctuations and Thermal Radiation year: 1959 ident: PhysRevLett.126.193601Cc41R1 – ident: PhysRevLett.126.193601Cc8R1 doi: 10.1038/nnano.2016.17 – ident: PhysRevLett.126.193601Cc44R1 doi: 10.1039/b711486a – ident: PhysRevLett.126.193601Cc37R1 doi: 10.1073/pnas.1701264114 – ident: PhysRevLett.126.193601Cc42R1 doi: 10.1103/PhysRevLett.105.113601 – ident: PhysRevLett.126.193601Cc39R1 doi: 10.1038/s42005-019-0163-3 – ident: PhysRevLett.126.193601Cc2R1 doi: 10.1007/s00339-009-5203-5 – ident: PhysRevLett.126.193601Cc17R1 doi: 10.1063/1.4902429 – ident: PhysRevLett.126.193601Cc22R1 doi: 10.1021/acsphotonics.8b01031 – ident: PhysRevLett.126.193601Cc38R1 doi: 10.1103/PhysRevA.100.053854 – ident: PhysRevLett.126.193601Cc13R1 doi: 10.1103/PhysRevB.77.075417 – ident: PhysRevLett.126.193601Cc15R1 doi: 10.1166/jctn.2010.1578 – ident: PhysRevLett.126.193601Cc27R1 doi: 10.1209/0295-5075/110/14004 – ident: PhysRevLett.126.193601Cc36R1 doi: 10.1039/C6CS00919K – volume-title: Linear Algebra year: 2003 ident: PhysRevLett.126.193601Cc43R1 – ident: PhysRevLett.126.193601Cc46R1 doi: 10.1103/PhysRevB.102.115417 – ident: PhysRevLett.126.193601Cc25R1 doi: 10.1103/PhysRevLett.107.114301 – ident: PhysRevLett.126.193601Cc14R1 doi: 10.1103/PhysRevB.77.075125 – ident: PhysRevLett.126.193601Cc21R1 doi: 10.1021/acsnano.8b01645 – ident: PhysRevLett.126.193601Cc30R1 doi: 10.1103/PhysRevB.95.125411 |
| SSID | ssj0001268 |
| Score | 2.5093997 |
| Snippet | The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established... |
| SourceID | osti proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | ATOMIC AND MOLECULAR PHYSICS Black body radiation Electromagnetic interactions Far fields Heat transfer Nanoparticles nanophotonics Nanostructure nanostructures Near fields near-field optics Radiative heat transfer Thermalization (energy absorption) |
| Title | Near-Field Radiative Heat Transfer Eigenmodes |
| URI | https://www.proquest.com/docview/2533409285 https://www.proquest.com/docview/2534615741 https://www.osti.gov/servlets/purl/1822803 |
| Volume | 126 |
| WOSCitedRecordID | wos000652838500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals (OCUL) customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals (subscription) customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB6WRcGLb3FdlQpeq3m1SY8iLntxkUWht9JOUxCkK_vw9zvT1kVRES89NEkJk2TyNfnmG4BL57GMbOXJ-_FplUUf5jJyIYujxU6VlUPTJJuwk4lL0-ShB-LnG3wp9DUzIaf-jaNbrqSKrwhxxG3AljOcskDfp2vXS-Wt69XMOxC2Cwn-_TNfdqP-jFbVN5_cbDSjnf93cRe2O1AZ3LSzYA96vt6HzYbciYsDCCc0ncMRc9WCKWsRsIsLxuSFg2arqvw8uGNVTk6LsziEp9Hd4-047NIkhKgTuQydtwIrprcYgwTvKlmKUiWyEJgkKFVB7xKnpReITptc5VHkVe6Mj2VRRKU-gn49q_0xBDGjM4HSVwUa4y15wrgikKZKW1SRsQOIPsyVYachzqksXrLmX0Lo7JMpMjJF1ppiANfrdq-tisafLYY8GhnhABazRWb9IFVwLN-jB3D6MUhZt-YWmeKoYpEoFw3gYl1Mq4WvQPLaz1ZNHUMYjmDUyb-7NIQtxYQWlm5Vp9Bfzlf-DDbwbfm8mJ83E5GeNnXvJ4_Zbg |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Field+Radiative+Heat+Transfer+Eigenmodes&rft.jtitle=Physical+review+letters&rft.au=Sanders%2C+Stephen&rft.au=Zundel%2C+Lauren&rft.au=Kort-Kamp%2C+Wilton+J.%E2%80%89M.&rft.au=Dalvit%2C+Diego+A.%E2%80%89R.&rft.date=2021-05-12&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=126&rft.issue=19&rft_id=info:doi/10.1103%2FPhysRevLett.126.193601&rft.externalDocID=1822803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |