Data-driven individual and joint chance-constrained optimization via kernel smoothing
•Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates. W...
Uložené v:
| Vydané v: | Computers & chemical engineering Ročník 78; s. 51 - 69 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
12.07.2015
|
| Predmet: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates.
We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via ϕ-divergences. We propose a new way of specifying the size of the confidence set (i.e., the ϕ-divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates. |
|---|---|
| AbstractList | We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via -divergences. We propose a new way of specifying the size of the confidence set (i.e., the -divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates. •Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates. We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via ϕ-divergences. We propose a new way of specifying the size of the confidence set (i.e., the ϕ-divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates. |
| Author | Bury, S.J. Grossmann, I.E. Wassick, J.M. Calfa, B.A. Agarwal, A. |
| Author_xml | – sequence: 1 givenname: B.A. surname: Calfa fullname: Calfa, B.A. email: bacalfa@cmu.edu organization: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA – sequence: 2 givenname: I.E. surname: Grossmann fullname: Grossmann, I.E. email: grossmann@cmu.edu organization: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA – sequence: 3 givenname: A. surname: Agarwal fullname: Agarwal, A. email: AAgarwal2@dow.com organization: The Dow Chemical Company, Midland, MI 48674, USA – sequence: 4 givenname: S.J. surname: Bury fullname: Bury, S.J. email: SJBury@dow.com organization: The Dow Chemical Company, Midland, MI 48674, USA – sequence: 5 givenname: J.M. surname: Wassick fullname: Wassick, J.M. email: JMWassick@dow.com organization: The Dow Chemical Company, Midland, MI 48674, USA |
| BookMark | eNqN0EFvEzEQBWALFYm08B-2Ny67jHftePdUoUChUqVeyNlyx5Nmwq4dbCcS_PpuCIeKU09zee9J812KixADCXEtoZEgl592DcZpj1uaKDw1LUjdgGpAtm_EQvamq1Vn9IVYAAx9LTut3onLnHcA0Kq-X4j1F1dc7RMfKVQcPB_ZH9xYueCrXeRQKty6gFRjDLkkx4F8FfeFJ_7jCsdQHdlVPykFGqs8xVi2HJ7ei7cbN2b68O9eifXt1x-r7_X9w7e71ef7GrtBlrr3uHzUeuO1kXowDjSQRtAGtTIOnZMKHBrtHzsCahUsUYOhjV9iC24Yuivx8by7T_HXgXKxE2ekcXSB4iFbaQy0veqhn6PDOYop5pxoY_eJJ5d-Wwn2RGl39gWlPVFaUHamnLs3_3WRy9_vTyLjqxZW5wWaNY5MyWZkml09J8JifeRXrDwDskKcEw |
| CitedBy_id | crossref_primary_10_1109_TSTE_2016_2541685 crossref_primary_10_1016_j_engappai_2023_106426 crossref_primary_10_1016_j_ijepes_2022_108319 crossref_primary_10_1109_TPWRS_2022_3195127 crossref_primary_10_1016_j_compchemeng_2019_03_034 crossref_primary_10_1049_rpg2_12664 crossref_primary_10_1061__ASCE_EM_1943_7889_0001889 crossref_primary_10_1016_j_compchemeng_2016_11_011 crossref_primary_10_1016_j_ress_2021_107900 crossref_primary_10_1016_j_epsr_2025_111573 crossref_primary_10_3390_en14165161 crossref_primary_10_1002_oca_2445 crossref_primary_10_1007_s11042_020_09718_4 crossref_primary_10_1049_rpg2_13082 crossref_primary_10_1109_TII_2019_2932078 crossref_primary_10_1016_j_bbrc_2016_01_125 crossref_primary_10_1016_j_compchemeng_2025_109145 crossref_primary_10_1016_j_compchemeng_2024_108632 crossref_primary_10_1109_TETCI_2019_2915813 crossref_primary_10_1016_j_cherd_2018_08_006 crossref_primary_10_1016_j_compchemeng_2017_10_039 crossref_primary_10_1360_SSI_2025_0115 crossref_primary_10_1109_TSG_2020_2993781 crossref_primary_10_1134_S0040579517060136 crossref_primary_10_1109_TCSS_2021_3127751 crossref_primary_10_1109_TIA_2021_3105364 crossref_primary_10_1134_S0040579520010133 crossref_primary_10_1016_j_engappai_2022_105024 crossref_primary_10_1002_oca_2675 crossref_primary_10_1016_j_compchemeng_2023_108170 crossref_primary_10_1016_j_cjche_2017_09_010 crossref_primary_10_1016_j_compchemeng_2017_09_007 crossref_primary_10_1088_1755_1315_288_1_012101 crossref_primary_10_1515_revce_2018_0067 crossref_primary_10_1016_j_compchemeng_2018_02_007 crossref_primary_10_1016_j_compchemeng_2018_04_013 crossref_primary_10_1016_j_compchemeng_2017_10_024 crossref_primary_10_1016_j_cor_2021_105398 crossref_primary_10_1002_aic_15717 crossref_primary_10_1016_j_coche_2019_10_002 crossref_primary_10_1016_j_eng_2025_05_019 crossref_primary_10_1109_LCSYS_2020_2998857 crossref_primary_10_1007_s11075_022_01425_5 crossref_primary_10_1016_j_compchemeng_2017_12_015 crossref_primary_10_1016_j_compchemeng_2020_106868 crossref_primary_10_1016_j_compchemeng_2023_108407 crossref_primary_10_1002_rnc_6362 crossref_primary_10_1016_j_cor_2023_106260 |
| Cites_doi | 10.1214/13-AOS1137 10.1061/(ASCE)0733-9437(2003)129:3(164) 10.1287/mnsc.6.1.73 10.1093/biomet/69.3.635 10.1002/etep.650 10.1287/mnsc.17.5.337 10.1287/mnsc.20.9.1284 10.1016/j.compchemeng.2009.09.003 10.1137/050622328 10.1177/1536867X0400400207 10.1029/WR009i004p00937 10.1137/070702928 10.1007/s00362-010-0338-1 10.1287/mnsc.14.3.183 10.1016/j.compchemeng.2009.01.022 10.18637/jss.v027.i05 10.1016/0098-1354(96)00206-2 10.1109/TSMC.1971.4308298 10.1109/TAC.2006.875041 10.1198/016214506000000979 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.compchemeng.2015.04.012 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| EndPage | 69 |
| ExternalDocumentID | 10_1016_j_compchemeng_2015_04_012 S0098135415001131 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ ZY4 ~HD 7SC 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c391t-8dc6b55fd571597a050e5c057c547acaa140ac75db3e0e2406c507efd6c20a993 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355148500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sun Nov 09 10:21:01 EST 2025 Sat Nov 29 05:10:49 EST 2025 Tue Nov 18 22:31:38 EST 2025 Fri Feb 23 02:26:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data-driven chance constraint 90C90 90C15 ϕ-Divergence Process systems engineering Kernel smoothing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-8dc6b55fd571597a050e5c057c547acaa140ac75db3e0e2406c507efd6c20a993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1770284808 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1770284808 crossref_primary_10_1016_j_compchemeng_2015_04_012 crossref_citationtrail_10_1016_j_compchemeng_2015_04_012 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2015_04_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-12 |
| PublicationDateYYYYMMDD | 2015-07-12 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Goodstein (bib0090) 2007 Bonferroni (bib0035) 1936 Agresti, Coull (bib0005) 1998; 52 Arellano-Garcia, Wozny (bib0010) 2009; 33 StataCorp LP (bib0230) 2014 Gochet, Padberg (bib0085) 1974; 20 Orçun, Altinel, Hortaçsu (bib0170) 1996; 20 SAS Institute I. (bib0210) 2014 Mazadi, Rosehart, Zareipour, Malik, Oloomi (bib0160) 2013; 23 The MathWorks Inc. (bib0235) 2014 Pagan, Ullah (bib0175) 1999 Birge, Louveaux (bib0030) 2011 Calafiore, Campi (bib0045) 2006; 51 Jiang, Guan (bib0130) 2013 Pardo (bib0180) 2006 Brockwell, Davis (bib0040) 2002 Bienstock, Chertkov, Harnett (bib0025) 2012 Ben-Tal, den Hertog, De Waegenaere, Melenberg, Rennen (bib0020) 2011 Charnes, Kirby (bib0060) 1967; 14 Ben-Tal, Ghaoui, Nemirovski (bib0015) 2009 Harrell FE Jr, with contributions from Dupont C, et al. Hmisc: harrell miscellaneous; 2014. http://CRAN.R-project.org/package=Hmisc, R package version 3, p. 14–23. Hayfield, Racine (bib0120) 2008; 27 Koenker (bib0135) 2005 Harrell, Davis (bib0110) 1982; 69 Scott (bib0215) 1992 Nemirovski, Shapiro (bib0165) 2006; 17 R Core Team (bib0200) 2014 Eisner, Kaplan, Soden (bib0065) 1971; 17 Prékopa (bib0190) 1970 Hall, Horowitz (bib0105) 2013; 41 Silverman (bib0220) 1986 Charnes, Kirby (bib0055) 1966 Fan, Yao (bib0075) 2002 Prékopa (bib0195) 1995 Guillén-Gosálbez, Grossmann (bib0095) 2010; 34 Haimes, Lasdon, Wismer (bib0100) 1971; 1 Jairaj, Vedula (bib0125) 2003; 129 Charnes, Cooper (bib0050) 1959; 6 Evans, Hastings, Peacock (bib0070) 2000 Powell (bib0185) 2011 Li, Liu, Zhu (bib0150) 2007; 102 Wied, Weißbach (bib0240) 2012; 53 Racine (bib0205) 2008 Li, Racine (bib0145) 2007 Simonovic, Srinivasan (bib0225) 1993 Fiorio (bib0080) 2004; 4 Lane (bib0140) 1973; 9 Luedtke, Ahmed (bib0155) 2008; 19 Bienstock (10.1016/j.compchemeng.2015.04.012_bib0025) 2012 10.1016/j.compchemeng.2015.04.012_bib0115 StataCorp LP (10.1016/j.compchemeng.2015.04.012_bib0230) 2014 Hall (10.1016/j.compchemeng.2015.04.012_bib0105) 2013; 41 Eisner (10.1016/j.compchemeng.2015.04.012_bib0065) 1971; 17 Fan (10.1016/j.compchemeng.2015.04.012_bib0075) 2002 Gochet (10.1016/j.compchemeng.2015.04.012_bib0085) 1974; 20 Jiang (10.1016/j.compchemeng.2015.04.012_bib0130) 2013 Powell (10.1016/j.compchemeng.2015.04.012_bib0185) 2011 Simonovic (10.1016/j.compchemeng.2015.04.012_bib0225) 1993 Arellano-Garcia (10.1016/j.compchemeng.2015.04.012_bib0010) 2009; 33 Koenker (10.1016/j.compchemeng.2015.04.012_bib0135) 2005 Li (10.1016/j.compchemeng.2015.04.012_bib0150) 2007; 102 Evans (10.1016/j.compchemeng.2015.04.012_bib0070) 2000 Charnes (10.1016/j.compchemeng.2015.04.012_bib0050) 1959; 6 Fiorio (10.1016/j.compchemeng.2015.04.012_bib0080) 2004; 4 Jairaj (10.1016/j.compchemeng.2015.04.012_bib0125) 2003; 129 Luedtke (10.1016/j.compchemeng.2015.04.012_bib0155) 2008; 19 Pardo (10.1016/j.compchemeng.2015.04.012_bib0180) 2006 R Core Team (10.1016/j.compchemeng.2015.04.012_bib0200) 2014 Charnes (10.1016/j.compchemeng.2015.04.012_bib0055) 1966 Li (10.1016/j.compchemeng.2015.04.012_bib0145) 2007 Wied (10.1016/j.compchemeng.2015.04.012_bib0240) 2012; 53 Silverman (10.1016/j.compchemeng.2015.04.012_bib0220) 1986 Bonferroni (10.1016/j.compchemeng.2015.04.012_bib0035) 1936 Mazadi (10.1016/j.compchemeng.2015.04.012_bib0160) 2013; 23 Prékopa (10.1016/j.compchemeng.2015.04.012_bib0190) 1970 SAS Institute I. (10.1016/j.compchemeng.2015.04.012_bib0210) 2014 Birge (10.1016/j.compchemeng.2015.04.012_bib0030) 2011 Guillén-Gosálbez (10.1016/j.compchemeng.2015.04.012_bib0095) 2010; 34 Hayfield (10.1016/j.compchemeng.2015.04.012_bib0120) 2008; 27 Brockwell (10.1016/j.compchemeng.2015.04.012_bib0040) 2002 Haimes (10.1016/j.compchemeng.2015.04.012_bib0100) 1971; 1 Scott (10.1016/j.compchemeng.2015.04.012_bib0215) 1992 Ben-Tal (10.1016/j.compchemeng.2015.04.012_bib0020) 2011 Goodstein (10.1016/j.compchemeng.2015.04.012_bib0090) 2007 Charnes (10.1016/j.compchemeng.2015.04.012_bib0060) 1967; 14 Agresti (10.1016/j.compchemeng.2015.04.012_bib0005) 1998; 52 Calafiore (10.1016/j.compchemeng.2015.04.012_bib0045) 2006; 51 Pagan (10.1016/j.compchemeng.2015.04.012_bib0175) 1999 Lane (10.1016/j.compchemeng.2015.04.012_bib0140) 1973; 9 The MathWorks Inc. (10.1016/j.compchemeng.2015.04.012_bib0235) 2014 Orçun (10.1016/j.compchemeng.2015.04.012_bib0170) 1996; 20 Harrell (10.1016/j.compchemeng.2015.04.012_bib0110) 1982; 69 Nemirovski (10.1016/j.compchemeng.2015.04.012_bib0165) 2006; 17 Ben-Tal (10.1016/j.compchemeng.2015.04.012_bib0015) 2009 Prékopa (10.1016/j.compchemeng.2015.04.012_bib0195) 1995 Racine (10.1016/j.compchemeng.2015.04.012_bib0205) 2008 |
| References_xml | – year: 2007 ident: bib0145 article-title: Nonparametric econometrics: theory and practice. Themes in modern econometrics – volume: 1 start-page: 296 year: 1971 end-page: 297 ident: bib0100 article-title: On a Bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Trans Syst Man Cybern – volume: 9 start-page: 937 year: 1973 end-page: 948 ident: bib0140 article-title: Conditional chance-constrained model for reservoir control publication-title: Water Resour Res – start-page: 349 year: 1993 end-page: 359 ident: bib0225 article-title: Explicit stochastic approach for planning the operation of reservoirs for hydropower production, in: extreme hydrological events: precipitation, floods and droughts publication-title: Proceedings of the Yokohama symposium, international association of hydrological sciences (IAHS) – year: 2011 ident: bib0185 article-title: Approximate dynamic programming: solving the curses of dimensionality. Wiley series in probability and statistics – volume: 52 start-page: 119 year: 1998 end-page: 126 ident: bib0005 article-title: Approximate is better than “exact” for interval estimation of binomial proportions publication-title: Am Stat – year: 2014 ident: bib0210 article-title: SAS – year: 2002 ident: bib0040 article-title: Introduction to time series and forecasting – volume: 17 start-page: 337 year: 1971 end-page: 353 ident: bib0065 article-title: Admissible decision rules for the E-model of chance-constrained programming publication-title: Manag Sci – volume: 14 start-page: 183 year: 1967 end-page: 195 ident: bib0060 article-title: Some special P-models in chance-constrained programming publication-title: Manag Sci – volume: 23 start-page: 83 year: 2013 end-page: 96 ident: bib0160 article-title: Impact of wind integration on electricity markets, a chance-constrained nash cournot model publication-title: Int Trans Electr Energy Syst – volume: 34 start-page: 42 year: 2010 end-page: 58 ident: bib0095 article-title: A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model publication-title: Comput Chem Eng – year: 1999 ident: bib0175 article-title: Nonparametric econometrics. Themes in modern econometrics – year: 2011 ident: bib0030 article-title: Introduction to stochastic programming – year: 2005 ident: bib0135 article-title: Quantile regression – start-page: 5 year: 1966 end-page: 44 ident: bib0055 article-title: Optimal decision rules for the e-model of chance-constrained programming publication-title: Cahiers du Centre d’Études de Recherche Opérationelle, vol. 8 – volume: 53 start-page: 1 year: 2012 end-page: 21 ident: bib0240 article-title: Consistency of the kernel density estimator: a survey publication-title: Stat Pap – volume: 4 start-page: 168 year: 2004 end-page: 179 ident: bib0080 article-title: Confidence intervals for kernel density estimation publication-title: Stata J – volume: 17 start-page: 969 year: 2006 end-page: 996 ident: bib0165 article-title: Convex approximations of chance constrained programs publication-title: SIAM J Optim – year: 2013 ident: bib0130 article-title: Data-driven chance constrained stochastic program. Optimization online – year: 2014 ident: bib0200 article-title: R: a language and environment for statistical computing – volume: 20 start-page: 1284 year: 1974 end-page: 1291 ident: bib0085 article-title: The triangular E-model of chance-constrained programming with stochastic A-matrix publication-title: Manag Sci – volume: 27 year: 2008 ident: bib0120 article-title: Nonparametric econometrics: the np package publication-title: J Stat Softw – year: 2008 ident: bib0205 article-title: Nonparametric econometrics: a primer, vol. 3 – volume: 6 start-page: 73 year: 1959 end-page: 79 ident: bib0050 article-title: Chance-constrained programming publication-title: Manag Sci – volume: 19 start-page: 674 year: 2008 end-page: 699 ident: bib0155 article-title: A sample approximation approach for optimization with probabilistic constraints publication-title: SIAM J Optim – volume: 69 start-page: 635 year: 1982 end-page: 640 ident: bib0110 article-title: A new distribution-free quantile estimator publication-title: Biometrika – start-page: 113 year: 1970 end-page: 138 ident: bib0190 article-title: On probabilistic constrained programming publication-title: Proceedings of the Princeton symposium on mathematical programming – start-page: 1 year: 1936 end-page: 62 ident: bib0035 article-title: Teoria Statistica Delle Classi e Calcolo Delle Probabilità publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, vol. 8 – volume: 20 start-page: S1191 year: 1996 end-page: S1196 ident: bib0170 article-title: Scheduling of batch processes with operational uncertainties publication-title: Comput Chem Eng – year: 2014 ident: bib0230 article-title: Stata 13 – year: 2014 ident: bib0235 article-title: MATLAB – volume: 51 start-page: 742 year: 2006 end-page: 753 ident: bib0045 article-title: The scenario approach to robust control design publication-title: IEEE Trans Autom Control – reference: Harrell FE Jr, with contributions from Dupont C, et al. Hmisc: harrell miscellaneous; 2014. http://CRAN.R-project.org/package=Hmisc, R package version 3, p. 14–23. – volume: 102 start-page: 255 year: 2007 end-page: 268 ident: bib0150 article-title: Quantile regression in reproducing Kernel Hilbert spaces publication-title: J Am Stat Assoc – volume: 129 start-page: 164 year: 2003 end-page: 172 ident: bib0125 article-title: Modeling reservoir irrigation in uncertain hydrologic environment publication-title: J Irrig Drain Eng – year: 2007 ident: bib0090 article-title: Boolean algebra. Dover books on mathematics – year: 1995 ident: bib0195 article-title: Stochastic programming. Mathematics and its applications – year: 2000 ident: bib0070 article-title: Statistical distributions. Wiley series in probability and statistics – year: 2009 ident: bib0015 article-title: Robust optimization – year: 2002 ident: bib0075 article-title: Nonlinear time series: nonparametric and parametric methods. Springer series in statistics – year: 2012 ident: bib0025 article-title: Chance constrained optimal power flow: risk-aware network control under uncertainty. Computing research repository (CoRR) abs/1209.5779 – volume: 41 start-page: 1693 year: 2013 end-page: 2262 ident: bib0105 article-title: A simple bootstrap method for constructing nonparametric confidence bands for functions publication-title: Ann Stat – year: 1986 ident: bib0220 article-title: Density estimation for statistics and data analysis. Monographs on statistics & applied probability – year: 2011 ident: bib0020 article-title: Robust solutions of optimization problems affected by uncertain probabilities. Optimization online – year: 1992 ident: bib0215 article-title: Multivariate density estimation: theory, practice, and visualization. Probability and statistics – year: 2006 ident: bib0180 article-title: Statistical inference based on divergence measures. Statistics: a series of textbooks and monographs – volume: 33 start-page: 1568 year: 2009 end-page: 1583 ident: bib0010 article-title: Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity publication-title: Comput Chem Eng – start-page: 113 year: 1970 ident: 10.1016/j.compchemeng.2015.04.012_bib0190 article-title: On probabilistic constrained programming – year: 2011 ident: 10.1016/j.compchemeng.2015.04.012_bib0030 – start-page: 5 year: 1966 ident: 10.1016/j.compchemeng.2015.04.012_bib0055 article-title: Optimal decision rules for the e-model of chance-constrained programming – volume: 41 start-page: 1693 year: 2013 ident: 10.1016/j.compchemeng.2015.04.012_bib0105 article-title: A simple bootstrap method for constructing nonparametric confidence bands for functions publication-title: Ann Stat doi: 10.1214/13-AOS1137 – ident: 10.1016/j.compchemeng.2015.04.012_bib0115 – year: 2002 ident: 10.1016/j.compchemeng.2015.04.012_bib0040 – volume: 129 start-page: 164 year: 2003 ident: 10.1016/j.compchemeng.2015.04.012_bib0125 article-title: Modeling reservoir irrigation in uncertain hydrologic environment publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(2003)129:3(164) – volume: 6 start-page: 73 year: 1959 ident: 10.1016/j.compchemeng.2015.04.012_bib0050 article-title: Chance-constrained programming publication-title: Manag Sci doi: 10.1287/mnsc.6.1.73 – volume: 69 start-page: 635 year: 1982 ident: 10.1016/j.compchemeng.2015.04.012_bib0110 article-title: A new distribution-free quantile estimator publication-title: Biometrika doi: 10.1093/biomet/69.3.635 – volume: 23 start-page: 83 year: 2013 ident: 10.1016/j.compchemeng.2015.04.012_bib0160 article-title: Impact of wind integration on electricity markets, a chance-constrained nash cournot model publication-title: Int Trans Electr Energy Syst doi: 10.1002/etep.650 – year: 2006 ident: 10.1016/j.compchemeng.2015.04.012_bib0180 – year: 2012 ident: 10.1016/j.compchemeng.2015.04.012_bib0025 – start-page: 349 year: 1993 ident: 10.1016/j.compchemeng.2015.04.012_bib0225 article-title: Explicit stochastic approach for planning the operation of reservoirs for hydropower production, in: extreme hydrological events: precipitation, floods and droughts – volume: 17 start-page: 337 year: 1971 ident: 10.1016/j.compchemeng.2015.04.012_bib0065 article-title: Admissible decision rules for the E-model of chance-constrained programming publication-title: Manag Sci doi: 10.1287/mnsc.17.5.337 – volume: 20 start-page: 1284 year: 1974 ident: 10.1016/j.compchemeng.2015.04.012_bib0085 article-title: The triangular E-model of chance-constrained programming with stochastic A-matrix publication-title: Manag Sci doi: 10.1287/mnsc.20.9.1284 – volume: 34 start-page: 42 year: 2010 ident: 10.1016/j.compchemeng.2015.04.012_bib0095 article-title: A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2009.09.003 – year: 2014 ident: 10.1016/j.compchemeng.2015.04.012_bib0200 – year: 1992 ident: 10.1016/j.compchemeng.2015.04.012_bib0215 – year: 2014 ident: 10.1016/j.compchemeng.2015.04.012_bib0210 – year: 2008 ident: 10.1016/j.compchemeng.2015.04.012_bib0205 – year: 2013 ident: 10.1016/j.compchemeng.2015.04.012_bib0130 – year: 2007 ident: 10.1016/j.compchemeng.2015.04.012_bib0145 – year: 1999 ident: 10.1016/j.compchemeng.2015.04.012_bib0175 – year: 2009 ident: 10.1016/j.compchemeng.2015.04.012_bib0015 – volume: 17 start-page: 969 year: 2006 ident: 10.1016/j.compchemeng.2015.04.012_bib0165 article-title: Convex approximations of chance constrained programs publication-title: SIAM J Optim doi: 10.1137/050622328 – year: 2011 ident: 10.1016/j.compchemeng.2015.04.012_bib0185 – year: 1995 ident: 10.1016/j.compchemeng.2015.04.012_bib0195 – start-page: 1 year: 1936 ident: 10.1016/j.compchemeng.2015.04.012_bib0035 article-title: Teoria Statistica Delle Classi e Calcolo Delle Probabilità – volume: 4 start-page: 168 year: 2004 ident: 10.1016/j.compchemeng.2015.04.012_bib0080 article-title: Confidence intervals for kernel density estimation publication-title: Stata J doi: 10.1177/1536867X0400400207 – volume: 9 start-page: 937 year: 1973 ident: 10.1016/j.compchemeng.2015.04.012_bib0140 article-title: Conditional chance-constrained model for reservoir control publication-title: Water Resour Res doi: 10.1029/WR009i004p00937 – volume: 19 start-page: 674 year: 2008 ident: 10.1016/j.compchemeng.2015.04.012_bib0155 article-title: A sample approximation approach for optimization with probabilistic constraints publication-title: SIAM J Optim doi: 10.1137/070702928 – volume: 53 start-page: 1 year: 2012 ident: 10.1016/j.compchemeng.2015.04.012_bib0240 article-title: Consistency of the kernel density estimator: a survey publication-title: Stat Pap doi: 10.1007/s00362-010-0338-1 – volume: 14 start-page: 183 year: 1967 ident: 10.1016/j.compchemeng.2015.04.012_bib0060 article-title: Some special P-models in chance-constrained programming publication-title: Manag Sci doi: 10.1287/mnsc.14.3.183 – year: 2000 ident: 10.1016/j.compchemeng.2015.04.012_bib0070 – volume: 33 start-page: 1568 year: 2009 ident: 10.1016/j.compchemeng.2015.04.012_bib0010 article-title: Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2009.01.022 – year: 2005 ident: 10.1016/j.compchemeng.2015.04.012_bib0135 – volume: 27 year: 2008 ident: 10.1016/j.compchemeng.2015.04.012_bib0120 article-title: Nonparametric econometrics: the np package publication-title: J Stat Softw doi: 10.18637/jss.v027.i05 – year: 2014 ident: 10.1016/j.compchemeng.2015.04.012_bib0230 – volume: 20 start-page: S1191 year: 1996 ident: 10.1016/j.compchemeng.2015.04.012_bib0170 article-title: Scheduling of batch processes with operational uncertainties publication-title: Comput Chem Eng doi: 10.1016/0098-1354(96)00206-2 – year: 2014 ident: 10.1016/j.compchemeng.2015.04.012_bib0235 – year: 2011 ident: 10.1016/j.compchemeng.2015.04.012_bib0020 – volume: 1 start-page: 296 year: 1971 ident: 10.1016/j.compchemeng.2015.04.012_bib0100 article-title: On a Bicriterion formulation of the problems of integrated system identification and system optimization publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1971.4308298 – volume: 52 start-page: 119 year: 1998 ident: 10.1016/j.compchemeng.2015.04.012_bib0005 article-title: Approximate is better than “exact” for interval estimation of binomial proportions publication-title: Am Stat – volume: 51 start-page: 742 year: 2006 ident: 10.1016/j.compchemeng.2015.04.012_bib0045 article-title: The scenario approach to robust control design publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2006.875041 – year: 2002 ident: 10.1016/j.compchemeng.2015.04.012_bib0075 – volume: 102 start-page: 255 year: 2007 ident: 10.1016/j.compchemeng.2015.04.012_bib0150 article-title: Quantile regression in reproducing Kernel Hilbert spaces publication-title: J Am Stat Assoc doi: 10.1198/016214506000000979 – year: 1986 ident: 10.1016/j.compchemeng.2015.04.012_bib0220 – year: 2007 ident: 10.1016/j.compchemeng.2015.04.012_bib0090 |
| SSID | ssj0002488 |
| Score | 2.38943 |
| Snippet | •Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing... We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Confidence Data-driven chance constraint Density Distribution functions Estimates Kernel smoothing Kernels Mathematical models Optimization Process systems engineering Smoothing ϕ-Divergence |
| Title | Data-driven individual and joint chance-constrained optimization via kernel smoothing |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2015.04.012 https://www.proquest.com/docview/1770284808 |
| Volume | 78 |
| WOSCitedRecordID | wos000355148500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBchHWN7GPtk3Rcq7C3Y-Eu2DHvJtoy1D2WwFvImZEkZyRI7OGnaP6J_9E6WZHstZdlgLyYokSLlfrk7SXe_Q-h9VERpJFPYlqQ5bFDCVHk0TQqPc0VVWgiRyKIpNpGdntLpNP82GFy7XJjdMitLenWVr_-rqKENhK1TZ_9C3O2g0ACvQejwBLHDcy_Bf-Zb7slaa7HRvEu30gfki2pebptcX6E8oT1DXSACXM4KFMfKZmSOdnM--qnqUi1Hm1UFknTWzREa2EIQmwY2wjEOqI7ZsLvYWM5MaWd_7HeRPmCXV7Y287E_ad8Y_-D1JTdBA23jR3vP_90_8fsnFCHRR59h_9BSc5aGsSGLdlrXFO6xatNyzhoDbEq33FLt5pRhoSWz1kuDVenIPNIw1dqv-41O-4aZa4MPXVzbgvWGYnooFiQs0CWrD6KM5HSIDsbHk-lJa9mjhFLHwarXcx8ddfGCd8zrLn_nhuVv3Jmzx-iR3YfgscHPEzRQ5VP0sMdO-Qyd95CEOyRhQBJukIRvIwn3kYQBSdggCbdIeo7Ov0zOPn31bBUOT8R5uPWoFGlByEySDFzfjAckUESAmy9IknHBOWzRuciILGIVKO0gCthjqJlMRRRwcH9foGFZleolwopncUGViGKZ6zJplCQynVH4oMxDKuNDRN1vxYSlqNfTX7I_yuwQRW3XteFp2afTBycQZh1O40gyAN0-3Y-cEBkoZX3TxktVXWxYmGXgtyc0oK_-ZV6v0YPuf_QGDbf1hXqL7onddr6p31lU_gKxfrbo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+individual+and+joint+chance-constrained+optimization+via+kernel+smoothing&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Calfa%2C+B.A.&rft.au=Grossmann%2C+I.E.&rft.au=Agarwal%2C+A.&rft.au=Bury%2C+S.J.&rft.date=2015-07-12&rft.issn=0098-1354&rft.volume=78&rft.spage=51&rft.epage=69&rft_id=info:doi/10.1016%2Fj.compchemeng.2015.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2015_04_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |