Data-driven individual and joint chance-constrained optimization via kernel smoothing

•Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates. W...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & chemical engineering Ročník 78; s. 51 - 69
Hlavní autori: Calfa, B.A., Grossmann, I.E., Agarwal, A., Bury, S.J., Wassick, J.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 12.07.2015
Predmet:
ISSN:0098-1354, 1873-4375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates. We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via ϕ-divergences. We propose a new way of specifying the size of the confidence set (i.e., the ϕ-divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates.
AbstractList We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via -divergences. We propose a new way of specifying the size of the confidence set (i.e., the -divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates.
•Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing estimation.•Initialization scheme for joint chance-constrained problems.•Application in production planning with variability in production rates. We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via ϕ-divergences. We propose a new way of specifying the size of the confidence set (i.e., the ϕ-divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates.
Author Bury, S.J.
Grossmann, I.E.
Wassick, J.M.
Calfa, B.A.
Agarwal, A.
Author_xml – sequence: 1
  givenname: B.A.
  surname: Calfa
  fullname: Calfa, B.A.
  email: bacalfa@cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 2
  givenname: I.E.
  surname: Grossmann
  fullname: Grossmann, I.E.
  email: grossmann@cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
– sequence: 3
  givenname: A.
  surname: Agarwal
  fullname: Agarwal, A.
  email: AAgarwal2@dow.com
  organization: The Dow Chemical Company, Midland, MI 48674, USA
– sequence: 4
  givenname: S.J.
  surname: Bury
  fullname: Bury, S.J.
  email: SJBury@dow.com
  organization: The Dow Chemical Company, Midland, MI 48674, USA
– sequence: 5
  givenname: J.M.
  surname: Wassick
  fullname: Wassick, J.M.
  email: JMWassick@dow.com
  organization: The Dow Chemical Company, Midland, MI 48674, USA
BookMark eNqN0EFvEzEQBWALFYm08B-2Ny67jHftePdUoUChUqVeyNlyx5Nmwq4dbCcS_PpuCIeKU09zee9J812KixADCXEtoZEgl592DcZpj1uaKDw1LUjdgGpAtm_EQvamq1Vn9IVYAAx9LTut3onLnHcA0Kq-X4j1F1dc7RMfKVQcPB_ZH9xYueCrXeRQKty6gFRjDLkkx4F8FfeFJ_7jCsdQHdlVPykFGqs8xVi2HJ7ei7cbN2b68O9eifXt1x-r7_X9w7e71ef7GrtBlrr3uHzUeuO1kXowDjSQRtAGtTIOnZMKHBrtHzsCahUsUYOhjV9iC24Yuivx8by7T_HXgXKxE2ekcXSB4iFbaQy0veqhn6PDOYop5pxoY_eJJ5d-Wwn2RGl39gWlPVFaUHamnLs3_3WRy9_vTyLjqxZW5wWaNY5MyWZkml09J8JifeRXrDwDskKcEw
CitedBy_id crossref_primary_10_1109_TSTE_2016_2541685
crossref_primary_10_1016_j_engappai_2023_106426
crossref_primary_10_1016_j_ijepes_2022_108319
crossref_primary_10_1109_TPWRS_2022_3195127
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1049_rpg2_12664
crossref_primary_10_1061__ASCE_EM_1943_7889_0001889
crossref_primary_10_1016_j_compchemeng_2016_11_011
crossref_primary_10_1016_j_ress_2021_107900
crossref_primary_10_1016_j_epsr_2025_111573
crossref_primary_10_3390_en14165161
crossref_primary_10_1002_oca_2445
crossref_primary_10_1007_s11042_020_09718_4
crossref_primary_10_1049_rpg2_13082
crossref_primary_10_1109_TII_2019_2932078
crossref_primary_10_1016_j_bbrc_2016_01_125
crossref_primary_10_1016_j_compchemeng_2025_109145
crossref_primary_10_1016_j_compchemeng_2024_108632
crossref_primary_10_1109_TETCI_2019_2915813
crossref_primary_10_1016_j_cherd_2018_08_006
crossref_primary_10_1016_j_compchemeng_2017_10_039
crossref_primary_10_1360_SSI_2025_0115
crossref_primary_10_1109_TSG_2020_2993781
crossref_primary_10_1134_S0040579517060136
crossref_primary_10_1109_TCSS_2021_3127751
crossref_primary_10_1109_TIA_2021_3105364
crossref_primary_10_1134_S0040579520010133
crossref_primary_10_1016_j_engappai_2022_105024
crossref_primary_10_1002_oca_2675
crossref_primary_10_1016_j_compchemeng_2023_108170
crossref_primary_10_1016_j_cjche_2017_09_010
crossref_primary_10_1016_j_compchemeng_2017_09_007
crossref_primary_10_1088_1755_1315_288_1_012101
crossref_primary_10_1515_revce_2018_0067
crossref_primary_10_1016_j_compchemeng_2018_02_007
crossref_primary_10_1016_j_compchemeng_2018_04_013
crossref_primary_10_1016_j_compchemeng_2017_10_024
crossref_primary_10_1016_j_cor_2021_105398
crossref_primary_10_1002_aic_15717
crossref_primary_10_1016_j_coche_2019_10_002
crossref_primary_10_1016_j_eng_2025_05_019
crossref_primary_10_1109_LCSYS_2020_2998857
crossref_primary_10_1007_s11075_022_01425_5
crossref_primary_10_1016_j_compchemeng_2017_12_015
crossref_primary_10_1016_j_compchemeng_2020_106868
crossref_primary_10_1016_j_compchemeng_2023_108407
crossref_primary_10_1002_rnc_6362
crossref_primary_10_1016_j_cor_2023_106260
Cites_doi 10.1214/13-AOS1137
10.1061/(ASCE)0733-9437(2003)129:3(164)
10.1287/mnsc.6.1.73
10.1093/biomet/69.3.635
10.1002/etep.650
10.1287/mnsc.17.5.337
10.1287/mnsc.20.9.1284
10.1016/j.compchemeng.2009.09.003
10.1137/050622328
10.1177/1536867X0400400207
10.1029/WR009i004p00937
10.1137/070702928
10.1007/s00362-010-0338-1
10.1287/mnsc.14.3.183
10.1016/j.compchemeng.2009.01.022
10.18637/jss.v027.i05
10.1016/0098-1354(96)00206-2
10.1109/TSMC.1971.4308298
10.1109/TAC.2006.875041
10.1198/016214506000000979
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compchemeng.2015.04.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
EndPage 69
ExternalDocumentID 10_1016_j_compchemeng_2015_04_012
S0098135415001131
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
ZY4
~HD
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-8dc6b55fd571597a050e5c057c547acaa140ac75db3e0e2406c507efd6c20a993
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355148500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sun Nov 09 10:21:01 EST 2025
Sat Nov 29 05:10:49 EST 2025
Tue Nov 18 22:31:38 EST 2025
Fri Feb 23 02:26:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data-driven chance constraint
90C90
90C15
ϕ-Divergence
Process systems engineering
Kernel smoothing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-8dc6b55fd571597a050e5c057c547acaa140ac75db3e0e2406c507efd6c20a993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770284808
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1770284808
crossref_primary_10_1016_j_compchemeng_2015_04_012
crossref_citationtrail_10_1016_j_compchemeng_2015_04_012
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2015_04_012
PublicationCentury 2000
PublicationDate 2015-07-12
PublicationDateYYYYMMDD 2015-07-12
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-12
  day: 12
PublicationDecade 2010
PublicationTitle Computers & chemical engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goodstein (bib0090) 2007
Bonferroni (bib0035) 1936
Agresti, Coull (bib0005) 1998; 52
Arellano-Garcia, Wozny (bib0010) 2009; 33
StataCorp LP (bib0230) 2014
Gochet, Padberg (bib0085) 1974; 20
Orçun, Altinel, Hortaçsu (bib0170) 1996; 20
SAS Institute I. (bib0210) 2014
Mazadi, Rosehart, Zareipour, Malik, Oloomi (bib0160) 2013; 23
The MathWorks Inc. (bib0235) 2014
Pagan, Ullah (bib0175) 1999
Birge, Louveaux (bib0030) 2011
Calafiore, Campi (bib0045) 2006; 51
Jiang, Guan (bib0130) 2013
Pardo (bib0180) 2006
Brockwell, Davis (bib0040) 2002
Bienstock, Chertkov, Harnett (bib0025) 2012
Ben-Tal, den Hertog, De Waegenaere, Melenberg, Rennen (bib0020) 2011
Charnes, Kirby (bib0060) 1967; 14
Ben-Tal, Ghaoui, Nemirovski (bib0015) 2009
Harrell FE Jr, with contributions from Dupont C, et al. Hmisc: harrell miscellaneous; 2014. http://CRAN.R-project.org/package=Hmisc, R package version 3, p. 14–23.
Hayfield, Racine (bib0120) 2008; 27
Koenker (bib0135) 2005
Harrell, Davis (bib0110) 1982; 69
Scott (bib0215) 1992
Nemirovski, Shapiro (bib0165) 2006; 17
R Core Team (bib0200) 2014
Eisner, Kaplan, Soden (bib0065) 1971; 17
Prékopa (bib0190) 1970
Hall, Horowitz (bib0105) 2013; 41
Silverman (bib0220) 1986
Charnes, Kirby (bib0055) 1966
Fan, Yao (bib0075) 2002
Prékopa (bib0195) 1995
Guillén-Gosálbez, Grossmann (bib0095) 2010; 34
Haimes, Lasdon, Wismer (bib0100) 1971; 1
Jairaj, Vedula (bib0125) 2003; 129
Charnes, Cooper (bib0050) 1959; 6
Evans, Hastings, Peacock (bib0070) 2000
Powell (bib0185) 2011
Li, Liu, Zhu (bib0150) 2007; 102
Wied, Weißbach (bib0240) 2012; 53
Racine (bib0205) 2008
Li, Racine (bib0145) 2007
Simonovic, Srinivasan (bib0225) 1993
Fiorio (bib0080) 2004; 4
Lane (bib0140) 1973; 9
Luedtke, Ahmed (bib0155) 2008; 19
Bienstock (10.1016/j.compchemeng.2015.04.012_bib0025) 2012
10.1016/j.compchemeng.2015.04.012_bib0115
StataCorp LP (10.1016/j.compchemeng.2015.04.012_bib0230) 2014
Hall (10.1016/j.compchemeng.2015.04.012_bib0105) 2013; 41
Eisner (10.1016/j.compchemeng.2015.04.012_bib0065) 1971; 17
Fan (10.1016/j.compchemeng.2015.04.012_bib0075) 2002
Gochet (10.1016/j.compchemeng.2015.04.012_bib0085) 1974; 20
Jiang (10.1016/j.compchemeng.2015.04.012_bib0130) 2013
Powell (10.1016/j.compchemeng.2015.04.012_bib0185) 2011
Simonovic (10.1016/j.compchemeng.2015.04.012_bib0225) 1993
Arellano-Garcia (10.1016/j.compchemeng.2015.04.012_bib0010) 2009; 33
Koenker (10.1016/j.compchemeng.2015.04.012_bib0135) 2005
Li (10.1016/j.compchemeng.2015.04.012_bib0150) 2007; 102
Evans (10.1016/j.compchemeng.2015.04.012_bib0070) 2000
Charnes (10.1016/j.compchemeng.2015.04.012_bib0050) 1959; 6
Fiorio (10.1016/j.compchemeng.2015.04.012_bib0080) 2004; 4
Jairaj (10.1016/j.compchemeng.2015.04.012_bib0125) 2003; 129
Luedtke (10.1016/j.compchemeng.2015.04.012_bib0155) 2008; 19
Pardo (10.1016/j.compchemeng.2015.04.012_bib0180) 2006
R Core Team (10.1016/j.compchemeng.2015.04.012_bib0200) 2014
Charnes (10.1016/j.compchemeng.2015.04.012_bib0055) 1966
Li (10.1016/j.compchemeng.2015.04.012_bib0145) 2007
Wied (10.1016/j.compchemeng.2015.04.012_bib0240) 2012; 53
Silverman (10.1016/j.compchemeng.2015.04.012_bib0220) 1986
Bonferroni (10.1016/j.compchemeng.2015.04.012_bib0035) 1936
Mazadi (10.1016/j.compchemeng.2015.04.012_bib0160) 2013; 23
Prékopa (10.1016/j.compchemeng.2015.04.012_bib0190) 1970
SAS Institute I. (10.1016/j.compchemeng.2015.04.012_bib0210) 2014
Birge (10.1016/j.compchemeng.2015.04.012_bib0030) 2011
Guillén-Gosálbez (10.1016/j.compchemeng.2015.04.012_bib0095) 2010; 34
Hayfield (10.1016/j.compchemeng.2015.04.012_bib0120) 2008; 27
Brockwell (10.1016/j.compchemeng.2015.04.012_bib0040) 2002
Haimes (10.1016/j.compchemeng.2015.04.012_bib0100) 1971; 1
Scott (10.1016/j.compchemeng.2015.04.012_bib0215) 1992
Ben-Tal (10.1016/j.compchemeng.2015.04.012_bib0020) 2011
Goodstein (10.1016/j.compchemeng.2015.04.012_bib0090) 2007
Charnes (10.1016/j.compchemeng.2015.04.012_bib0060) 1967; 14
Agresti (10.1016/j.compchemeng.2015.04.012_bib0005) 1998; 52
Calafiore (10.1016/j.compchemeng.2015.04.012_bib0045) 2006; 51
Pagan (10.1016/j.compchemeng.2015.04.012_bib0175) 1999
Lane (10.1016/j.compchemeng.2015.04.012_bib0140) 1973; 9
The MathWorks Inc. (10.1016/j.compchemeng.2015.04.012_bib0235) 2014
Orçun (10.1016/j.compchemeng.2015.04.012_bib0170) 1996; 20
Harrell (10.1016/j.compchemeng.2015.04.012_bib0110) 1982; 69
Nemirovski (10.1016/j.compchemeng.2015.04.012_bib0165) 2006; 17
Ben-Tal (10.1016/j.compchemeng.2015.04.012_bib0015) 2009
Prékopa (10.1016/j.compchemeng.2015.04.012_bib0195) 1995
Racine (10.1016/j.compchemeng.2015.04.012_bib0205) 2008
References_xml – year: 2007
  ident: bib0145
  article-title: Nonparametric econometrics: theory and practice. Themes in modern econometrics
– volume: 1
  start-page: 296
  year: 1971
  end-page: 297
  ident: bib0100
  article-title: On a Bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Trans Syst Man Cybern
– volume: 9
  start-page: 937
  year: 1973
  end-page: 948
  ident: bib0140
  article-title: Conditional chance-constrained model for reservoir control
  publication-title: Water Resour Res
– start-page: 349
  year: 1993
  end-page: 359
  ident: bib0225
  article-title: Explicit stochastic approach for planning the operation of reservoirs for hydropower production, in: extreme hydrological events: precipitation, floods and droughts
  publication-title: Proceedings of the Yokohama symposium, international association of hydrological sciences (IAHS)
– year: 2011
  ident: bib0185
  article-title: Approximate dynamic programming: solving the curses of dimensionality. Wiley series in probability and statistics
– volume: 52
  start-page: 119
  year: 1998
  end-page: 126
  ident: bib0005
  article-title: Approximate is better than “exact” for interval estimation of binomial proportions
  publication-title: Am Stat
– year: 2014
  ident: bib0210
  article-title: SAS
– year: 2002
  ident: bib0040
  article-title: Introduction to time series and forecasting
– volume: 17
  start-page: 337
  year: 1971
  end-page: 353
  ident: bib0065
  article-title: Admissible decision rules for the E-model of chance-constrained programming
  publication-title: Manag Sci
– volume: 14
  start-page: 183
  year: 1967
  end-page: 195
  ident: bib0060
  article-title: Some special P-models in chance-constrained programming
  publication-title: Manag Sci
– volume: 23
  start-page: 83
  year: 2013
  end-page: 96
  ident: bib0160
  article-title: Impact of wind integration on electricity markets, a chance-constrained nash cournot model
  publication-title: Int Trans Electr Energy Syst
– volume: 34
  start-page: 42
  year: 2010
  end-page: 58
  ident: bib0095
  article-title: A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model
  publication-title: Comput Chem Eng
– year: 1999
  ident: bib0175
  article-title: Nonparametric econometrics. Themes in modern econometrics
– year: 2011
  ident: bib0030
  article-title: Introduction to stochastic programming
– year: 2005
  ident: bib0135
  article-title: Quantile regression
– start-page: 5
  year: 1966
  end-page: 44
  ident: bib0055
  article-title: Optimal decision rules for the e-model of chance-constrained programming
  publication-title: Cahiers du Centre d’Études de Recherche Opérationelle, vol. 8
– volume: 53
  start-page: 1
  year: 2012
  end-page: 21
  ident: bib0240
  article-title: Consistency of the kernel density estimator: a survey
  publication-title: Stat Pap
– volume: 4
  start-page: 168
  year: 2004
  end-page: 179
  ident: bib0080
  article-title: Confidence intervals for kernel density estimation
  publication-title: Stata J
– volume: 17
  start-page: 969
  year: 2006
  end-page: 996
  ident: bib0165
  article-title: Convex approximations of chance constrained programs
  publication-title: SIAM J Optim
– year: 2013
  ident: bib0130
  article-title: Data-driven chance constrained stochastic program. Optimization online
– year: 2014
  ident: bib0200
  article-title: R: a language and environment for statistical computing
– volume: 20
  start-page: 1284
  year: 1974
  end-page: 1291
  ident: bib0085
  article-title: The triangular E-model of chance-constrained programming with stochastic A-matrix
  publication-title: Manag Sci
– volume: 27
  year: 2008
  ident: bib0120
  article-title: Nonparametric econometrics: the np package
  publication-title: J Stat Softw
– year: 2008
  ident: bib0205
  article-title: Nonparametric econometrics: a primer, vol. 3
– volume: 6
  start-page: 73
  year: 1959
  end-page: 79
  ident: bib0050
  article-title: Chance-constrained programming
  publication-title: Manag Sci
– volume: 19
  start-page: 674
  year: 2008
  end-page: 699
  ident: bib0155
  article-title: A sample approximation approach for optimization with probabilistic constraints
  publication-title: SIAM J Optim
– volume: 69
  start-page: 635
  year: 1982
  end-page: 640
  ident: bib0110
  article-title: A new distribution-free quantile estimator
  publication-title: Biometrika
– start-page: 113
  year: 1970
  end-page: 138
  ident: bib0190
  article-title: On probabilistic constrained programming
  publication-title: Proceedings of the Princeton symposium on mathematical programming
– start-page: 1
  year: 1936
  end-page: 62
  ident: bib0035
  article-title: Teoria Statistica Delle Classi e Calcolo Delle Probabilità
  publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, vol. 8
– volume: 20
  start-page: S1191
  year: 1996
  end-page: S1196
  ident: bib0170
  article-title: Scheduling of batch processes with operational uncertainties
  publication-title: Comput Chem Eng
– year: 2014
  ident: bib0230
  article-title: Stata 13
– year: 2014
  ident: bib0235
  article-title: MATLAB
– volume: 51
  start-page: 742
  year: 2006
  end-page: 753
  ident: bib0045
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans Autom Control
– reference: Harrell FE Jr, with contributions from Dupont C, et al. Hmisc: harrell miscellaneous; 2014. http://CRAN.R-project.org/package=Hmisc, R package version 3, p. 14–23.
– volume: 102
  start-page: 255
  year: 2007
  end-page: 268
  ident: bib0150
  article-title: Quantile regression in reproducing Kernel Hilbert spaces
  publication-title: J Am Stat Assoc
– volume: 129
  start-page: 164
  year: 2003
  end-page: 172
  ident: bib0125
  article-title: Modeling reservoir irrigation in uncertain hydrologic environment
  publication-title: J Irrig Drain Eng
– year: 2007
  ident: bib0090
  article-title: Boolean algebra. Dover books on mathematics
– year: 1995
  ident: bib0195
  article-title: Stochastic programming. Mathematics and its applications
– year: 2000
  ident: bib0070
  article-title: Statistical distributions. Wiley series in probability and statistics
– year: 2009
  ident: bib0015
  article-title: Robust optimization
– year: 2002
  ident: bib0075
  article-title: Nonlinear time series: nonparametric and parametric methods. Springer series in statistics
– year: 2012
  ident: bib0025
  article-title: Chance constrained optimal power flow: risk-aware network control under uncertainty. Computing research repository (CoRR) abs/1209.5779
– volume: 41
  start-page: 1693
  year: 2013
  end-page: 2262
  ident: bib0105
  article-title: A simple bootstrap method for constructing nonparametric confidence bands for functions
  publication-title: Ann Stat
– year: 1986
  ident: bib0220
  article-title: Density estimation for statistics and data analysis. Monographs on statistics & applied probability
– year: 2011
  ident: bib0020
  article-title: Robust solutions of optimization problems affected by uncertain probabilities. Optimization online
– year: 1992
  ident: bib0215
  article-title: Multivariate density estimation: theory, practice, and visualization. Probability and statistics
– year: 2006
  ident: bib0180
  article-title: Statistical inference based on divergence measures. Statistics: a series of textbooks and monographs
– volume: 33
  start-page: 1568
  year: 2009
  end-page: 1583
  ident: bib0010
  article-title: Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity
  publication-title: Comput Chem Eng
– start-page: 113
  year: 1970
  ident: 10.1016/j.compchemeng.2015.04.012_bib0190
  article-title: On probabilistic constrained programming
– year: 2011
  ident: 10.1016/j.compchemeng.2015.04.012_bib0030
– start-page: 5
  year: 1966
  ident: 10.1016/j.compchemeng.2015.04.012_bib0055
  article-title: Optimal decision rules for the e-model of chance-constrained programming
– volume: 41
  start-page: 1693
  year: 2013
  ident: 10.1016/j.compchemeng.2015.04.012_bib0105
  article-title: A simple bootstrap method for constructing nonparametric confidence bands for functions
  publication-title: Ann Stat
  doi: 10.1214/13-AOS1137
– ident: 10.1016/j.compchemeng.2015.04.012_bib0115
– year: 2002
  ident: 10.1016/j.compchemeng.2015.04.012_bib0040
– volume: 129
  start-page: 164
  year: 2003
  ident: 10.1016/j.compchemeng.2015.04.012_bib0125
  article-title: Modeling reservoir irrigation in uncertain hydrologic environment
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(2003)129:3(164)
– volume: 6
  start-page: 73
  year: 1959
  ident: 10.1016/j.compchemeng.2015.04.012_bib0050
  article-title: Chance-constrained programming
  publication-title: Manag Sci
  doi: 10.1287/mnsc.6.1.73
– volume: 69
  start-page: 635
  year: 1982
  ident: 10.1016/j.compchemeng.2015.04.012_bib0110
  article-title: A new distribution-free quantile estimator
  publication-title: Biometrika
  doi: 10.1093/biomet/69.3.635
– volume: 23
  start-page: 83
  year: 2013
  ident: 10.1016/j.compchemeng.2015.04.012_bib0160
  article-title: Impact of wind integration on electricity markets, a chance-constrained nash cournot model
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1002/etep.650
– year: 2006
  ident: 10.1016/j.compchemeng.2015.04.012_bib0180
– year: 2012
  ident: 10.1016/j.compchemeng.2015.04.012_bib0025
– start-page: 349
  year: 1993
  ident: 10.1016/j.compchemeng.2015.04.012_bib0225
  article-title: Explicit stochastic approach for planning the operation of reservoirs for hydropower production, in: extreme hydrological events: precipitation, floods and droughts
– volume: 17
  start-page: 337
  year: 1971
  ident: 10.1016/j.compchemeng.2015.04.012_bib0065
  article-title: Admissible decision rules for the E-model of chance-constrained programming
  publication-title: Manag Sci
  doi: 10.1287/mnsc.17.5.337
– volume: 20
  start-page: 1284
  year: 1974
  ident: 10.1016/j.compchemeng.2015.04.012_bib0085
  article-title: The triangular E-model of chance-constrained programming with stochastic A-matrix
  publication-title: Manag Sci
  doi: 10.1287/mnsc.20.9.1284
– volume: 34
  start-page: 42
  year: 2010
  ident: 10.1016/j.compchemeng.2015.04.012_bib0095
  article-title: A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2009.09.003
– year: 2014
  ident: 10.1016/j.compchemeng.2015.04.012_bib0200
– year: 1992
  ident: 10.1016/j.compchemeng.2015.04.012_bib0215
– year: 2014
  ident: 10.1016/j.compchemeng.2015.04.012_bib0210
– year: 2008
  ident: 10.1016/j.compchemeng.2015.04.012_bib0205
– year: 2013
  ident: 10.1016/j.compchemeng.2015.04.012_bib0130
– year: 2007
  ident: 10.1016/j.compchemeng.2015.04.012_bib0145
– year: 1999
  ident: 10.1016/j.compchemeng.2015.04.012_bib0175
– year: 2009
  ident: 10.1016/j.compchemeng.2015.04.012_bib0015
– volume: 17
  start-page: 969
  year: 2006
  ident: 10.1016/j.compchemeng.2015.04.012_bib0165
  article-title: Convex approximations of chance constrained programs
  publication-title: SIAM J Optim
  doi: 10.1137/050622328
– year: 2011
  ident: 10.1016/j.compchemeng.2015.04.012_bib0185
– year: 1995
  ident: 10.1016/j.compchemeng.2015.04.012_bib0195
– start-page: 1
  year: 1936
  ident: 10.1016/j.compchemeng.2015.04.012_bib0035
  article-title: Teoria Statistica Delle Classi e Calcolo Delle Probabilità
– volume: 4
  start-page: 168
  year: 2004
  ident: 10.1016/j.compchemeng.2015.04.012_bib0080
  article-title: Confidence intervals for kernel density estimation
  publication-title: Stata J
  doi: 10.1177/1536867X0400400207
– volume: 9
  start-page: 937
  year: 1973
  ident: 10.1016/j.compchemeng.2015.04.012_bib0140
  article-title: Conditional chance-constrained model for reservoir control
  publication-title: Water Resour Res
  doi: 10.1029/WR009i004p00937
– volume: 19
  start-page: 674
  year: 2008
  ident: 10.1016/j.compchemeng.2015.04.012_bib0155
  article-title: A sample approximation approach for optimization with probabilistic constraints
  publication-title: SIAM J Optim
  doi: 10.1137/070702928
– volume: 53
  start-page: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2015.04.012_bib0240
  article-title: Consistency of the kernel density estimator: a survey
  publication-title: Stat Pap
  doi: 10.1007/s00362-010-0338-1
– volume: 14
  start-page: 183
  year: 1967
  ident: 10.1016/j.compchemeng.2015.04.012_bib0060
  article-title: Some special P-models in chance-constrained programming
  publication-title: Manag Sci
  doi: 10.1287/mnsc.14.3.183
– year: 2000
  ident: 10.1016/j.compchemeng.2015.04.012_bib0070
– volume: 33
  start-page: 1568
  year: 2009
  ident: 10.1016/j.compchemeng.2015.04.012_bib0010
  article-title: Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2009.01.022
– year: 2005
  ident: 10.1016/j.compchemeng.2015.04.012_bib0135
– volume: 27
  year: 2008
  ident: 10.1016/j.compchemeng.2015.04.012_bib0120
  article-title: Nonparametric econometrics: the np package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v027.i05
– year: 2014
  ident: 10.1016/j.compchemeng.2015.04.012_bib0230
– volume: 20
  start-page: S1191
  year: 1996
  ident: 10.1016/j.compchemeng.2015.04.012_bib0170
  article-title: Scheduling of batch processes with operational uncertainties
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(96)00206-2
– year: 2014
  ident: 10.1016/j.compchemeng.2015.04.012_bib0235
– year: 2011
  ident: 10.1016/j.compchemeng.2015.04.012_bib0020
– volume: 1
  start-page: 296
  year: 1971
  ident: 10.1016/j.compchemeng.2015.04.012_bib0100
  article-title: On a Bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1971.4308298
– volume: 52
  start-page: 119
  year: 1998
  ident: 10.1016/j.compchemeng.2015.04.012_bib0005
  article-title: Approximate is better than “exact” for interval estimation of binomial proportions
  publication-title: Am Stat
– volume: 51
  start-page: 742
  year: 2006
  ident: 10.1016/j.compchemeng.2015.04.012_bib0045
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2006.875041
– year: 2002
  ident: 10.1016/j.compchemeng.2015.04.012_bib0075
– volume: 102
  start-page: 255
  year: 2007
  ident: 10.1016/j.compchemeng.2015.04.012_bib0150
  article-title: Quantile regression in reproducing Kernel Hilbert spaces
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000979
– year: 1986
  ident: 10.1016/j.compchemeng.2015.04.012_bib0220
– year: 2007
  ident: 10.1016/j.compchemeng.2015.04.012_bib0090
SSID ssj0002488
Score 2.38943
Snippet •Reformulation of individual and joint chance constraints using kernel smoothing.•Method to calculate the divergence tolerance based on kernel smoothing...
We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Confidence
Data-driven chance constraint
Density
Distribution functions
Estimates
Kernel smoothing
Kernels
Mathematical models
Optimization
Process systems engineering
Smoothing
ϕ-Divergence
Title Data-driven individual and joint chance-constrained optimization via kernel smoothing
URI https://dx.doi.org/10.1016/j.compchemeng.2015.04.012
https://www.proquest.com/docview/1770284808
Volume 78
WOSCitedRecordID wos000355148500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBchHWN7GPtk3Rcq7C3Y-Eu2DHvJtoy1D2WwFvImZEkZyRI7OGnaP6J_9E6WZHstZdlgLyYokSLlfrk7SXe_Q-h9VERpJFPYlqQ5bFDCVHk0TQqPc0VVWgiRyKIpNpGdntLpNP82GFy7XJjdMitLenWVr_-rqKENhK1TZ_9C3O2g0ACvQejwBLHDcy_Bf-Zb7slaa7HRvEu30gfki2pebptcX6E8oT1DXSACXM4KFMfKZmSOdnM--qnqUi1Hm1UFknTWzREa2EIQmwY2wjEOqI7ZsLvYWM5MaWd_7HeRPmCXV7Y287E_ad8Y_-D1JTdBA23jR3vP_90_8fsnFCHRR59h_9BSc5aGsSGLdlrXFO6xatNyzhoDbEq33FLt5pRhoSWz1kuDVenIPNIw1dqv-41O-4aZa4MPXVzbgvWGYnooFiQs0CWrD6KM5HSIDsbHk-lJa9mjhFLHwarXcx8ddfGCd8zrLn_nhuVv3Jmzx-iR3YfgscHPEzRQ5VP0sMdO-Qyd95CEOyRhQBJukIRvIwn3kYQBSdggCbdIeo7Ov0zOPn31bBUOT8R5uPWoFGlByEySDFzfjAckUESAmy9IknHBOWzRuciILGIVKO0gCthjqJlMRRRwcH9foGFZleolwopncUGViGKZ6zJplCQynVH4oMxDKuNDRN1vxYSlqNfTX7I_yuwQRW3XteFp2afTBycQZh1O40gyAN0-3Y-cEBkoZX3TxktVXWxYmGXgtyc0oK_-ZV6v0YPuf_QGDbf1hXqL7onddr6p31lU_gKxfrbo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+individual+and+joint+chance-constrained+optimization+via+kernel+smoothing&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Calfa%2C+B.A.&rft.au=Grossmann%2C+I.E.&rft.au=Agarwal%2C+A.&rft.au=Bury%2C+S.J.&rft.date=2015-07-12&rft.issn=0098-1354&rft.volume=78&rft.spage=51&rft.epage=69&rft_id=info:doi/10.1016%2Fj.compchemeng.2015.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2015_04_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon