Detection of Outliers and Extreme Events of Ground Level Particulate Matter Using DBSCAN Algorithm with Local Parameters

The critical negative effects of the particulate matter (PM) on human health are proven and hence the studies on the subject are increasing. Besides the health studies vast majority of the researches on particulate matter levels focuses on future projection and forecasting of the particulate matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution Jg. 233; H. 6; S. 203
Hauptverfasser: Aslan, Meryem Ezgi, Onut, Semih
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2022
Springer
Springer Nature B.V
Schlagworte:
ISSN:0049-6979, 1573-2932
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The critical negative effects of the particulate matter (PM) on human health are proven and hence the studies on the subject are increasing. Besides the health studies vast majority of the researches on particulate matter levels focuses on future projection and forecasting of the particulate matter concentrations. The data includes considerable amount of abnormal measurements. To perform an eligible analysis and prediction, a proper outlier analysis process is essential. However the studies focused on outlier identification in PM data are relatively few. This paper focuses on finding outliers and extreme events in ground level PM10 (particles smaller than or equal to 10 μm in diameter) data using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. The results show the effectiveness of the method to identify noise and extreme events.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-022-05679-6