Multi-objective optimization with convex quadratic cost functions: A multi-parametric programming approach

•Formulation of the multi-objective optimization problem as a multi-parametric QCQP.•Derivation of suitable affine overestimators with a guaranteed bound of suboptimality.•Solution of the resulting mp-QP problem with state-of-the-art solvers, thus obtaining the Pareto front explicitly.•Numerical exa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 85; s. 36 - 39
Hlavní autoři: Oberdieck, Richard, Pistikopoulos, Efstratios N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 02.02.2016
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Formulation of the multi-objective optimization problem as a multi-parametric QCQP.•Derivation of suitable affine overestimators with a guaranteed bound of suboptimality.•Solution of the resulting mp-QP problem with state-of-the-art solvers, thus obtaining the Pareto front explicitly.•Numerical examples highlight the capabilities of this approach. In this note we present an approximate algorithm for the explicit calculation of the Pareto front for multi-objective optimization problems featuring convex quadratic cost functions and linear constraints based on multi-parametric programming and employing a set of suitable overestimators with tunable suboptimality. A numerical example as well as a small computational study highlight the features of the novel algorithm.
AbstractList In this note we present an approximate algorithm for the explicit calculation of the Pareto front for multi-objective optimization problems featuring convex quadratic cost functions and linear constraints based on multi-parametric programming and employing a set of suitable overestimators with tunable suboptimality. A numerical example as well as a small computational study highlight the features of the novel algorithm.
•Formulation of the multi-objective optimization problem as a multi-parametric QCQP.•Derivation of suitable affine overestimators with a guaranteed bound of suboptimality.•Solution of the resulting mp-QP problem with state-of-the-art solvers, thus obtaining the Pareto front explicitly.•Numerical examples highlight the capabilities of this approach. In this note we present an approximate algorithm for the explicit calculation of the Pareto front for multi-objective optimization problems featuring convex quadratic cost functions and linear constraints based on multi-parametric programming and employing a set of suitable overestimators with tunable suboptimality. A numerical example as well as a small computational study highlight the features of the novel algorithm.
Author Pistikopoulos, Efstratios N.
Oberdieck, Richard
Author_xml – sequence: 1
  givenname: Richard
  surname: Oberdieck
  fullname: Oberdieck, Richard
  organization: Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Efstratios N.
  surname: Pistikopoulos
  fullname: Pistikopoulos, Efstratios N.
  email: stratos@tamu.edu
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
BookMark eNqNkTFv2zAQhYkiAeo4_Q_qlkUOKUoW2SUIjLYpkKJLMhPk6WxTkEiFpNy0vz503KHIlOlwj-_egd9dkDPnHRLymdEVo2x93a_AjxPscUS3W1WUNVlfUcY-kAUTLS9r3jZnZEGpFCXjTf2RXMTYU0qrWogF6X_OQ7KlNz1Csgcs_JTsaP_qZL0rftu0L8C7Az4XT7PuQpYhCzEV29nB0RO_FLfF-Boy6aBHTCFbpuB3uRmt2xV6yp2G_SU53-oh4qd_dUkev3192NyV97--_9jc3pfAJUulaBBRQ2dwy7rWcM0kAopKGlaBwK6VVW0otByNQAFtizWXlNZrA9Ssa8OX5OqUm9c-zRiTGm0EHAbt0M9RsVbySjacr7P15mSF4GMMuFVg0-vXU9B2UIyqI2XVq_8oqyPl41OmnBPkm4Qp2FGHP--a3ZxmMdM4WAwqgkUH2NmQr6E6b9-R8gLegqVt
CitedBy_id crossref_primary_10_3389_fict_2018_00032
crossref_primary_10_1002_acs_3603
crossref_primary_10_1155_2022_1044800
crossref_primary_10_1007_s11571_023_09998_0
crossref_primary_10_1016_j_cherd_2016_09_034
crossref_primary_10_1016_j_compchemeng_2017_01_033
crossref_primary_10_1007_s10479_022_05123_2
crossref_primary_10_1109_TAC_2021_3128466
crossref_primary_10_3390_en10040549
crossref_primary_10_3390_en11041002
crossref_primary_10_1016_j_eswa_2022_116663
crossref_primary_10_1007_s10479_022_04975_y
crossref_primary_10_1049_pel2_12663
crossref_primary_10_1007_s11771_017_3561_2
crossref_primary_10_1016_j_compchemeng_2017_02_016
crossref_primary_10_1021_acs_iecr_6b01913
crossref_primary_10_1016_j_apenergy_2016_05_082
crossref_primary_10_1007_s10898_016_0463_z
crossref_primary_10_1007_s10898_023_01351_3
crossref_primary_10_1002_mcda_1690
crossref_primary_10_1007_s00500_025_10550_x
crossref_primary_10_1016_j_compchemeng_2024_108903
crossref_primary_10_1109_TSP_2018_2791980
Cites_doi 10.1016/j.compchemeng.2014.12.012
10.1002/nav.3800020106
10.1016/S0005-1098(01)00174-1
10.1080/10556780903239568
10.1007/s00158-003-0368-6
10.1007/BF01580665
10.1007/BF00539118
10.1021/ie970720n
10.1016/j.compchemeng.2014.04.003
10.1016/j.compchemeng.2015.07.013
10.1016/j.compchemeng.2015.01.013
10.1287/mnsc.23.2.159
10.1016/j.automatica.2011.06.019
10.1016/0377-2217(95)00040-2
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compchemeng.2015.10.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
EndPage 39
ExternalDocumentID 10_1016_j_compchemeng_2015_10_011
S0098135415003269
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
ZY4
~HD
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-85eeeacdbef1d7b3a19ece829b12c8ed7924b0c73eb8e8c77e4390046bc0b64b3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368540100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Sep 27 17:19:07 EDT 2025
Tue Nov 18 21:37:42 EST 2025
Sat Nov 29 05:10:49 EST 2025
Fri Feb 23 02:26:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Explicit Pareto front calculation
Multi-parametric programming
Multi-objective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-85eeeacdbef1d7b3a19ece829b12c8ed7924b0c73eb8e8c77e4390046bc0b64b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793295336
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1793295336
crossref_citationtrail_10_1016_j_compchemeng_2015_10_011
crossref_primary_10_1016_j_compchemeng_2015_10_011
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2015_10_011
PublicationCentury 2000
PublicationDate 2016-02-02
PublicationDateYYYYMMDD 2016-02-02
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-02
  day: 02
PublicationDecade 2010
PublicationTitle Computers & chemical engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gupta, Bhartiya, Nataraj (bib0045) 2011; 47
Goh, Yang (bib0040) 1996; 92
Miettinen (bib0065) 1998
Gass, Saaty (bib0030) 1955; 2
Papalexandri, Dimkou (bib0070) 1998; 37
Boyd, Vandenberghe (bib0015) 2004
Copado-Méndez, Guillén-Gosálbez, Jiménez (bib0025) 2014; 67
Antipova, Pozo, Guillén-Gosálbez, Boer, Cabeza, Jiménez (bib0005) 2015; 74
McCormick (bib0055) 1976; 10
Ritter (bib0075) 1966; 4
Marler, Arora (bib0050) 2004; 26
Capitanescu, Ahmadi, Benetto, Marvuglia, Tiruta-Barna (bib0020) 2015; 82
Ghaffari-Hadigheh, Romanko, Terlaky (bib0035) 2010; 25
Mian, Ensinas, Marechal (bib0060) 2015; 76
Bemporad, Morari, Dua, Pistikopoulos (bib0010) 2002; 38
Yuf, Zeleny (bib0080) 1976; 23
Ghaffari-Hadigheh (10.1016/j.compchemeng.2015.10.011_bib0035) 2010; 25
Capitanescu (10.1016/j.compchemeng.2015.10.011_bib0020) 2015; 82
Yuf (10.1016/j.compchemeng.2015.10.011_bib0080) 1976; 23
Bemporad (10.1016/j.compchemeng.2015.10.011_bib0010) 2002; 38
Antipova (10.1016/j.compchemeng.2015.10.011_bib0005) 2015; 74
Gupta (10.1016/j.compchemeng.2015.10.011_bib0045) 2011; 47
Copado-Méndez (10.1016/j.compchemeng.2015.10.011_bib0025) 2014; 67
Ritter (10.1016/j.compchemeng.2015.10.011_bib0075) 1966; 4
Mian (10.1016/j.compchemeng.2015.10.011_bib0060) 2015; 76
Miettinen (10.1016/j.compchemeng.2015.10.011_bib0065) 1998
Papalexandri (10.1016/j.compchemeng.2015.10.011_bib0070) 1998; 37
Gass (10.1016/j.compchemeng.2015.10.011_bib0030) 1955; 2
Goh (10.1016/j.compchemeng.2015.10.011_bib0040) 1996; 92
McCormick (10.1016/j.compchemeng.2015.10.011_bib0055) 1976; 10
Boyd (10.1016/j.compchemeng.2015.10.011_bib0015) 2004
Marler (10.1016/j.compchemeng.2015.10.011_bib0050) 2004; 26
References_xml – volume: 82
  start-page: 228
  year: 2015
  end-page: 239
  ident: bib0020
  article-title: Some efficient approaches for multi-objective constrained optimization of computationally expensive black-box model problems
  publication-title: Comput Chem Eng
– volume: 67
  start-page: 137
  year: 2014
  end-page: 147
  ident: bib0025
  article-title: MILP-based decomposition algorithm for dimensionality reduction in multi-objective optimization: Application to environmental and systems biology problems
  publication-title: Comput Chem Eng
– volume: 4
  start-page: 340
  year: 1966
  end-page: 351
  ident: bib0075
  article-title: A method for solving maximum-problems with a nonconcave quadratic objective function
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
– volume: 92
  start-page: 166
  year: 1996
  end-page: 181
  ident: bib0040
  article-title: Analytic efficient solution set for multi-criteria quadratic programs
  publication-title: Eur J Opera Res
– volume: 37
  start-page: 1866
  year: 1998
  end-page: 1882
  ident: bib0070
  article-title: A Parametric mixed-integer optimization algorithm for multiobjective engineering problems involving discrete decisions
  publication-title: Ind Eng Chem Res
– year: 1998
  ident: bib0065
  article-title: Nonlinear multiobjective optimization, Vol. 12 of international series in operations research & management science
– volume: 76
  start-page: 170
  year: 2015
  end-page: 183
  ident: bib0060
  article-title: Multi-objective optimization of SNG production from microalgae through hydrothermal gasification
  publication-title: Comput Chem Eng
– volume: 25
  start-page: 229
  year: 2010
  end-page: 245
  ident: bib0035
  article-title: Bi-parametric convex quadratic optimization
  publication-title: Optim Methods Softw
– volume: 2
  start-page: 39
  year: 1955
  end-page: 45
  ident: bib0030
  article-title: The computational algorithm for the parametric objective function
  publication-title: Naval Res Logist Quart
– year: 2004
  ident: bib0015
  article-title: Convex optimization
– volume: 10
  start-page: 147
  year: 1976
  end-page: 175
  ident: bib0055
  article-title: Computability of global solutions to factorable nonconvex programs: Part I – Convex underestimating problems
  publication-title: Math Programming
– volume: 38
  start-page: 3
  year: 2002
  end-page: 20
  ident: bib0010
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: bib0050
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct Multidiscip Optim
– volume: 47
  start-page: 2112
  year: 2011
  end-page: 2117
  ident: bib0045
  article-title: A novel approach to multiparametric quadratic programming
  publication-title: Automatica
– volume: 23
  start-page: 159
  year: 1976
  end-page: 170
  ident: bib0080
  article-title: Linear multiparametric programming by multicriteria simplex method
  publication-title: Manage Sci
– volume: 74
  start-page: 48
  year: 2015
  end-page: 58
  ident: bib0005
  article-title: On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization
  publication-title: Comput Chem Eng
– volume: 74
  start-page: 48
  year: 2015
  ident: 10.1016/j.compchemeng.2015.10.011_bib0005
  article-title: On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.12.012
– volume: 2
  start-page: 39
  issue: 1-2
  year: 1955
  ident: 10.1016/j.compchemeng.2015.10.011_bib0030
  article-title: The computational algorithm for the parametric objective function
  publication-title: Naval Res Logist Quart
  doi: 10.1002/nav.3800020106
– volume: 38
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.compchemeng.2015.10.011_bib0010
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00174-1
– volume: 25
  start-page: 229
  issue: 2
  year: 2010
  ident: 10.1016/j.compchemeng.2015.10.011_bib0035
  article-title: Bi-parametric convex quadratic optimization
  publication-title: Optim Methods Softw
  doi: 10.1080/10556780903239568
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 10.1016/j.compchemeng.2015.10.011_bib0050
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0368-6
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 10.1016/j.compchemeng.2015.10.011_bib0055
  article-title: Computability of global solutions to factorable nonconvex programs: Part I – Convex underestimating problems
  publication-title: Math Programming
  doi: 10.1007/BF01580665
– year: 1998
  ident: 10.1016/j.compchemeng.2015.10.011_bib0065
– year: 2004
  ident: 10.1016/j.compchemeng.2015.10.011_bib0015
– volume: 4
  start-page: 340
  issue: 4
  year: 1966
  ident: 10.1016/j.compchemeng.2015.10.011_bib0075
  article-title: A method for solving maximum-problems with a nonconcave quadratic objective function
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
  doi: 10.1007/BF00539118
– volume: 37
  start-page: 1866
  issue: 5
  year: 1998
  ident: 10.1016/j.compchemeng.2015.10.011_bib0070
  article-title: A Parametric mixed-integer optimization algorithm for multiobjective engineering problems involving discrete decisions
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie970720n
– volume: 67
  start-page: 137
  year: 2014
  ident: 10.1016/j.compchemeng.2015.10.011_bib0025
  article-title: MILP-based decomposition algorithm for dimensionality reduction in multi-objective optimization: Application to environmental and systems biology problems
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2014.04.003
– volume: 82
  start-page: 228
  year: 2015
  ident: 10.1016/j.compchemeng.2015.10.011_bib0020
  article-title: Some efficient approaches for multi-objective constrained optimization of computationally expensive black-box model problems
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2015.07.013
– volume: 76
  start-page: 170
  year: 2015
  ident: 10.1016/j.compchemeng.2015.10.011_bib0060
  article-title: Multi-objective optimization of SNG production from microalgae through hydrothermal gasification
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2015.01.013
– volume: 23
  start-page: 159
  issue: 2
  year: 1976
  ident: 10.1016/j.compchemeng.2015.10.011_bib0080
  article-title: Linear multiparametric programming by multicriteria simplex method
  publication-title: Manage Sci
  doi: 10.1287/mnsc.23.2.159
– volume: 47
  start-page: 2112
  issue: 9
  year: 2011
  ident: 10.1016/j.compchemeng.2015.10.011_bib0045
  article-title: A novel approach to multiparametric quadratic programming
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.06.019
– volume: 92
  start-page: 166
  issue: 1
  year: 1996
  ident: 10.1016/j.compchemeng.2015.10.011_bib0040
  article-title: Analytic efficient solution set for multi-criteria quadratic programs
  publication-title: Eur J Opera Res
  doi: 10.1016/0377-2217(95)00040-2
SSID ssj0002488
Score 2.3068964
Snippet •Formulation of the multi-objective optimization problem as a multi-parametric QCQP.•Derivation of suitable affine overestimators with a guaranteed bound of...
In this note we present an approximate algorithm for the explicit calculation of the Pareto front for multi-objective optimization problems featuring convex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Algorithms
Approximation
Chemical engineering
Cost function
Explicit Pareto front calculation
Mathematical analysis
Multi-objective optimization
Multi-parametric programming
Optimization
Pareto optimality
Programming
Title Multi-objective optimization with convex quadratic cost functions: A multi-parametric programming approach
URI https://dx.doi.org/10.1016/j.compchemeng.2015.10.011
https://www.proquest.com/docview/1793295336
Volume 85
WOSCitedRecordID wos000368540100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYhW0p7KH2y2xda6G3xIvklufQSSkrbw9LDFnIz1iPQNLFDHkt-RX9zZyzLUVOWpoVejBFISJnP34yUmU-EvGFCJDYTLDJMJ1HKdRwVhsEuxXLDqrTKcsPayybE1ZWcTIovg8EPXwtzMxd1LXe7YvlfTQ1tYGwsnf0Lc_eDQgO8g9HhCWaH51GGb0tqo0bNHJVdNEAKi67aMsg032E9pVm1gq26WW8u0MO1s3LF6m2mYYTK4Au8dEv7TK5FW9XYKZGHoa2_H2Ldokl7IQK7FzzsD3SVBVhaR8RBZX9L0cg535tls527BMDxtFP2BUK-DM8ouEtrDo8tUbWUJ04u2vOuzALiTPLABTt5o9_I3Z0zzNA2S1wFLABz87JLTM_rKPsXQe0DR9enH_rMtlkZDFXiUNBeMiwVP4lhI8WG5GT0aTz53Pv2OJXSq7Dieu6S833G4C3zui3iOfD9bUBz_ZA86HYidOQQ9IgMbP2Y3A_0KZ-Q2QGWaIgliliiDku0xxJFLNEeS2_piB4iiQZIoh5JT8nXD-Pr9x-j7nKOSCcF30QysxactlF2yo1QScULq62MC8VjLa0RsLFXTAMTKGmlFsJC6IunMUozlacqeUaGdVPbU0LNNIEwO9faMpOmkldxJYuiYhJCdQMe44xI_wOWulOuxwtU5uUfDXlG4r7r0sm3HNPpnbdS2cWhLr4sAYnHdD_3li2Bq_EPuKq2zXZdojOMMZ87f_4v83pB7u0_rpdkuFlt7StyR99svq1Xrzuo_gT2csR0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+with+convex+quadratic+cost+functions%3A+A+multi-parametric+programming+approach&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Oberdieck%2C+Richard&rft.au=Pistikopoulos%2C+Efstratios+N.&rft.date=2016-02-02&rft.issn=0098-1354&rft.volume=85&rft.spage=36&rft.epage=39&rft_id=info:doi/10.1016%2Fj.compchemeng.2015.10.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2015_10_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon