Alleviation of fibrosis and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via SIRT3 activation by colchicine

Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatmen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochemical and biophysical research communications Ročník 770; s. 151957
Hlavní autoři: Wu, Mengze, Chen, Guodong, Peng, Yuce, Luo, Suxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 12.07.2025
Témata:
ISSN:0006-291X, 1090-2104, 1090-2104
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure. Fig. 7. Graphical AbstractColchicine ameliorates TAC-induced myocardial injury and heart failure by activating SIRT3, which subsequently activates the NRF2/NQO1 antioxidant pathway and inhibits the α-SMA/TGF-β fibrotic pathway. Created in BioRender. Zhang, L. (2025) https://BioRender.com/ji7p2oo. [Display omitted] •Colchicine alleviates pressure overload-induced cardiac remodeling and heart failure.•Colchicine alleviates pressure overload-induced cardiac fibrosis.•Colchicine reduces pressure overload-induced myocardial oxidative stress.•Colchicine exerts a cardioprotective effect by activating SIRT3 pathway.
AbstractList Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure.
Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure.Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure.
Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure. Fig. 7. Graphical AbstractColchicine ameliorates TAC-induced myocardial injury and heart failure by activating SIRT3, which subsequently activates the NRF2/NQO1 antioxidant pathway and inhibits the α-SMA/TGF-β fibrotic pathway. Created in BioRender. Zhang, L. (2025) https://BioRender.com/ji7p2oo. [Display omitted] •Colchicine alleviates pressure overload-induced cardiac remodeling and heart failure.•Colchicine alleviates pressure overload-induced cardiac fibrosis.•Colchicine reduces pressure overload-induced myocardial oxidative stress.•Colchicine exerts a cardioprotective effect by activating SIRT3 pathway.
ArticleNumber 151957
Author Peng, Yuce
Wu, Mengze
Luo, Suxin
Chen, Guodong
Author_xml – sequence: 1
  givenname: Mengze
  surname: Wu
  fullname: Wu, Mengze
– sequence: 2
  givenname: Guodong
  surname: Chen
  fullname: Chen, Guodong
– sequence: 3
  givenname: Yuce
  surname: Peng
  fullname: Peng, Yuce
  email: China.pyc@live.com
– sequence: 4
  givenname: Suxin
  surname: Luo
  fullname: Luo, Suxin
  email: luosuxin@hospital.cqmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40373382$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1qFTEYhoNU7Gn1BlxIlm7mmJ-ZSQJuSvGnUBC0gruQSb7YHOYkx2TmYC_DOzbTaTcuiqsE8j5v4HnP0ElMERB6TcmWEtq_222HIdstI6zb0o6qTjxDG0oUaRgl7QnaEEL6hin64xSdlbIjhNK2Vy_QaUu44FyyDfpzMY5wDGYKKeLksQ9DTiUUbKLD6Xdw9eUIuEwZSsEh4sNymTPgdIQ8JuOaEN1swWFrsgvG4gz75GAM8ed9yS2YPGFvwrhQ9Sv87errDcfG1ub13-EO2zTa22BDhJfouTdjgVcP5zn6_vHDzeXn5vrLp6vLi-vGckWnRrLOwyCN761qDZW2F4J413aMWSGUsZxJV2UIoMMggBuQikvTm0F54i3h5-jt2nvI6dcMZdL7UCyMo4mQ5qI5E1RKouj_REkr2uqW1-ibh-g87MHpQw57k-_0o_EakGvAVs8lg9c2TPcaplwdaUr0Mq7e6WVcvYyr13Eryv5BH9ufhN6vEFSXxwBZFxsg1sFCBjtpl8JT-F_Cz79s
CitedBy_id crossref_primary_10_1016_j_phrs_2025_107936
Cites_doi 10.1186/s12872-023-03697-8
10.1038/s41392-020-0114-1
10.1111/bjd.15896
10.1016/j.semarthrit.2015.06.013
10.1016/j.ccr.2011.02.014
10.1161/CIRCULATIONAHA.121.056171
10.1016/j.immuni.2025.02.013
10.3389/fcvm.2021.715258
10.1038/s41569-018-0007-y
10.1172/JCI150595
10.1093/eurheartj/ehae208
10.1161/JAHA.122.025266
10.1016/j.arr.2024.102654
10.1016/j.freeradbiomed.2021.05.013
10.3390/cells14050324
10.1172/JCI128190
10.1016/j.biopha.2018.09.079
10.1016/j.biomaterials.2024.122742
10.1096/fj.202201469R
10.1111/jcmm.16798
10.1038/s41392-022-01254-x
10.1002/ejhf.3008
10.1172/JCI181928
10.1038/nature08778
10.1016/j.cpcardiol.2024.102968
10.1021/acs.jmedchem.4c02591
10.1016/j.cmet.2010.11.003
10.1016/j.jgg.2021.11.005
10.1002/ehf2.14857
10.1016/j.molcel.2011.01.002
10.1073/pnas.0803790105
10.34133/research.0626
10.1038/s41569-024-01046-6
10.1038/s41392-023-01732-w
10.1016/j.biomaterials.2023.122364
10.1093/eurheartj/ehae546
10.1016/j.jacc.2012.10.027
10.1093/eurheartj/ehae517
10.1016/j.amjmed.2014.12.010
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2025.151957
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
ExternalDocumentID 40373382
10_1016_j_bbrc_2025_151957
S0006291X25006710
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
53G
9DU
9M8
AAQXK
AAYJJ
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ADFGL
ADIYS
ADMUD
ADNMO
AGQPQ
AGRDE
AHHHB
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~HD
~KM
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c391t-825feb8af6c94a18c6770fd4522c779ac328d1097e1bb7e3ae8938a6ab9f0fc03
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-291X
1090-2104
IngestDate Fri Nov 14 18:39:47 EST 2025
Thu Oct 02 23:34:45 EDT 2025
Mon Jul 21 05:35:00 EDT 2025
Sat Nov 29 07:41:32 EST 2025
Tue Nov 18 21:26:46 EST 2025
Sat Aug 16 17:03:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Heart failure
Oxidative stress
Colchicine
Fibrosis
SIRT3
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-825feb8af6c94a18c6770fd4522c779ac328d1097e1bb7e3ae8938a6ab9f0fc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40373382
PQID 3204741463
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3271880910
proquest_miscellaneous_3204741463
pubmed_primary_40373382
crossref_citationtrail_10_1016_j_bbrc_2025_151957
crossref_primary_10_1016_j_bbrc_2025_151957
elsevier_sciencedirect_doi_10_1016_j_bbrc_2025_151957
PublicationCentury 2000
PublicationDate 2025-07-12
PublicationDateYYYYMMDD 2025-07-12
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Shi, Huang, Zhang, He, Long, Qian, Zhong, Qi, Zhao, Ye (bib38) 2023; 302
Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard, Li, Bunkenborg, Alt, Denu, Jacobson, Verdin (bib29) 2010; 12
Mihanfar, Nejabati, Fattahi, Latifi, Faridvand, Pezeshkian, Jodati, Safaie, Afrasiabi, Nouri (bib31) 2018; 108
Ahn, Kim, Song, Lee, Liu, Vassilopoulos, Deng, Finkel (bib32) 2008; 105
Dasgeb, Kornreich, McGuinn, Okon, Brownell, Sackett (bib7) 2018; 178
Mang, Chen, Sun, Ma, Du, Wang, Cui, Yang, Tong, Yan, Wang, Xie, Chen, Yang, Kong, Jin, Wu, Zhang, Yu (bib5) 2024; 45
Beghini, Sammartino, Papp, von Haehling, Biegus, Ponikowski, Adamo, Falco, Lombardi, Pagnesi, Savarese, Metra, Tomasoni (bib2) 2025; 12
Sun, Duan, Gong, Feng, Hu, Gu, Xu (bib14) 2022; 11
Slobodnick, Shah, Pillinger, Krasnokutsky (bib21) 2015; 128
Jiang, Xiong, Li, Yang (bib19) 2021; 8
Buckley, Dorbala, Claggett, Libby, Tang, Coresh, Ballantyne, Hoogeveen, Yu, Shah (bib10) 2023; 25
Himelman, Lillo, Nouet, Gonzalez, Zhao, Xie, Li, Liu, Wehrens, Lampe, Fishman, Shirokova, Contreras, Fraidenraich (bib37) 2020; 130
Li, Zhang, Lu, Yin, Xie, Xu (bib24) 2021; 25
Leung, Yao Hui, Kraus (bib22) 2015; 45
Johnson, Albakri, Allemailem, Sultan, Alwanian, Alrumaihi, Almansour, Aldakheel, Khalil, Abduallah, Smith (bib20) 2025; 50
Li, Yang, Qin, Wang, Li (bib41) 2024; 24
Tan, Bao, Li, Song, Lu, Sun, Gu, Kang, Xu (bib39) 2025; 39
Fonseka, Gare, Chen, Zhang, Alatawi, Ross, Liu (bib26) 2025; 14
Khan, Shahid, Bennis, Rakisheva, Metra, Butler (bib1) 2024; 21
Nidorf, Ben-Chetrit, Ridker (bib9) 2024; 45
Nidorf, Eikelboom, Budgeon, Thompson (bib23) 2013; 61
Yang, Wang, Guo, Huang, Liang, Li, Tao, Yin, Fu, Ma (bib34) 2022; 7
Schwarz, Fernando, Chen, Salagaras, Rao, Liyanage, Williamson, Toledo-Flores, Dimasi, Sargeant, Manavis, Eddy, Kanellakis, Thompson, Tan, Snel, Bursill, Nicholls, Peter, Psaltis (bib40) 2023; 37
Deftereos, Beerkens, Shah, Giannopoulos, Vrachatis, Giotaki, Siasos, Nicolas, Arnott, Patel, Parsons, Tardif, Kovacic, Dangas (bib8) 2022; 145
Nakamura, Sadoshima (bib18) 2018; 15
Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith, Zhao, Guan, Denu (bib27) 2011; 41
Song, Zhang, Huang, Zhao, Lu, Zeng, Cai, Wang, Pei, Weng, Luo, Lu, Wei, Wu, Yu, Shen, Zhang, Sun, Ge (bib15) 2024; 9
Cheng, Zhao, Li, Li, Miao, Yang, Wang (bib12) 2025; 104
Ji, Liu, Qu (bib11) 2022; 49
Xu, Bian, Zhang, Zhang, Li, Ma, Wang, Hu, Hu, Ye, Lin, Zhang, Gao (bib25) 2025; 312
Liu, Guo, Yang, Xia, Yao, Li, Liu, Yang, Li, Xu, Li, Wang (bib3) 2025; 68
Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard, Farese, Alt, Kahn, Verdin (bib28) 2010; 464
Liu, Zheng, Hai, Zhang, Ti, Chen, Bu (bib13) 2024; 19
Sun, Leng, Liu, Su, He, Zhang, Liu, Wang, Jiang, Wang, Guo, Xu, Huo, Miller, Banach, Huang, Evans, Pelisek, Camici, Berk, Offermanns, Ge, Xu, Weng (bib35) 2025; 135
Kashihara, Mukai, Oka, Zhai, Nakada, Yang, Mizushima, Nakahara, Warren, Abdellatif, Sadoshima (bib6) 2022; 132
Zuriaga, Yu, Matesanz, Truong, Ramos-Neble, Asensio-López, Uddin, Nakao, Niroula, Zorita, Amorós-Pérez, Moro, Ebert, Honigberg, Pascual-Figal, Natarajan, Fuster (bib36) 2024; 45
Wang, Chen, Zhao, Zhang, Zhou (bib16) 2025; 8
Perrotta, Carnevale, Perrotta, Pallante, Mikołajczyk, Fardella, Migliaccio, Fardella, Nejat, Kapelak, Zonfrilli, Pacella, Mastroiacovo, Carnevale, Bain, Puhl, D'Agostino, Epelman, Guzik, Lembo, Carnevale (bib4) 2025; 58
Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish, Pandolfi, Haigis (bib30) 2011; 19
Palomer, Román-Azcona, Pizarro-Delgado, Planavila, Villarroya, Valenzuela-Alcaraz, Crispi, Sepúlveda-Martínez, Miguel-Escalada, Ferrer, Nistal, García, Davidson, Barroso, Vázquez-Carrera (bib33) 2020; 5
Weissman, Maack (bib17) 2021; 171
Johnson (10.1016/j.bbrc.2025.151957_bib20) 2025; 50
Deftereos (10.1016/j.bbrc.2025.151957_bib8) 2022; 145
Xu (10.1016/j.bbrc.2025.151957_bib25) 2025; 312
Palomer (10.1016/j.bbrc.2025.151957_bib33) 2020; 5
Kashihara (10.1016/j.bbrc.2025.151957_bib6) 2022; 132
Dasgeb (10.1016/j.bbrc.2025.151957_bib7) 2018; 178
Tan (10.1016/j.bbrc.2025.151957_bib39) 2025; 39
Jiang (10.1016/j.bbrc.2025.151957_bib19) 2021; 8
Finley (10.1016/j.bbrc.2025.151957_bib30) 2011; 19
Sun (10.1016/j.bbrc.2025.151957_bib14) 2022; 11
Nidorf (10.1016/j.bbrc.2025.151957_bib23) 2013; 61
Buckley (10.1016/j.bbrc.2025.151957_bib10) 2023; 25
Liu (10.1016/j.bbrc.2025.151957_bib13) 2024; 19
Hirschey (10.1016/j.bbrc.2025.151957_bib28) 2010; 464
Liu (10.1016/j.bbrc.2025.151957_bib3) 2025; 68
Cheng (10.1016/j.bbrc.2025.151957_bib12) 2025; 104
Leung (10.1016/j.bbrc.2025.151957_bib22) 2015; 45
Perrotta (10.1016/j.bbrc.2025.151957_bib4) 2025; 58
Song (10.1016/j.bbrc.2025.151957_bib15) 2024; 9
Slobodnick (10.1016/j.bbrc.2025.151957_bib21) 2015; 128
Wang (10.1016/j.bbrc.2025.151957_bib38) 2023; 302
Mang (10.1016/j.bbrc.2025.151957_bib5) 2024; 45
Li (10.1016/j.bbrc.2025.151957_bib41) 2024; 24
Yang (10.1016/j.bbrc.2025.151957_bib34) 2022; 7
Ji (10.1016/j.bbrc.2025.151957_bib11) 2022; 49
Weissman (10.1016/j.bbrc.2025.151957_bib17) 2021; 171
Wang (10.1016/j.bbrc.2025.151957_bib16) 2025; 8
Schwarz (10.1016/j.bbrc.2025.151957_bib40) 2023; 37
Nakamura (10.1016/j.bbrc.2025.151957_bib18) 2018; 15
Ahn (10.1016/j.bbrc.2025.151957_bib32) 2008; 105
Mihanfar (10.1016/j.bbrc.2025.151957_bib31) 2018; 108
Hallows (10.1016/j.bbrc.2025.151957_bib27) 2011; 41
Nidorf (10.1016/j.bbrc.2025.151957_bib9) 2024; 45
Zuriaga (10.1016/j.bbrc.2025.151957_bib36) 2024; 45
Beghini (10.1016/j.bbrc.2025.151957_bib2) 2025; 12
Fonseka (10.1016/j.bbrc.2025.151957_bib26) 2025; 14
Sun (10.1016/j.bbrc.2025.151957_bib35) 2025; 135
Shimazu (10.1016/j.bbrc.2025.151957_bib29) 2010; 12
Himelman (10.1016/j.bbrc.2025.151957_bib37) 2020; 130
Li (10.1016/j.bbrc.2025.151957_bib24) 2021; 25
Khan (10.1016/j.bbrc.2025.151957_bib1) 2024; 21
References_xml – volume: 14
  year: 2025
  ident: bib26
  article-title: Molecular mechanisms underlying heart failure and their therapeutic potential
  publication-title: Cells
– volume: 49
  start-page: 287
  year: 2022
  end-page: 298
  ident: bib11
  article-title: Mitochondrial sirtuins, metabolism, and aging
  publication-title: J Genet Genomics
– volume: 312
  year: 2025
  ident: bib25
  article-title: Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts
  publication-title: Biomaterials
– volume: 21
  start-page: 717
  year: 2024
  end-page: 734
  ident: bib1
  article-title: Global epidemiology of heart failure
  publication-title: Nat. Rev. Cardiol.
– volume: 7
  start-page: 384
  year: 2022
  ident: bib34
  article-title: FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury
  publication-title: Signal Transduct. Targeted Ther.
– volume: 128
  start-page: 461
  year: 2015
  end-page: 470
  ident: bib21
  article-title: Colchicine: old and new
  publication-title: Am. J. Med.
– volume: 104
  year: 2025
  ident: bib12
  article-title: Roles of SIRT3 in cardiovascular and neurodegenerative diseases
  publication-title: Ageing Res. Rev.
– volume: 8
  start-page: 626
  year: 2025
  ident: bib16
  article-title: Circ-0001283 aggravates cardiac hypertrophy by targeting Myosin light chain 3 protein
  publication-title: Research
– volume: 12
  start-page: 654
  year: 2010
  end-page: 661
  ident: bib29
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
– volume: 45
  start-page: 341
  year: 2015
  end-page: 350
  ident: bib22
  article-title: Colchicine--Update on mechanisms of action and therapeutic uses
  publication-title: Semin. Arthritis Rheum.
– volume: 50
  year: 2025
  ident: bib20
  article-title: Mitochondrial dysfunction and calcium homeostasis in heart failure: exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations
  publication-title: Curr. Probl. Cardiol.
– volume: 61
  start-page: 404
  year: 2013
  end-page: 410
  ident: bib23
  article-title: Low-dose colchicine for secondary prevention of cardiovascular disease
  publication-title: J. Am. Coll. Cardiol.
– volume: 105
  start-page: 14447
  year: 2008
  end-page: 14452
  ident: bib32
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 24
  start-page: 23
  year: 2024
  ident: bib41
  article-title: Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway
  publication-title: BMC Cardiovasc. Disord.
– volume: 108
  start-page: 367
  year: 2018
  end-page: 373
  ident: bib31
  article-title: SIRT3-mediated cardiac remodeling/repair following myocardial infarction
  publication-title: Biomed. Pharmacother.
– volume: 132
  year: 2022
  ident: bib6
  article-title: YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload
  publication-title: J. Clin. Investig.
– volume: 25
  start-page: 1923
  year: 2023
  end-page: 1932
  ident: bib10
  article-title: Circulating neutrophil-related proteins associate with incident heart failure and cardiac dysfunction: the ARIC study
  publication-title: Eur. J. Heart Fail.
– volume: 9
  start-page: 45
  year: 2024
  ident: bib15
  article-title: TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway
  publication-title: Signal Transduct. Targeted Ther.
– volume: 15
  start-page: 387
  year: 2018
  end-page: 407
  ident: bib18
  article-title: Mechanisms of physiological and pathological cardiac hypertrophy
  publication-title: Nat. Rev. Cardiol.
– volume: 5
  start-page: 14
  year: 2020
  ident: bib33
  article-title: SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation
  publication-title: Signal Transduct. Targeted Ther.
– volume: 45
  start-page: 1596
  year: 2024
  end-page: 1601
  ident: bib9
  article-title: Low-dose colchicine for atherosclerosis: long-term safety
  publication-title: Eur. Heart J.
– volume: 11
  year: 2022
  ident: bib14
  article-title: Colchicine ameliorates dilated cardiomyopathy via SIRT2-Mediated suppression of NLRP3 inflammasome activation
  publication-title: J. Am. Heart Assoc.
– volume: 135
  year: 2025
  ident: bib35
  article-title: Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake
  publication-title: J. Clin. Investig.
– volume: 68
  start-page: 4540
  year: 2025
  end-page: 4560
  ident: bib3
  article-title: Structure optimization of natural product catalpol to obtain novel and potent analogs against heart failure
  publication-title: J. Med. Chem.
– volume: 145
  start-page: 61
  year: 2022
  end-page: 78
  ident: bib8
  article-title: Colchicine in cardiovascular disease: in-Depth review
  publication-title: Circulation
– volume: 45
  start-page: 4601
  year: 2024
  end-page: 4615
  ident: bib36
  article-title: Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis
  publication-title: Eur. Heart J.
– volume: 12
  start-page: 8
  year: 2025
  end-page: 42
  ident: bib2
  article-title: 2024 update in heart failure
  publication-title: ESC Heart Fail
– volume: 41
  start-page: 139
  year: 2011
  end-page: 149
  ident: bib27
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
– volume: 302
  year: 2023
  ident: bib38
  article-title: Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction
  publication-title: Biomaterials
– volume: 19
  year: 2024
  ident: bib13
  article-title: SIRT3 regulates cardiolipin biosynthesis in pressure overload-induced cardiac remodeling by PPARγ-mediated mechanism
  publication-title: PLoS One
– volume: 19
  start-page: 416
  year: 2011
  end-page: 428
  ident: bib30
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
– volume: 45
  start-page: 3853
  year: 2024
  end-page: 3867
  ident: bib5
  article-title: Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps
  publication-title: Eur. Heart J.
– volume: 25
  start-page: 8087
  year: 2021
  end-page: 8094
  ident: bib24
  article-title: Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy
  publication-title: J. Cell Mol. Med.
– volume: 8
  year: 2021
  ident: bib19
  article-title: Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles
  publication-title: Front. Cardiovasc. Med.
– volume: 58
  start-page: 648
  year: 2025
  end-page: 665.e647
  ident: bib4
  article-title: A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress
  publication-title: Immunity
– volume: 178
  start-page: 350
  year: 2018
  end-page: 356
  ident: bib7
  article-title: Colchicine: an ancient drug with novel applications
  publication-title: Br. J. Dermatol.
– volume: 37
  year: 2023
  ident: bib40
  article-title: Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation
  publication-title: FASEB J.
– volume: 39
  start-page: 259
  year: 2025
  end-page: 273
  ident: bib39
  article-title: Colchicine Attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow
  publication-title: Cardiovasc. Drugs Ther.
– volume: 130
  start-page: 1713
  year: 2020
  end-page: 1727
  ident: bib37
  article-title: Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy
  publication-title: J. Clin. Investig.
– volume: 464
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib28
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
– volume: 171
  start-page: 345
  year: 2021
  end-page: 364
  ident: bib17
  article-title: Redox signaling in heart failure and therapeutic implications
  publication-title: Free Radic. Biol. Med.
– volume: 24
  start-page: 23
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib41
  article-title: Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway
  publication-title: BMC Cardiovasc. Disord.
  doi: 10.1186/s12872-023-03697-8
– volume: 5
  start-page: 14
  year: 2020
  ident: 10.1016/j.bbrc.2025.151957_bib33
  article-title: SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-020-0114-1
– volume: 178
  start-page: 350
  year: 2018
  ident: 10.1016/j.bbrc.2025.151957_bib7
  article-title: Colchicine: an ancient drug with novel applications
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.15896
– volume: 45
  start-page: 341
  year: 2015
  ident: 10.1016/j.bbrc.2025.151957_bib22
  article-title: Colchicine--Update on mechanisms of action and therapeutic uses
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2015.06.013
– volume: 19
  start-page: 416
  year: 2011
  ident: 10.1016/j.bbrc.2025.151957_bib30
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.014
– volume: 145
  start-page: 61
  year: 2022
  ident: 10.1016/j.bbrc.2025.151957_bib8
  article-title: Colchicine in cardiovascular disease: in-Depth review
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.056171
– volume: 58
  start-page: 648
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib4
  article-title: A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress
  publication-title: Immunity
  doi: 10.1016/j.immuni.2025.02.013
– volume: 8
  year: 2021
  ident: 10.1016/j.bbrc.2025.151957_bib19
  article-title: Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2021.715258
– volume: 15
  start-page: 387
  year: 2018
  ident: 10.1016/j.bbrc.2025.151957_bib18
  article-title: Mechanisms of physiological and pathological cardiac hypertrophy
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-018-0007-y
– volume: 132
  year: 2022
  ident: 10.1016/j.bbrc.2025.151957_bib6
  article-title: YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI150595
– volume: 45
  start-page: 1596
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib9
  article-title: Low-dose colchicine for atherosclerosis: long-term safety
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehae208
– volume: 11
  year: 2022
  ident: 10.1016/j.bbrc.2025.151957_bib14
  article-title: Colchicine ameliorates dilated cardiomyopathy via SIRT2-Mediated suppression of NLRP3 inflammasome activation
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.025266
– volume: 39
  start-page: 259
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib39
  article-title: Colchicine Attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow
  publication-title: Cardiovasc. Drugs Ther.
– volume: 104
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib12
  article-title: Roles of SIRT3 in cardiovascular and neurodegenerative diseases
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2024.102654
– volume: 171
  start-page: 345
  year: 2021
  ident: 10.1016/j.bbrc.2025.151957_bib17
  article-title: Redox signaling in heart failure and therapeutic implications
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.05.013
– volume: 14
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib26
  article-title: Molecular mechanisms underlying heart failure and their therapeutic potential
  publication-title: Cells
  doi: 10.3390/cells14050324
– volume: 130
  start-page: 1713
  year: 2020
  ident: 10.1016/j.bbrc.2025.151957_bib37
  article-title: Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI128190
– volume: 108
  start-page: 367
  year: 2018
  ident: 10.1016/j.bbrc.2025.151957_bib31
  article-title: SIRT3-mediated cardiac remodeling/repair following myocardial infarction
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.09.079
– volume: 312
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib25
  article-title: Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2024.122742
– volume: 19
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib13
  article-title: SIRT3 regulates cardiolipin biosynthesis in pressure overload-induced cardiac remodeling by PPARγ-mediated mechanism
  publication-title: PLoS One
– volume: 37
  year: 2023
  ident: 10.1016/j.bbrc.2025.151957_bib40
  article-title: Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation
  publication-title: FASEB J.
  doi: 10.1096/fj.202201469R
– volume: 25
  start-page: 8087
  year: 2021
  ident: 10.1016/j.bbrc.2025.151957_bib24
  article-title: Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.16798
– volume: 7
  start-page: 384
  year: 2022
  ident: 10.1016/j.bbrc.2025.151957_bib34
  article-title: FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-022-01254-x
– volume: 25
  start-page: 1923
  year: 2023
  ident: 10.1016/j.bbrc.2025.151957_bib10
  article-title: Circulating neutrophil-related proteins associate with incident heart failure and cardiac dysfunction: the ARIC study
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.3008
– volume: 135
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib35
  article-title: Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI181928
– volume: 464
  start-page: 121
  year: 2010
  ident: 10.1016/j.bbrc.2025.151957_bib28
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
  doi: 10.1038/nature08778
– volume: 50
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib20
  article-title: Mitochondrial dysfunction and calcium homeostasis in heart failure: exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations
  publication-title: Curr. Probl. Cardiol.
  doi: 10.1016/j.cpcardiol.2024.102968
– volume: 68
  start-page: 4540
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib3
  article-title: Structure optimization of natural product catalpol to obtain novel and potent analogs against heart failure
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.4c02591
– volume: 12
  start-page: 654
  year: 2010
  ident: 10.1016/j.bbrc.2025.151957_bib29
  article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.11.003
– volume: 49
  start-page: 287
  year: 2022
  ident: 10.1016/j.bbrc.2025.151957_bib11
  article-title: Mitochondrial sirtuins, metabolism, and aging
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2021.11.005
– volume: 12
  start-page: 8
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib2
  article-title: 2024 update in heart failure
  publication-title: ESC Heart Fail
  doi: 10.1002/ehf2.14857
– volume: 41
  start-page: 139
  year: 2011
  ident: 10.1016/j.bbrc.2025.151957_bib27
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.002
– volume: 105
  start-page: 14447
  year: 2008
  ident: 10.1016/j.bbrc.2025.151957_bib32
  article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0803790105
– volume: 8
  start-page: 626
  year: 2025
  ident: 10.1016/j.bbrc.2025.151957_bib16
  article-title: Circ-0001283 aggravates cardiac hypertrophy by targeting Myosin light chain 3 protein
  publication-title: Research
  doi: 10.34133/research.0626
– volume: 21
  start-page: 717
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib1
  article-title: Global epidemiology of heart failure
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-024-01046-6
– volume: 9
  start-page: 45
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib15
  article-title: TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-023-01732-w
– volume: 302
  year: 2023
  ident: 10.1016/j.bbrc.2025.151957_bib38
  article-title: Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2023.122364
– volume: 45
  start-page: 4601
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib36
  article-title: Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehae546
– volume: 61
  start-page: 404
  year: 2013
  ident: 10.1016/j.bbrc.2025.151957_bib23
  article-title: Low-dose colchicine for secondary prevention of cardiovascular disease
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.10.027
– volume: 45
  start-page: 3853
  year: 2024
  ident: 10.1016/j.bbrc.2025.151957_bib5
  article-title: Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehae517
– volume: 128
  start-page: 461
  year: 2015
  ident: 10.1016/j.bbrc.2025.151957_bib21
  article-title: Colchicine: old and new
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2014.12.010
SSID ssj0011469
Score 2.488836
Snippet Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151957
SubjectTerms agonists
Animals
atrial fibrillation
Colchicine
Colchicine - pharmacology
Colchicine - therapeutic use
coronary artery disease
drugs
fibroblasts
Fibroblasts - drug effects
Fibroblasts - metabolism
Fibroblasts - pathology
Fibrosis
Heart failure
Heart Failure - drug therapy
Heart Failure - metabolism
Heart Failure - pathology
hypertrophy
Male
Mice
Mice, Inbred C57BL
Myocardium - metabolism
Myocardium - pathology
Oxidative stress
Oxidative Stress - drug effects
risk reduction
simulation models
SIRT3
Sirtuin 3 - metabolism
therapeutics
Ventricular Remodeling - drug effects
Title Alleviation of fibrosis and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via SIRT3 activation by colchicine
URI https://dx.doi.org/10.1016/j.bbrc.2025.151957
https://www.ncbi.nlm.nih.gov/pubmed/40373382
https://www.proquest.com/docview/3204741463
https://www.proquest.com/docview/3271880910
Volume 770
WOSCitedRecordID wos001492863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011469
  issn: 0006-291X
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2lKZe-IGi5hEu1SIiXyJUvcdZ-DFGBoqpCUCA8Wev1GrlK7SiNq5S_4GP4P2b2YkeFRPDAi2X5Lp3j3ZnZmTOEvAhllvE4Eo4MXOEMPI6_VOA5fCiDQHARMNV57vMxOzmJJpP4fafz09bCXE5ZWUbLZTz7r1DDMQAbS2f_Ae7moXAA9gF02ALssP0r4EdTrBhvLMEc_OEKVUcwQl4ti0wrfZsaEcwhVw73XPYxmXNa8cwBN73GtACh2IMSz6pfji1nxB7Yi37OC8xo78Or-h-PPpwGSpZDB3jRpgWCYZsVu2xv140L7NDVShSkRTWzTDG6Q5gJv1K00tj8X2oVvJXlt-8NGcemtuRNDd61mYPVOK9HsK8rvD2uK52FtDRa4ybU4YcYQzVJ1lIPz27sOr5pWGzHb6Y7j5gR2EO5HPbHyUHHKc4O0nSO4pV-ePD7xYDl7FwxY-AGDPx3v50om_RFe2qLbPssjKMu2R4dHU7eNctXMP3EpkJLJxNef-UOuWUfss4gWufwKMPn9C65YzwWOtJMu0c6stwle6OSL6rzK_qSqhxitTizS26-snu3x7aT4B75sUJJWuXUUpICA2hDSaopSYuSWkrS65SkhpK0paR6iKIkNZSk8CqqKElbStL0iraUvE8-vT48Hb91TCsQRwSxt3AiP8xlGvF8KOIB9yIxBNTzDNsBCMZiGFP8KMNkCumlKZMBl2CHR3zI0zh3c-EGD0i3rEr5iFDUGwp9HTwYsIjHrpAcDGc4InPphT3iWTwSYXTysV3LNLEJkWcJwpkgnImGs0f6zT0zrRKz8erQwpwYO1fbrwkwdeN9zy0nEkAQV_Z4Kav6Igl8dwCuwWAYbLqGofYiuAc98lATqvlWy8XHa888ITvtH_mUdBfzWj4jN8TloriY75MtNon2zV_wCwwM6Zg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alleviation+of+fibrosis+and+oxidative+stress+in+pressure+overload-induced+cardiac+remodeling+and+heart+failure+via+SIRT3+activation+by+colchicine&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Wu%2C+Mengze&rft.au=Chen%2C+Guodong&rft.au=Peng%2C+Yuce&rft.au=Luo%2C+Suxin&rft.date=2025-07-12&rft.eissn=1090-2104&rft.volume=770&rft.spage=151957&rft_id=info:doi/10.1016%2Fj.bbrc.2025.151957&rft_id=info%3Apmid%2F40373382&rft.externalDocID=40373382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon