Alleviation of fibrosis and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via SIRT3 activation by colchicine
Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatmen...
Uloženo v:
| Vydáno v: | Biochemical and biophysical research communications Ročník 770; s. 151957 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
12.07.2025
|
| Témata: | |
| ISSN: | 0006-291X, 1090-2104, 1090-2104 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure.
Fig. 7. Graphical AbstractColchicine ameliorates TAC-induced myocardial injury and heart failure by activating SIRT3, which subsequently activates the NRF2/NQO1 antioxidant pathway and inhibits the α-SMA/TGF-β fibrotic pathway. Created in BioRender. Zhang, L. (2025) https://BioRender.com/ji7p2oo. [Display omitted]
•Colchicine alleviates pressure overload-induced cardiac remodeling and heart failure.•Colchicine alleviates pressure overload-induced cardiac fibrosis.•Colchicine reduces pressure overload-induced myocardial oxidative stress.•Colchicine exerts a cardioprotective effect by activating SIRT3 pathway. |
|---|---|
| AbstractList | Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure. Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure.Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure. Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them, pressure overload-induced myocardial injury is one of the most common causes of heart failure. Colchicine, a drug widely used in the treatment of inflammatory diseases, has recently been found to significantly reduce the risk of cardiovascular events in patients with coronary artery disease and atrial fibrillation. However, the specific mechanism of colchicine has not been fully elucidated. We used the transverse aortic constriction (TAC) model to simulate cardiac pressure overload in mice. We found that colchicine attenuated TAC-induced heart failure and alleviated cardiac oxidative stress and fibrosis. To explore the specific molecular mechanism, we treated primary cardiac fibroblasts (CFs) and HL-1 with Ang Ⅱ in vitro to simulate the occurrence of TAC model. We found that colchicine induced SIRT3 activation and alleviated myocardial oxidative stress and cadiac fibrosis. Additionally, the SIRT3-selective agonist HKL exerts similar effects to colchicine, whereas the SIRT3-selective inhibitor 3-TYP partially reverses the therapeutic effects of colchicine. Our findings suggest that colchicine reduced cardiac oxidative stress and fibrosis by activating SIRT3, which in turn alleviated the progression of pressure overload-induced heart failure. Fig. 7. Graphical AbstractColchicine ameliorates TAC-induced myocardial injury and heart failure by activating SIRT3, which subsequently activates the NRF2/NQO1 antioxidant pathway and inhibits the α-SMA/TGF-β fibrotic pathway. Created in BioRender. Zhang, L. (2025) https://BioRender.com/ji7p2oo. [Display omitted] •Colchicine alleviates pressure overload-induced cardiac remodeling and heart failure.•Colchicine alleviates pressure overload-induced cardiac fibrosis.•Colchicine reduces pressure overload-induced myocardial oxidative stress.•Colchicine exerts a cardioprotective effect by activating SIRT3 pathway. |
| ArticleNumber | 151957 |
| Author | Peng, Yuce Wu, Mengze Luo, Suxin Chen, Guodong |
| Author_xml | – sequence: 1 givenname: Mengze surname: Wu fullname: Wu, Mengze – sequence: 2 givenname: Guodong surname: Chen fullname: Chen, Guodong – sequence: 3 givenname: Yuce surname: Peng fullname: Peng, Yuce email: China.pyc@live.com – sequence: 4 givenname: Suxin surname: Luo fullname: Luo, Suxin email: luosuxin@hospital.cqmu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40373382$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1qFTEYhoNU7Gn1BlxIlm7mmJ-ZSQJuSvGnUBC0gruQSb7YHOYkx2TmYC_DOzbTaTcuiqsE8j5v4HnP0ElMERB6TcmWEtq_222HIdstI6zb0o6qTjxDG0oUaRgl7QnaEEL6hin64xSdlbIjhNK2Vy_QaUu44FyyDfpzMY5wDGYKKeLksQ9DTiUUbKLD6Xdw9eUIuEwZSsEh4sNymTPgdIQ8JuOaEN1swWFrsgvG4gz75GAM8ed9yS2YPGFvwrhQ9Sv87errDcfG1ub13-EO2zTa22BDhJfouTdjgVcP5zn6_vHDzeXn5vrLp6vLi-vGckWnRrLOwyCN761qDZW2F4J413aMWSGUsZxJV2UIoMMggBuQikvTm0F54i3h5-jt2nvI6dcMZdL7UCyMo4mQ5qI5E1RKouj_REkr2uqW1-ibh-g87MHpQw57k-_0o_EakGvAVs8lg9c2TPcaplwdaUr0Mq7e6WVcvYyr13Eryv5BH9ufhN6vEFSXxwBZFxsg1sFCBjtpl8JT-F_Cz79s |
| CitedBy_id | crossref_primary_10_1016_j_phrs_2025_107936 |
| Cites_doi | 10.1186/s12872-023-03697-8 10.1038/s41392-020-0114-1 10.1111/bjd.15896 10.1016/j.semarthrit.2015.06.013 10.1016/j.ccr.2011.02.014 10.1161/CIRCULATIONAHA.121.056171 10.1016/j.immuni.2025.02.013 10.3389/fcvm.2021.715258 10.1038/s41569-018-0007-y 10.1172/JCI150595 10.1093/eurheartj/ehae208 10.1161/JAHA.122.025266 10.1016/j.arr.2024.102654 10.1016/j.freeradbiomed.2021.05.013 10.3390/cells14050324 10.1172/JCI128190 10.1016/j.biopha.2018.09.079 10.1016/j.biomaterials.2024.122742 10.1096/fj.202201469R 10.1111/jcmm.16798 10.1038/s41392-022-01254-x 10.1002/ejhf.3008 10.1172/JCI181928 10.1038/nature08778 10.1016/j.cpcardiol.2024.102968 10.1021/acs.jmedchem.4c02591 10.1016/j.cmet.2010.11.003 10.1016/j.jgg.2021.11.005 10.1002/ehf2.14857 10.1016/j.molcel.2011.01.002 10.1073/pnas.0803790105 10.34133/research.0626 10.1038/s41569-024-01046-6 10.1038/s41392-023-01732-w 10.1016/j.biomaterials.2023.122364 10.1093/eurheartj/ehae546 10.1016/j.jacc.2012.10.027 10.1093/eurheartj/ehae517 10.1016/j.amjmed.2014.12.010 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.bbrc.2025.151957 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1090-2104 |
| ExternalDocumentID | 40373382 10_1016_j_bbrc_2025_151957 S0006291X25006710 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ACDAQ ACGFO ACGFS ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 D0L DM4 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 53G 9DU 9M8 AAQXK AAYJJ AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ADFGL ADIYS ADMUD ADNMO AGQPQ AGRDE AHHHB ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG UQL WUQ X7M Y6R ZGI ZKB ~HD ~KM AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c391t-825feb8af6c94a18c6770fd4522c779ac328d1097e1bb7e3ae8938a6ab9f0fc03 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001492863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-291X 1090-2104 |
| IngestDate | Fri Nov 14 18:39:47 EST 2025 Thu Oct 02 23:34:45 EDT 2025 Mon Jul 21 05:35:00 EDT 2025 Sat Nov 29 07:41:32 EST 2025 Tue Nov 18 21:26:46 EST 2025 Sat Aug 16 17:03:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heart failure Oxidative stress Colchicine Fibrosis SIRT3 |
| Language | English |
| License | Copyright © 2025 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-825feb8af6c94a18c6770fd4522c779ac328d1097e1bb7e3ae8938a6ab9f0fc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40373382 |
| PQID | 3204741463 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3271880910 proquest_miscellaneous_3204741463 pubmed_primary_40373382 crossref_citationtrail_10_1016_j_bbrc_2025_151957 crossref_primary_10_1016_j_bbrc_2025_151957 elsevier_sciencedirect_doi_10_1016_j_bbrc_2025_151957 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-12 |
| PublicationDateYYYYMMDD | 2025-07-12 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemical and biophysical research communications |
| PublicationTitleAlternate | Biochem Biophys Res Commun |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Wang, Shi, Huang, Zhang, He, Long, Qian, Zhong, Qi, Zhao, Ye (bib38) 2023; 302 Shimazu, Hirschey, Hua, Dittenhafer-Reed, Schwer, Lombard, Li, Bunkenborg, Alt, Denu, Jacobson, Verdin (bib29) 2010; 12 Mihanfar, Nejabati, Fattahi, Latifi, Faridvand, Pezeshkian, Jodati, Safaie, Afrasiabi, Nouri (bib31) 2018; 108 Ahn, Kim, Song, Lee, Liu, Vassilopoulos, Deng, Finkel (bib32) 2008; 105 Dasgeb, Kornreich, McGuinn, Okon, Brownell, Sackett (bib7) 2018; 178 Mang, Chen, Sun, Ma, Du, Wang, Cui, Yang, Tong, Yan, Wang, Xie, Chen, Yang, Kong, Jin, Wu, Zhang, Yu (bib5) 2024; 45 Beghini, Sammartino, Papp, von Haehling, Biegus, Ponikowski, Adamo, Falco, Lombardi, Pagnesi, Savarese, Metra, Tomasoni (bib2) 2025; 12 Sun, Duan, Gong, Feng, Hu, Gu, Xu (bib14) 2022; 11 Slobodnick, Shah, Pillinger, Krasnokutsky (bib21) 2015; 128 Jiang, Xiong, Li, Yang (bib19) 2021; 8 Buckley, Dorbala, Claggett, Libby, Tang, Coresh, Ballantyne, Hoogeveen, Yu, Shah (bib10) 2023; 25 Himelman, Lillo, Nouet, Gonzalez, Zhao, Xie, Li, Liu, Wehrens, Lampe, Fishman, Shirokova, Contreras, Fraidenraich (bib37) 2020; 130 Li, Zhang, Lu, Yin, Xie, Xu (bib24) 2021; 25 Leung, Yao Hui, Kraus (bib22) 2015; 45 Johnson, Albakri, Allemailem, Sultan, Alwanian, Alrumaihi, Almansour, Aldakheel, Khalil, Abduallah, Smith (bib20) 2025; 50 Li, Yang, Qin, Wang, Li (bib41) 2024; 24 Tan, Bao, Li, Song, Lu, Sun, Gu, Kang, Xu (bib39) 2025; 39 Fonseka, Gare, Chen, Zhang, Alatawi, Ross, Liu (bib26) 2025; 14 Khan, Shahid, Bennis, Rakisheva, Metra, Butler (bib1) 2024; 21 Nidorf, Ben-Chetrit, Ridker (bib9) 2024; 45 Nidorf, Eikelboom, Budgeon, Thompson (bib23) 2013; 61 Yang, Wang, Guo, Huang, Liang, Li, Tao, Yin, Fu, Ma (bib34) 2022; 7 Schwarz, Fernando, Chen, Salagaras, Rao, Liyanage, Williamson, Toledo-Flores, Dimasi, Sargeant, Manavis, Eddy, Kanellakis, Thompson, Tan, Snel, Bursill, Nicholls, Peter, Psaltis (bib40) 2023; 37 Deftereos, Beerkens, Shah, Giannopoulos, Vrachatis, Giotaki, Siasos, Nicolas, Arnott, Patel, Parsons, Tardif, Kovacic, Dangas (bib8) 2022; 145 Nakamura, Sadoshima (bib18) 2018; 15 Hallows, Yu, Smith, Devries, Ellinger, Someya, Shortreed, Prolla, Markley, Smith, Zhao, Guan, Denu (bib27) 2011; 41 Song, Zhang, Huang, Zhao, Lu, Zeng, Cai, Wang, Pei, Weng, Luo, Lu, Wei, Wu, Yu, Shen, Zhang, Sun, Ge (bib15) 2024; 9 Cheng, Zhao, Li, Li, Miao, Yang, Wang (bib12) 2025; 104 Ji, Liu, Qu (bib11) 2022; 49 Xu, Bian, Zhang, Zhang, Li, Ma, Wang, Hu, Hu, Ye, Lin, Zhang, Gao (bib25) 2025; 312 Liu, Guo, Yang, Xia, Yao, Li, Liu, Yang, Li, Xu, Li, Wang (bib3) 2025; 68 Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard, Farese, Alt, Kahn, Verdin (bib28) 2010; 464 Liu, Zheng, Hai, Zhang, Ti, Chen, Bu (bib13) 2024; 19 Sun, Leng, Liu, Su, He, Zhang, Liu, Wang, Jiang, Wang, Guo, Xu, Huo, Miller, Banach, Huang, Evans, Pelisek, Camici, Berk, Offermanns, Ge, Xu, Weng (bib35) 2025; 135 Kashihara, Mukai, Oka, Zhai, Nakada, Yang, Mizushima, Nakahara, Warren, Abdellatif, Sadoshima (bib6) 2022; 132 Zuriaga, Yu, Matesanz, Truong, Ramos-Neble, Asensio-López, Uddin, Nakao, Niroula, Zorita, Amorós-Pérez, Moro, Ebert, Honigberg, Pascual-Figal, Natarajan, Fuster (bib36) 2024; 45 Wang, Chen, Zhao, Zhang, Zhou (bib16) 2025; 8 Perrotta, Carnevale, Perrotta, Pallante, Mikołajczyk, Fardella, Migliaccio, Fardella, Nejat, Kapelak, Zonfrilli, Pacella, Mastroiacovo, Carnevale, Bain, Puhl, D'Agostino, Epelman, Guzik, Lembo, Carnevale (bib4) 2025; 58 Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish, Pandolfi, Haigis (bib30) 2011; 19 Palomer, Román-Azcona, Pizarro-Delgado, Planavila, Villarroya, Valenzuela-Alcaraz, Crispi, Sepúlveda-Martínez, Miguel-Escalada, Ferrer, Nistal, García, Davidson, Barroso, Vázquez-Carrera (bib33) 2020; 5 Weissman, Maack (bib17) 2021; 171 Johnson (10.1016/j.bbrc.2025.151957_bib20) 2025; 50 Deftereos (10.1016/j.bbrc.2025.151957_bib8) 2022; 145 Xu (10.1016/j.bbrc.2025.151957_bib25) 2025; 312 Palomer (10.1016/j.bbrc.2025.151957_bib33) 2020; 5 Kashihara (10.1016/j.bbrc.2025.151957_bib6) 2022; 132 Dasgeb (10.1016/j.bbrc.2025.151957_bib7) 2018; 178 Tan (10.1016/j.bbrc.2025.151957_bib39) 2025; 39 Jiang (10.1016/j.bbrc.2025.151957_bib19) 2021; 8 Finley (10.1016/j.bbrc.2025.151957_bib30) 2011; 19 Sun (10.1016/j.bbrc.2025.151957_bib14) 2022; 11 Nidorf (10.1016/j.bbrc.2025.151957_bib23) 2013; 61 Buckley (10.1016/j.bbrc.2025.151957_bib10) 2023; 25 Liu (10.1016/j.bbrc.2025.151957_bib13) 2024; 19 Hirschey (10.1016/j.bbrc.2025.151957_bib28) 2010; 464 Liu (10.1016/j.bbrc.2025.151957_bib3) 2025; 68 Cheng (10.1016/j.bbrc.2025.151957_bib12) 2025; 104 Leung (10.1016/j.bbrc.2025.151957_bib22) 2015; 45 Perrotta (10.1016/j.bbrc.2025.151957_bib4) 2025; 58 Song (10.1016/j.bbrc.2025.151957_bib15) 2024; 9 Slobodnick (10.1016/j.bbrc.2025.151957_bib21) 2015; 128 Wang (10.1016/j.bbrc.2025.151957_bib38) 2023; 302 Mang (10.1016/j.bbrc.2025.151957_bib5) 2024; 45 Li (10.1016/j.bbrc.2025.151957_bib41) 2024; 24 Yang (10.1016/j.bbrc.2025.151957_bib34) 2022; 7 Ji (10.1016/j.bbrc.2025.151957_bib11) 2022; 49 Weissman (10.1016/j.bbrc.2025.151957_bib17) 2021; 171 Wang (10.1016/j.bbrc.2025.151957_bib16) 2025; 8 Schwarz (10.1016/j.bbrc.2025.151957_bib40) 2023; 37 Nakamura (10.1016/j.bbrc.2025.151957_bib18) 2018; 15 Ahn (10.1016/j.bbrc.2025.151957_bib32) 2008; 105 Mihanfar (10.1016/j.bbrc.2025.151957_bib31) 2018; 108 Hallows (10.1016/j.bbrc.2025.151957_bib27) 2011; 41 Nidorf (10.1016/j.bbrc.2025.151957_bib9) 2024; 45 Zuriaga (10.1016/j.bbrc.2025.151957_bib36) 2024; 45 Beghini (10.1016/j.bbrc.2025.151957_bib2) 2025; 12 Fonseka (10.1016/j.bbrc.2025.151957_bib26) 2025; 14 Sun (10.1016/j.bbrc.2025.151957_bib35) 2025; 135 Shimazu (10.1016/j.bbrc.2025.151957_bib29) 2010; 12 Himelman (10.1016/j.bbrc.2025.151957_bib37) 2020; 130 Li (10.1016/j.bbrc.2025.151957_bib24) 2021; 25 Khan (10.1016/j.bbrc.2025.151957_bib1) 2024; 21 |
| References_xml | – volume: 14 year: 2025 ident: bib26 article-title: Molecular mechanisms underlying heart failure and their therapeutic potential publication-title: Cells – volume: 49 start-page: 287 year: 2022 end-page: 298 ident: bib11 article-title: Mitochondrial sirtuins, metabolism, and aging publication-title: J Genet Genomics – volume: 312 year: 2025 ident: bib25 article-title: Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts publication-title: Biomaterials – volume: 21 start-page: 717 year: 2024 end-page: 734 ident: bib1 article-title: Global epidemiology of heart failure publication-title: Nat. Rev. Cardiol. – volume: 7 start-page: 384 year: 2022 ident: bib34 article-title: FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury publication-title: Signal Transduct. Targeted Ther. – volume: 128 start-page: 461 year: 2015 end-page: 470 ident: bib21 article-title: Colchicine: old and new publication-title: Am. J. Med. – volume: 104 year: 2025 ident: bib12 article-title: Roles of SIRT3 in cardiovascular and neurodegenerative diseases publication-title: Ageing Res. Rev. – volume: 8 start-page: 626 year: 2025 ident: bib16 article-title: Circ-0001283 aggravates cardiac hypertrophy by targeting Myosin light chain 3 protein publication-title: Research – volume: 12 start-page: 654 year: 2010 end-page: 661 ident: bib29 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. – volume: 45 start-page: 341 year: 2015 end-page: 350 ident: bib22 article-title: Colchicine--Update on mechanisms of action and therapeutic uses publication-title: Semin. Arthritis Rheum. – volume: 50 year: 2025 ident: bib20 article-title: Mitochondrial dysfunction and calcium homeostasis in heart failure: exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations publication-title: Curr. Probl. Cardiol. – volume: 61 start-page: 404 year: 2013 end-page: 410 ident: bib23 article-title: Low-dose colchicine for secondary prevention of cardiovascular disease publication-title: J. Am. Coll. Cardiol. – volume: 105 start-page: 14447 year: 2008 end-page: 14452 ident: bib32 article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 24 start-page: 23 year: 2024 ident: bib41 article-title: Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway publication-title: BMC Cardiovasc. Disord. – volume: 108 start-page: 367 year: 2018 end-page: 373 ident: bib31 article-title: SIRT3-mediated cardiac remodeling/repair following myocardial infarction publication-title: Biomed. Pharmacother. – volume: 132 year: 2022 ident: bib6 article-title: YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload publication-title: J. Clin. Investig. – volume: 25 start-page: 1923 year: 2023 end-page: 1932 ident: bib10 article-title: Circulating neutrophil-related proteins associate with incident heart failure and cardiac dysfunction: the ARIC study publication-title: Eur. J. Heart Fail. – volume: 9 start-page: 45 year: 2024 ident: bib15 article-title: TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway publication-title: Signal Transduct. Targeted Ther. – volume: 15 start-page: 387 year: 2018 end-page: 407 ident: bib18 article-title: Mechanisms of physiological and pathological cardiac hypertrophy publication-title: Nat. Rev. Cardiol. – volume: 5 start-page: 14 year: 2020 ident: bib33 article-title: SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation publication-title: Signal Transduct. Targeted Ther. – volume: 45 start-page: 1596 year: 2024 end-page: 1601 ident: bib9 article-title: Low-dose colchicine for atherosclerosis: long-term safety publication-title: Eur. Heart J. – volume: 11 year: 2022 ident: bib14 article-title: Colchicine ameliorates dilated cardiomyopathy via SIRT2-Mediated suppression of NLRP3 inflammasome activation publication-title: J. Am. Heart Assoc. – volume: 135 year: 2025 ident: bib35 article-title: Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake publication-title: J. Clin. Investig. – volume: 68 start-page: 4540 year: 2025 end-page: 4560 ident: bib3 article-title: Structure optimization of natural product catalpol to obtain novel and potent analogs against heart failure publication-title: J. Med. Chem. – volume: 145 start-page: 61 year: 2022 end-page: 78 ident: bib8 article-title: Colchicine in cardiovascular disease: in-Depth review publication-title: Circulation – volume: 45 start-page: 4601 year: 2024 end-page: 4615 ident: bib36 article-title: Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis publication-title: Eur. Heart J. – volume: 12 start-page: 8 year: 2025 end-page: 42 ident: bib2 article-title: 2024 update in heart failure publication-title: ESC Heart Fail – volume: 41 start-page: 139 year: 2011 end-page: 149 ident: bib27 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell – volume: 302 year: 2023 ident: bib38 article-title: Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction publication-title: Biomaterials – volume: 19 year: 2024 ident: bib13 article-title: SIRT3 regulates cardiolipin biosynthesis in pressure overload-induced cardiac remodeling by PPARγ-mediated mechanism publication-title: PLoS One – volume: 19 start-page: 416 year: 2011 end-page: 428 ident: bib30 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell – volume: 45 start-page: 3853 year: 2024 end-page: 3867 ident: bib5 article-title: Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps publication-title: Eur. Heart J. – volume: 25 start-page: 8087 year: 2021 end-page: 8094 ident: bib24 article-title: Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy publication-title: J. Cell Mol. Med. – volume: 8 year: 2021 ident: bib19 article-title: Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles publication-title: Front. Cardiovasc. Med. – volume: 58 start-page: 648 year: 2025 end-page: 665.e647 ident: bib4 article-title: A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress publication-title: Immunity – volume: 178 start-page: 350 year: 2018 end-page: 356 ident: bib7 article-title: Colchicine: an ancient drug with novel applications publication-title: Br. J. Dermatol. – volume: 37 year: 2023 ident: bib40 article-title: Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation publication-title: FASEB J. – volume: 39 start-page: 259 year: 2025 end-page: 273 ident: bib39 article-title: Colchicine Attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow publication-title: Cardiovasc. Drugs Ther. – volume: 130 start-page: 1713 year: 2020 end-page: 1727 ident: bib37 article-title: Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy publication-title: J. Clin. Investig. – volume: 464 start-page: 121 year: 2010 end-page: 125 ident: bib28 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature – volume: 171 start-page: 345 year: 2021 end-page: 364 ident: bib17 article-title: Redox signaling in heart failure and therapeutic implications publication-title: Free Radic. Biol. Med. – volume: 24 start-page: 23 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib41 article-title: Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-023-03697-8 – volume: 5 start-page: 14 year: 2020 ident: 10.1016/j.bbrc.2025.151957_bib33 article-title: SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-020-0114-1 – volume: 178 start-page: 350 year: 2018 ident: 10.1016/j.bbrc.2025.151957_bib7 article-title: Colchicine: an ancient drug with novel applications publication-title: Br. J. Dermatol. doi: 10.1111/bjd.15896 – volume: 45 start-page: 341 year: 2015 ident: 10.1016/j.bbrc.2025.151957_bib22 article-title: Colchicine--Update on mechanisms of action and therapeutic uses publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2015.06.013 – volume: 19 start-page: 416 year: 2011 ident: 10.1016/j.bbrc.2025.151957_bib30 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.014 – volume: 145 start-page: 61 year: 2022 ident: 10.1016/j.bbrc.2025.151957_bib8 article-title: Colchicine in cardiovascular disease: in-Depth review publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.056171 – volume: 58 start-page: 648 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib4 article-title: A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress publication-title: Immunity doi: 10.1016/j.immuni.2025.02.013 – volume: 8 year: 2021 ident: 10.1016/j.bbrc.2025.151957_bib19 article-title: Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2021.715258 – volume: 15 start-page: 387 year: 2018 ident: 10.1016/j.bbrc.2025.151957_bib18 article-title: Mechanisms of physiological and pathological cardiac hypertrophy publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-018-0007-y – volume: 132 year: 2022 ident: 10.1016/j.bbrc.2025.151957_bib6 article-title: YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload publication-title: J. Clin. Investig. doi: 10.1172/JCI150595 – volume: 45 start-page: 1596 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib9 article-title: Low-dose colchicine for atherosclerosis: long-term safety publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehae208 – volume: 11 year: 2022 ident: 10.1016/j.bbrc.2025.151957_bib14 article-title: Colchicine ameliorates dilated cardiomyopathy via SIRT2-Mediated suppression of NLRP3 inflammasome activation publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.122.025266 – volume: 39 start-page: 259 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib39 article-title: Colchicine Attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow publication-title: Cardiovasc. Drugs Ther. – volume: 104 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib12 article-title: Roles of SIRT3 in cardiovascular and neurodegenerative diseases publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2024.102654 – volume: 171 start-page: 345 year: 2021 ident: 10.1016/j.bbrc.2025.151957_bib17 article-title: Redox signaling in heart failure and therapeutic implications publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.05.013 – volume: 14 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib26 article-title: Molecular mechanisms underlying heart failure and their therapeutic potential publication-title: Cells doi: 10.3390/cells14050324 – volume: 130 start-page: 1713 year: 2020 ident: 10.1016/j.bbrc.2025.151957_bib37 article-title: Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy publication-title: J. Clin. Investig. doi: 10.1172/JCI128190 – volume: 108 start-page: 367 year: 2018 ident: 10.1016/j.bbrc.2025.151957_bib31 article-title: SIRT3-mediated cardiac remodeling/repair following myocardial infarction publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.09.079 – volume: 312 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib25 article-title: Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2024.122742 – volume: 19 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib13 article-title: SIRT3 regulates cardiolipin biosynthesis in pressure overload-induced cardiac remodeling by PPARγ-mediated mechanism publication-title: PLoS One – volume: 37 year: 2023 ident: 10.1016/j.bbrc.2025.151957_bib40 article-title: Colchicine exerts anti-atherosclerotic and -plaque-stabilizing effects targeting foam cell formation publication-title: FASEB J. doi: 10.1096/fj.202201469R – volume: 25 start-page: 8087 year: 2021 ident: 10.1016/j.bbrc.2025.151957_bib24 article-title: Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.16798 – volume: 7 start-page: 384 year: 2022 ident: 10.1016/j.bbrc.2025.151957_bib34 article-title: FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-022-01254-x – volume: 25 start-page: 1923 year: 2023 ident: 10.1016/j.bbrc.2025.151957_bib10 article-title: Circulating neutrophil-related proteins associate with incident heart failure and cardiac dysfunction: the ARIC study publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.3008 – volume: 135 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib35 article-title: Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake publication-title: J. Clin. Investig. doi: 10.1172/JCI181928 – volume: 464 start-page: 121 year: 2010 ident: 10.1016/j.bbrc.2025.151957_bib28 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature doi: 10.1038/nature08778 – volume: 50 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib20 article-title: Mitochondrial dysfunction and calcium homeostasis in heart failure: exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations publication-title: Curr. Probl. Cardiol. doi: 10.1016/j.cpcardiol.2024.102968 – volume: 68 start-page: 4540 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib3 article-title: Structure optimization of natural product catalpol to obtain novel and potent analogs against heart failure publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.4c02591 – volume: 12 start-page: 654 year: 2010 ident: 10.1016/j.bbrc.2025.151957_bib29 article-title: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.11.003 – volume: 49 start-page: 287 year: 2022 ident: 10.1016/j.bbrc.2025.151957_bib11 article-title: Mitochondrial sirtuins, metabolism, and aging publication-title: J Genet Genomics doi: 10.1016/j.jgg.2021.11.005 – volume: 12 start-page: 8 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib2 article-title: 2024 update in heart failure publication-title: ESC Heart Fail doi: 10.1002/ehf2.14857 – volume: 41 start-page: 139 year: 2011 ident: 10.1016/j.bbrc.2025.151957_bib27 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.002 – volume: 105 start-page: 14447 year: 2008 ident: 10.1016/j.bbrc.2025.151957_bib32 article-title: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0803790105 – volume: 8 start-page: 626 year: 2025 ident: 10.1016/j.bbrc.2025.151957_bib16 article-title: Circ-0001283 aggravates cardiac hypertrophy by targeting Myosin light chain 3 protein publication-title: Research doi: 10.34133/research.0626 – volume: 21 start-page: 717 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib1 article-title: Global epidemiology of heart failure publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-024-01046-6 – volume: 9 start-page: 45 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib15 article-title: TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-023-01732-w – volume: 302 year: 2023 ident: 10.1016/j.bbrc.2025.151957_bib38 article-title: Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.122364 – volume: 45 start-page: 4601 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib36 article-title: Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehae546 – volume: 61 start-page: 404 year: 2013 ident: 10.1016/j.bbrc.2025.151957_bib23 article-title: Low-dose colchicine for secondary prevention of cardiovascular disease publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2012.10.027 – volume: 45 start-page: 3853 year: 2024 ident: 10.1016/j.bbrc.2025.151957_bib5 article-title: Von Willebrand factor exacerbates heart failure through formation of neutrophil extracellular traps publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehae517 – volume: 128 start-page: 461 year: 2015 ident: 10.1016/j.bbrc.2025.151957_bib21 article-title: Colchicine: old and new publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2014.12.010 |
| SSID | ssj0011469 |
| Score | 2.488836 |
| Snippet | Heart failure (HF) is the end stage of many cardiovascular diseases, which is often associated with myocardial hypertrophy and cardiac remodeling. Among them,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 151957 |
| SubjectTerms | agonists Animals atrial fibrillation Colchicine Colchicine - pharmacology Colchicine - therapeutic use coronary artery disease drugs fibroblasts Fibroblasts - drug effects Fibroblasts - metabolism Fibroblasts - pathology Fibrosis Heart failure Heart Failure - drug therapy Heart Failure - metabolism Heart Failure - pathology hypertrophy Male Mice Mice, Inbred C57BL Myocardium - metabolism Myocardium - pathology Oxidative stress Oxidative Stress - drug effects risk reduction simulation models SIRT3 Sirtuin 3 - metabolism therapeutics Ventricular Remodeling - drug effects |
| Title | Alleviation of fibrosis and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via SIRT3 activation by colchicine |
| URI | https://dx.doi.org/10.1016/j.bbrc.2025.151957 https://www.ncbi.nlm.nih.gov/pubmed/40373382 https://www.proquest.com/docview/3204741463 https://www.proquest.com/docview/3271880910 |
| Volume | 770 |
| WOSCitedRecordID | wos001492863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011469 issn: 0006-291X databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2lKZe-IGi5hEu1SIiXyJUvcdZ-DFGBoqpCUCA8Wev1GrlK7SiNq5S_4GP4P2b2YkeFRPDAi2X5Lp3j3ZnZmTOEvAhllvE4Eo4MXOEMPI6_VOA5fCiDQHARMNV57vMxOzmJJpP4fafz09bCXE5ZWUbLZTz7r1DDMQAbS2f_Ae7moXAA9gF02ALssP0r4EdTrBhvLMEc_OEKVUcwQl4ti0wrfZsaEcwhVw73XPYxmXNa8cwBN73GtACh2IMSz6pfji1nxB7Yi37OC8xo78Or-h-PPpwGSpZDB3jRpgWCYZsVu2xv140L7NDVShSkRTWzTDG6Q5gJv1K00tj8X2oVvJXlt-8NGcemtuRNDd61mYPVOK9HsK8rvD2uK52FtDRa4ybU4YcYQzVJ1lIPz27sOr5pWGzHb6Y7j5gR2EO5HPbHyUHHKc4O0nSO4pV-ePD7xYDl7FwxY-AGDPx3v50om_RFe2qLbPssjKMu2R4dHU7eNctXMP3EpkJLJxNef-UOuWUfss4gWufwKMPn9C65YzwWOtJMu0c6stwle6OSL6rzK_qSqhxitTizS26-snu3x7aT4B75sUJJWuXUUpICA2hDSaopSYuSWkrS65SkhpK0paR6iKIkNZSk8CqqKElbStL0iraUvE8-vT48Hb91TCsQRwSxt3AiP8xlGvF8KOIB9yIxBNTzDNsBCMZiGFP8KMNkCumlKZMBl2CHR3zI0zh3c-EGD0i3rEr5iFDUGwp9HTwYsIjHrpAcDGc4InPphT3iWTwSYXTysV3LNLEJkWcJwpkgnImGs0f6zT0zrRKz8erQwpwYO1fbrwkwdeN9zy0nEkAQV_Z4Kav6Igl8dwCuwWAYbLqGofYiuAc98lATqvlWy8XHa888ITvtH_mUdBfzWj4jN8TloriY75MtNon2zV_wCwwM6Zg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alleviation+of+fibrosis+and+oxidative+stress+in+pressure+overload-induced+cardiac+remodeling+and+heart+failure+via+SIRT3+activation+by+colchicine&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Wu%2C+Mengze&rft.au=Chen%2C+Guodong&rft.au=Peng%2C+Yuce&rft.au=Luo%2C+Suxin&rft.date=2025-07-12&rft.eissn=1090-2104&rft.volume=770&rft.spage=151957&rft_id=info:doi/10.1016%2Fj.bbrc.2025.151957&rft_id=info%3Apmid%2F40373382&rft.externalDocID=40373382 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |