Machine learning-based test selection for simulation-based testing of self-driving cars software

Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical software engineering : an international journal Jg. 28; H. 3; S. 71
Hauptverfasser: Birchler, Christian, Khatiri, Sajad, Bosshard, Bill, Gambi, Alessio, Panichella, Sebastiano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2023
Springer Nature B.V
Schlagworte:
ISSN:1382-3256, 1573-7616
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called SDC-Scissor ( SDC co S t-effe C t I ve te S t S elect OR ) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings.
AbstractList Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called SDC-Scissor ( SDC co S t-effe C t I ve te S t S elect OR ) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings.
Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called SDC-Scissor (SDC coS t-effeC tI ve teS t S electOR) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings.
ArticleNumber 71
Author Bosshard, Bill
Gambi, Alessio
Birchler, Christian
Khatiri, Sajad
Panichella, Sebastiano
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0003-3987-0276
  surname: Birchler
  fullname: Birchler, Christian
  email: birc@zhaw.ch
  organization: Zurich University of Applied Science
– sequence: 2
  givenname: Sajad
  orcidid: 0000-0003-0354-9747
  surname: Khatiri
  fullname: Khatiri, Sajad
  organization: Zurich University of Applied Science, Software Institute - USI
– sequence: 3
  givenname: Bill
  surname: Bosshard
  fullname: Bosshard, Bill
  organization: Meier Planungsdienste GmbH
– sequence: 4
  givenname: Alessio
  orcidid: 0000-0002-0132-6497
  surname: Gambi
  fullname: Gambi, Alessio
  organization: IMC University of Applied Science Krems, University of Passau
– sequence: 5
  givenname: Sebastiano
  orcidid: 0000-0003-4120-626X
  surname: Panichella
  fullname: Panichella, Sebastiano
  organization: Zurich University of Applied Science
BookMark eNp9kD1PwzAQhi0EEm3hDzBFYjac7cRORlTxJRWxwGwcxy6pUrvYKaj_HqdBAjF08p3ueXynd4qOnXcGoQsCVwRAXEcCnOcYKMMEaMnx7ghNSCEYFpzw41SzkmJGC36KpjGuAKASeTFBb09Kv7fOZJ1RwbVuiWsVTZP1JvZZNJ3RfetdZn3IYrvedmpo_zDJyLwdSIub0H4OvVYhZtHb_ksFc4ZOrOqiOf95Z-j17vZl_oAXz_eP85sF1qwiPS6J4ZBTZStTN5RaYJwYRUWj66IpKpunMViahmWRg-WsMlYITRsCdaVzwmbocvx3E_zHNl0mV34bXFopaUmqgpUVY4cp4FRALopE0ZHSwccYjJWb0K5V2EkCcshbjnnLlLfc5y13SSr_Sbrt93H1QbXdYZWNakx73NKE36sOWN9Kkpgy
CitedBy_id crossref_primary_10_1145_3743673
crossref_primary_10_1016_j_bspc_2025_108046
crossref_primary_10_1145_3643768
crossref_primary_10_36930_40350416
crossref_primary_10_1007_s10515_025_00499_4
crossref_primary_10_1007_s10664_023_10433_5
crossref_primary_10_1145_3711906
crossref_primary_10_1007_s43621_025_01480_7
crossref_primary_10_1145_3744242
crossref_primary_10_3390_computers14030093
crossref_primary_10_1007_s11219_023_09639_z
crossref_primary_10_1145_3672454
crossref_primary_10_1016_j_asoc_2024_111805
crossref_primary_10_1145_3640334
crossref_primary_10_3390_wevj15080356
crossref_primary_10_1109_TSE_2023_3343753
Cites_doi 10.1145/3293882.3330566
10.1109/AITest.2019.00009
10.1007/978-3-030-60508-7_9
10.1109/WiMOB.2019.8923315
10.1109/ICACTE.2008.204
10.1145/2950290.2950299
10.1016/j.scico.2023.102926
10.1109/IROS40897.2019.8968102
10.1002/stvr.1486
10.1145/3526072.3527538
10.5555/2503308.2188395
10.1001/jama.2016.7653
10.1145/3205455.3205490
10.1109/ISSRE5003.2020.00012
10.1109/TSE.2010.63
10.1109/TII.2017.2788019
10.1109/IJCNN.2007.4371415
10.1109/34.709601
10.1109/ICST.2013.38
10.1142/S2424862217500129
10.1109/TIV.2016.2608003
10.1109/ICSM.1998.738487
10.1002/stvr.1570
10.1016/j.infsof.2009.04.016
10.1109/TITS.2017.2742141
10.1109/icstw.2019.00043
10.7717/peerj-cs.803
10.1016/j.jss.2009.11.706
10.1016/j.tra.2016.09.010
10.5281/zenodo.5085251
10.1109/ICSM.2015.7332474
10.1016/j.infsof.2012.04.007
10.1109/RE48521.2020.00057
10.1109/icse-companion.2019.00030
10.1007/s10664-021-10066-6
10.1109/IVS.2017.7995802
10.1002/stvr.1838
10.1109/SBST52555.2021.00011
10.1145/3180155.3180160
10.1109/IRC.2019.00059
10.1109/SANER53432.2022.00030
10.1016/S0020-0190(96)00135-4
10.1016/j.jss.2021.111047
10.1109/ICSM.2015.7332519
10.1007/978-0-387-39940-9_565
10.1002/stv.430
10.1007/978-3-642-39742-4_12
10.1145/1328279.1328284
10.1145/3238147.3238192
10.1109/eIT53891.2022.9813985
10.1016/j.jss.2018.09.055
10.1109/TSE.2018.2868082
10.1109/ICSM.1999.792604
10.1109/ICST46399.2020.00020
10.1145/2934466.2946046
10.1145/3533818
10.1145/2491956.2462167
10.1109/EUROMICRO.2006.56
10.1145/2889160.2889212
10.1145/3209811.3209880
10.1109/ISSRE5003.2020.00036
10.1145/3368089.3409730
10.1145/1143844.1143865
10.1145/2970276.2970311
10.1002/stvr.1794
10.1145/3338906.3338942
10.1007/978-0-387-30164-8_493
10.1145/3213846.3213852
10.1109/SBST52555.2021.00016
10.1109/TRO.2019.2942989
10.1145/3239372.3239409
10.1109/ITEC.2019.8790473
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-023-10286-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Technology Collection
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_023_10286_y
GrantInformation_xml – fundername: ZHAW Zurich University of Applied Sciences
– fundername: horizon 2020
  grantid: 957254-COSMOS
  funderid: https://doi.org/10.13039/501100007601
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c391t-81e6042af9ebd22f0361ea27dcb5d59f4e600f2ebd8540f639ef77c2d10b9c413
IEDL.DBID M7S
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976870100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 15:56:23 EST 2025
Tue Dec 02 15:54:59 EST 2025
Sat Nov 29 05:37:47 EST 2025
Tue Nov 18 22:23:17 EST 2025
Fri Feb 21 02:43:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Regression testing
Test case selection
Self-driving cars
Industrial integration
Software simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-81e6042af9ebd22f0361ea27dcb5d59f4e600f2ebd8540f639ef77c2d10b9c413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0354-9747
0000-0002-0132-6497
0000-0003-4120-626X
0000-0003-3987-0276
OpenAccessLink https://link.springer.com/10.1007/s10664-023-10286-y
PQID 2806270475
PQPubID 326341
ParticipantIDs proquest_journals_2819538933
proquest_journals_2806270475
crossref_primary_10_1007_s10664_023_10286_y
crossref_citationtrail_10_1007_s10664_023_10286_y
springer_journals_10_1007_s10664_023_10286_y
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Devroey X, Gambi A, Galeotti JP, Just R, Kifetew F, Panichella A, Panichella S (2022) Juge: An infrastructure for benchmarking java unit test generators. Software Testing Verification and Reliability
Nvidia (2020) Nvidia drive constellation. https://developer.nvidia.com/drive/drive-constellation. Accessed 8 Nov 2022
Gambi A, Jahangirova G, Riccio V, Zampetti F (2022) SBST tool competition 2022. In: 15th IEEE/ACM international workshop on search-based software testing, SBST@ICSE 2022, May 9, 2022. IEEE, Pittsburgh, PA, USA, pp 25–32. https://doi.org/10.1145/3526072.3527538
ZimmermannTPremrajRBettenburgNJustSSchröterAWeissCWhat makes a good bug reportIEEE Trans Software Eng201036561864310.1109/TSE.2010.63
Gambi A, Mueller M, Fraser G (2019) AsFault: Testing self-driving car software using search-based procedural content generation. In: J.M. Atlee, T. Bultan, J. Whittle (eds.) 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 27–30. IEEE, DOI https://doi.org/10.1109/icse-companion.2019.00030
CanforaGLuciaADPentaMDOlivetoRPanichellaAPanichellaSDefect prediction as a multiobjective optimization problemSoftw Test Verification Reliab201525442645910.1002/stvr.1570
Abdessalem RB, Nejati S, Briand LC, Stifter T (2018a) Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th international conference on software engineering. ACM, pp 1016–1026. https://doi.org/10.1145/3180155.3180160
NucciDDPanichellaAZaidmanALuciaADA test case prioritization genetic algorithm guided by the hypervolume indicatorIEEE Trans Software Eng202046667469610.1109/TSE.2018.2868082https://doi.org/10.1109/TSE.2018.2868082
Bettenburg N, Just S, Schröter A., Weiß C, Premraj R, Zimmermann T (2007) Quality of bug reports in eclipse. In: Cheng L, Orso A, Robillard MP (eds) Proceedings of the 2007 OOPSLA workshop on Eclipse Technology eXchange, ETX 2007, October 21, 2007. ACM, Montreal, Quebec, Canada, pp 21–25, DOI https://doi.org/10.1145/1328279.1328284
CIA (2017) History of can technology. https://www.can-cia.org/can-knowledge/can/can-history/. Accessed 8 Nov 2022
Kim J, Chon S, Park J (2019) Suggestion of testing method for industrial level cyber-physical system in complex environment. In: 2019 IEEE international conference on software testing, verification and validation workshops (ICSTW). IEEE. https://doi.org/10.1109/icstw.2019.00043
RaniPPanichellaSLeuenbergerMDi SorboANierstraszOHow to identify class comment types? A multi-language approach for class comment classificationJ Syst Softw202118111104710.1016/j.jss.2021.111047https://doi.org/10.1016/j.jss.2021.111047, https://www.sciencedirect.com/science/article/pii/S0164121221001448
Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proceedings of the ACM joint european software engineering conference and symposium on the foundations of software engineering, ESEC/FSE ’20. Association for Computing Machinery, p 13. https://doi.org/10.1145/3368089.3409730
Arrieta A, Wang S, Markiegi U, Sagardui G, Etxeberria L (2018b) Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Trans Ind Inform 14(3):1055–1066. https://doi.org/10.1109/TII.2017.2788019
Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 2013 IEEE 6th international conference on software testing, verification and validation (ICST). IEEE, pp 252–261
Birchler C, Khatiri S, Derakhshanfar P, Panichella S, Panichella A (2022c) Single and multi-objective test cases prioritization for self-driving cars in virtual environments. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3533818
YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftw Test Verification Reliab20122226712010.1002/stv.430
Arrieta A, Wang S, Sagardui G, Etxeberria L (2016) Search-based test case selection of cyber-physical system product lines for simulation-based validation. In: Mei H (ed) Proceedings of the 20th international systems and software product line conference, SPLC 2016, September 16-23, 2016. ACM, Beijing, China, pp 297–306, DOI https://doi.org/10.1145/2934466.2946046
Boumiza S, Braham R (2019) An anomaly detector for can bus networks in autonomous cars based on neural networks. In: 2019 international conference on wireless and mobile computing, networking and communications (WiMob), pp 1–6. https://doi.org/10.1109/WiMOB.2019.8923315
Althoff M, Koschi M, Manzinger S (2017) Commonroad: Composable benchmarks for motion planning on roads. In: IEEE intelligent vehicles symposium, IV 2017, June 11-14, 2017. IEEE, Los Angeles, CA, USA, pp 719–726. https://doi.org/10.1109/IVS.2017.7995802
FrankEHallMAHolmesGKirkbyRPfahringerBWittenIHWeka: A machine learning workbench for data mining2005BerlinSpringer13051314http://researchcommons.waikato.ac.nz/handle/10289/1497
The-Washington-Post (2019) Uber’s radar detected Elaine Herzberg nearly 6 seconds before she was fatally struck but “the system design did not include a consideration for jaywalking pedestrians” so it didn’t react as if she were a person. https://mobile.twitter.com/faizsays/status/1191885955088519168
Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: Koschke R, Krinke J, Robillard MP (eds) International conference on software maintenance and evolution, ICSME. IEEE Computer Society, pp 281–290. https://doi.org/10.1109/ICSM.2015.7332474
Huang J, Zhang C, Dolby J (2013) CLAP: recording local executions to reproduce concurrency failures. In: Boehm H, Flanagan C (eds) ACM SIGPLAN conference on programming language design and implementation, PLDI ’13, June 16-19, 2013. ACM, Seattle, WA, USA, pp 141–152. https://doi.org/10.1145/2491956.2462167
Briand L, Nejati S, Sabetzadeh M, Bianculli D (2016) Testing the untestable: Model testing of complex software-intensive systems. In: Dillon LK, Visser W, Williams LA (eds) Proc. int’l conf on software engineering (ICSE – Companion). ACM, pp 789–792. https://doi.org/10.1145/2889160.2889212
Roper M (2019) Using machine learning to classify test outcomes. In: IEEE international conference on artificial intelligence testing, AITest 2019, April 4-9, 2019. IEEE, Newark, CA, USA, pp 99–100. https://doi.org/10.1109/AITest.2019.00009
Panichella S, Ruiz M (2020) Requirements-collector: Automating requirements specification from elicitation sessions and user feedback. In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements engineering conference, RE 2020, August 31 - September 4, 2020. IEEE, Zurich, Switzerland, pp 404–407. https://doi.org/10.1109/RE48521.2020.00057
Abdessalem RB, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems using multi-objective search and neural networks. In: Lo D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE 2016, September 3-7. ACM, Singapore, pp 63–74. https://doi.org/10.1145/2970276.2970311
Sorbo AD, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would users change in my app? summarizing app reviews for recommending software changes. In: Zimmermann T, Cleland-Huang J, Su Z (eds) International symposium on foundations of software engineering. ACM, pp 499–510. https://doi.org/10.1145/2950290.2950299
BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213281305291370110.5555/2503308.21883951283.68282
Kaur A, Malhotra R (2008) Application of random forest in predicting fault-prone classes. In: 2008 international conference on advanced computer theory and engineering, pp 37–43
Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prioritization for acceptance testing of cyber physical systems: a multi-objective search-based approach. In: Tip F, Bodden E (eds) Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2018, July 16-21, 2018. ACM, Amsterdam, The Netherlands, pp 49–60. https://doi.org/10.1145/3213846.3213852
Sorbo AD, Zampetti F, Visaggio CA, Penta MD, Panichella S (2022) Automated identification and qualitative characterization of safety concerns reported in UAV software platforms. Trans Softw Eng Methodol
Dosovitskiy A, Ros G, Codevilla F, López AM, Koltun V (2017) CARLA: an open urban driving simulator. In: 1st annual conference on robot learning, CoRL 2017, Proceedings of Machine Learning Research, vol 78. PMLR, pp 1–16. http://proceedings.mlr.press/v78/dosovitskiy17a.html
Li G, Li Y, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R (2020) AV-FUZZER: Finding safety violations in autonomous driving systems. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE). IEEE, pp 25–36
AdnanMAlaroodAAUddinMIur RehmanIUtilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning modelsPeerJ Comput Sci20228e80310.7717/peerj-cs.803
Sammut C, Webb GI (eds) (2011) Logistic regression. Springer US, Boston. https://doi.org/10.1007/978-0-387-30164-8_493
ChenHApplications of cyber-physical system: A literature reviewJ Ind Integr Manag20170203175001210.1142/S2424862217500129
Rothermel G, Harrold MJ, Ostrin J, Hong C (1998) An empirical study of the effects of minimization on the fault detection capabilities of test suites. In: Proceedings of the international conference on software maintenance. IEEE CS Press, pp 34–44
Panichella S (2015) Supporting newcomers in software development projects. In: 2015 IEEE international conference on software maintenance and evolution (ICSME), pp 586–589. https://doi.org/10.1109/ICSM.2015.7332519
JiaYHarmanMHigher order mutation testingInf Soft
10286_CR20
10286_CR64
T Zimmermann (10286_CR88) 2010; 36
10286_CR62
S Sontges (10286_CR78) 2018; 19
10286_CR24
10286_CR23
10286_CR67
J Bergstra (10286_CR17) 2012; 13
10286_CR22
10286_CR66
10286_CR21
10286_CR65
R Baeza-Yates (10286_CR13) 2011
10286_CR60
A Arcuri (10286_CR8) 2014; 24
S Yoo (10286_CR84) 2010; 83
10286_CR16
10286_CR15
P Rani (10286_CR68) 2021; 181
10286_CR58
10286_CR19
S Yoo (10286_CR85) 2012; 22
10286_CR18
10286_CR53
10286_CR50
J Tolles (10286_CR82) 2016; 316
R Pan (10286_CR63) 2022; 27
10286_CR56
10286_CR11
10286_CR55
10286_CR10
10286_CR54
H Chen (10286_CR32) 2017; 02
R Baheti (10286_CR14) 2011; 12
F Elberzhager (10286_CR39) 2012; 54
10286_CR49
10286_CR47
E Frank (10286_CR40) 2005
TK Ho (10286_CR48) 1998; 20
10286_CR42
10286_CR86
10286_CR41
10286_CR83
10286_CR46
10286_CR45
10286_CR44
10286_CR43
10286_CR87
P Refaeilzadeh (10286_CR69) 2009
10286_CR81
G Canfora (10286_CR28) 2015; 25
10286_CR80
A Loquercio (10286_CR59) 2020; 36
10286_CR38
10286_CR37
10286_CR36
M Adnan (10286_CR5) 2022; 8
10286_CR31
10286_CR75
10286_CR9
10286_CR30
N Kalra (10286_CR52) 2016; 94
10286_CR74
10286_CR73
10286_CR72
10286_CR6
10286_CR35
10286_CR79
10286_CR34
10286_CR77
10286_CR7
10286_CR76
10286_CR2
10286_CR1
10286_CR4
10286_CR3
10286_CR71
10286_CR70
Y Jia (10286_CR51) 2009; 51
A Arrieta (10286_CR12) 2019; 149
DD Nucci (10286_CR61) 2020; 46
TY Chen (10286_CR33) 1996; 60
10286_CR27
10286_CR26
L Li (10286_CR57) 2016; 1
10286_CR25
10286_CR29
References_xml – reference: Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 6th IEEE international conference on software testing, verification and validation, ICST 2013, March 18-22, 2013. IEEE Computer Society, Luxembourg, pp 252–261. https://doi.org/10.1109/ICST.2013.38
– reference: ArrietaAWangSSagarduiGEtxeberriaLSearch-based test case prioritization for simulation-based testing of cyber-physical system product linesJ Syst Softw201914913410.1016/j.jss.2018.09.055
– reference: TollesJMeurerWJLogistic regressionJAMA2016316553310.1001/jama.2016.7653
– reference: Nvidia (2020) Nvidia drive constellation. https://developer.nvidia.com/drive/drive-constellation. Accessed 8 Nov 2022
– reference: Dalboni M, Soldati A (2019) Soft-body modeling: A scalable and efficient formulation for control-oriented simulation of electric vehicles. In: IEEE transportation electrification conference and expo (ITEC), pp 1–6
– reference: CIA (2017) History of can technology. https://www.can-cia.org/can-knowledge/can/can-history/. Accessed 8 Nov 2022
– reference: KalraNPaddockSDriving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?Transp Res A Policy Pract20169418219310.1016/j.tra.2016.09.010https://doi.org/10.1016/j.tra.2016.09.010
– reference: Birchler C, Khatiri S, Derakhshanfar P, Panichella S, Panichella A (2022c) Single and multi-objective test cases prioritization for self-driving cars in virtual environments. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3533818
– reference: Arrieta A, Wang S, Arruabarrena A, Markiegi U, Sagardui G, Etxeberria L (2018a) Multi-objective black-box test case selection for cost-effectively testing simulation models. In: Proceedings of the genetic and evolutionary computation conference, pp 1411–1418
– reference: Academies of Sciences (2017) A 21st century cyber-physical systems education. National Academies Press
– reference: Sean CG (2022) Casper van der Wel. 2007-2022, S.C.: Shapely. https://github.com/shapely/shapely. Accessed 8 Nov 2022
– reference: Althoff M, Koschi M, Manzinger S (2017) Commonroad: Composable benchmarks for motion planning on roads. In: IEEE intelligent vehicles symposium, IV 2017, June 11-14, 2017. IEEE, Los Angeles, CA, USA, pp 719–726. https://doi.org/10.1109/IVS.2017.7995802
– reference: Gambi A, Müller M., Fraser G (2019) Automatically testing self-driving cars with search-based procedural content generation. In: Zhang D, Møller A (eds) Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2019, July 15-19, 2019. ACM, Beijing, China, pp 318–328. https://doi.org/10.1145/3293882.3330566
– reference: Gambi A, Huynh T, Fraser G (2019) Generating effective test cases for self-driving cars from police reports. In: Dumas M, Pfahl D, Apel S, Russo A (eds) Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering - ESEC/FSE 2019. ACM Press, pp 257–267. https://doi.org/10.1145/3338906.3338942
– reference: Rothermel G, Untch R, Chu C, Harrold M (1999) Test case prioritization: an empirical study. In: IEEE international conference on software maintenance, 1999. (ICSM ’99) Proceedings. IEEE, pp 179–188. https://doi.org/10.1109/ICSM.1999.792604
– reference: Huang J, Zhang C, Dolby J (2013) CLAP: recording local executions to reproduce concurrency failures. In: Boehm H, Flanagan C (eds) ACM SIGPLAN conference on programming language design and implementation, PLDI ’13, June 16-19, 2013. ACM, Seattle, WA, USA, pp 141–152. https://doi.org/10.1145/2491956.2462167
– reference: LoquercioAKaufmannERanftlRDosovitskiyAKoltunVScaramuzzaDDeep drone racing: From simulation to reality with domain randomizationIEEE Trans Robot202036111410.1109/TRO.2019.2942989
– reference: Xu J, Luo Q, Xu K, Xiao X, Yu S, Hu J, Miao J, Wang J (2019) An automated learning-based procedure for large-scale vehicle dynamics modeling on Baidu Apollo platform. In: 2019 IEEE/RSJ international conference on intelligent robots and systems, IROS. IEEE, pp 5049–5056. https://doi.org/10.1109/IROS40897.2019.8968102
– reference: Zhang XY, Arcaini P, Ishikawa F, Liu K (2020) Investigating the configurations of an industrial path planner in terms of collision avoidance. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE), pp 301–312. https://doi.org/10.1109/ISSRE5003.2020.00036
– reference: Zapridou E, Bartocci E, Katsaros P Deshmukh J, Ničković D (eds) (2020) Runtime verification of autonomous driving systems in Carla. Springer International Publishing, Cham
– reference: Sadri-Moshkenani Z, Bradley JM, Rothermel G (2022) Survey on test case generation, selection and prioritization for cyber-physical systems. Softw Test Verification Reliab 32(1). https://doi.org/10.1002/stvr.1794
– reference: Guardian T (2018) Self-driving uber kills arizona woman in first fatal crash involving pedestrian. https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe. Accessed 8 Nov 2022
– reference: ChenHApplications of cyber-physical system: A literature reviewJ Ind Integr Manag20170203175001210.1142/S2424862217500129
– reference: ChenTYLauMFDividing strategies for the optimization of a test suiteInf Process Lett1996603135141142392010.1016/S0020-0190(96)00135-40875.68276
– reference: Castellano E, Cetinkaya A, Thanh CH, Klikovits S, Zhang X, Arcaini P (2021) Frenetic at the SBST 2021 tool competition. In: 14th IEEE/ACM international workshop on search-based software testing, SBST 2021, May 31, 2021. IEEE, Madrid, Spain, pp 36–37. https://doi.org/10.1109/SBST52555.2021.00016
– reference: Devroey X, Gambi A, Galeotti JP, Just R, Kifetew F, Panichella A, Panichella S (2022) Juge: An infrastructure for benchmarking java unit test generators. Software Testing Verification and Reliability
– reference: Kaur A, Malhotra R (2008) Application of random forest in predicting fault-prone classes. In: 2008 international conference on advanced computer theory and engineering, pp 37–43
– reference: Gundu R, Maleki M (2022) Securing CAN bus in connected and autonomous vehicles using supervised machine learning approaches. In: 2022 IEEE international conference on electro information technology, EIT 2022, May 19-21, 2022. IEEE, Mankato, MN, USA, pp 42–46. https://doi.org/10.1109/eIT53891.2022.9813985
– reference: Panichella S, Ruiz M (2020) Requirements-collector: Automating requirements specification from elicitation sessions and user feedback. In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements engineering conference, RE 2020, August 31 - September 4, 2020. IEEE, Zurich, Switzerland, pp 404–407. https://doi.org/10.1109/RE48521.2020.00057
– reference: Rothermel G, Harrold MJ, Ostrin J, Hong C (1998) An empirical study of the effects of minimization on the fault detection capabilities of test suites. In: Proceedings of the international conference on software maintenance. IEEE CS Press, pp 34–44
– reference: Panichella S (2015) Supporting newcomers in software development projects. In: 2015 IEEE international conference on software maintenance and evolution (ICSME), pp 586–589. https://doi.org/10.1109/ICSM.2015.7332519
– reference: Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prioritization for acceptance testing of cyber physical systems: a multi-objective search-based approach. In: Tip F, Bodden E (eds) Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2018, July 16-21, 2018. ACM, Amsterdam, The Netherlands, pp 49–60. https://doi.org/10.1145/3213846.3213852
– reference: Ceylan E, Kutlubay FO, Bener AB (2006) Software defect identification using machine learning techniques. In: 32nd EUROMICRO conference on software engineering and advanced applications (EUROMICRO’06), pp 240–247
– reference: CanforaGLuciaADPentaMDOlivetoRPanichellaAPanichellaSDefect prediction as a multiobjective optimization problemSoftw Test Verification Reliab201525442645910.1002/stvr.1570
– reference: Bezerra MER, Oliveira ALI, Meira SRL (2007) A constructive RBF neural network for estimating the probability of defects in software modules. In: 2007 international joint conference on neural networks, pp 2869–2874
– reference: AdnanMAlaroodAAUddinMIur RehmanIUtilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning modelsPeerJ Comput Sci20228e80310.7717/peerj-cs.803
– reference: Birchler C, Ganz N, Khatiri S, Gambi A, Panichella S (2023) Cost-effective simulation-based test selection in self-driving cars software. Science of Computer Programming (SCP). https://doi.org/10.1016/j.scico.2023.102926
– reference: SontgesSAlthoffMComputing the drivable area of autonomous road vehicles in dynamic road scenesIEEE Trans Intell Trans Syst20181961855186610.1109/TITS.2017.2742141
– reference: Matinnejad R, Nejati S, Briand L, Bruckmann T, Poull C (2013) Automated model-in-the-loop testing of continuous controllers using search. In: International symposium on search based software engineering. Springer, pp 141–157
– reference: Ingrand F (2019) Recent trends in formal validation and verification of autonomous robots software. In: 3rd IEEE international conference on robotic computing, IRC 2019, February 25-27, 2019, Naples, Italy, pp 321–328
– reference: Caruana R, Niculescu-mizil A (2006) An empirical comparison of supervised learning algorithms. In: In Proc. 23 rd Intl. Conf. Machine learning (ICML’06), pp 161–168
– reference: The-Washington-Post (2019) Uber’s radar detected Elaine Herzberg nearly 6 seconds before she was fatally struck but “the system design did not include a consideration for jaywalking pedestrians” so it didn’t react as if she were a person. https://mobile.twitter.com/faizsays/status/1191885955088519168
– reference: Gambi A, Mueller M, Fraser G (2019) AsFault: Testing self-driving car software using search-based procedural content generation. In: J.M. Atlee, T. Bultan, J. Whittle (eds.) 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 27–30. IEEE, DOI https://doi.org/10.1109/icse-companion.2019.00030
– reference: Bondi E, Dey D, Kapoor A, Piavis J, Shah S, Fang F, Dilkina B, Hannaford R, Iyer A, Joppa L, Tambe M (2018) AirSim-w: A simulation environment for wildlife conservation with UAVs. In: Zegura EW (ed) Proceedings of the 1st ACM SIGCAS conference on computing and sustainable societies, COMPASS. ACM, pp 40:1–40:12. https://doi.org/10.1145/3209811.3209880
– reference: Kim J, Chon S, Park J (2019) Suggestion of testing method for industrial level cyber-physical system in complex environment. In: 2019 IEEE international conference on software testing, verification and validation workshops (ICSTW). IEEE. https://doi.org/10.1109/icstw.2019.00043
– reference: BeamNG GmbH (2022) BeamNG.tech. https://www.beamng.gmbh/research. Accessed 11 Oct 2018
– reference: YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftw Test Verification Reliab20122226712010.1002/stv.430
– reference: Afzal A, Katz DS, Goues CL, Timperley CS (2020) A study on the challenges of using robotics simulators for testing
– reference: Ling CX, Li C (1998) Data mining for direct marketing: Problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data mining, KDD’98. AAAI Press, pp 73–79
– reference: Panichella S, Gambi A, Zampetti F, Riccio V (2021) SBST tool competition 2021. In: International conference on software engineering, workshops. ACM, Madrid, Spain
– reference: González CA, Varmazyar M, Nejati S, Briand LC, Isasi Y (2018) Enabling model testing of cyber-physical systems. In: Proceedings of the 21th ACM/IEEE international conference on model driven engineering languages and systems, MODELS ’18. Association for Computing Machinery, New York, NY, USA, pp 176–186. https://doi.org/10.1145/3239372.3239409
– reference: Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proceedings of the ACM joint european software engineering conference and symposium on the foundations of software engineering, ESEC/FSE ’20. Association for Computing Machinery, p 13. https://doi.org/10.1145/3368089.3409730
– reference: Khatiri S, Birchler C, Bosshard B, Gambi A, Panichella S (2021) Machine learning-based test selection for simulation-based testing of self-driving cars software. https://doi.org/10.5281/zenodo.5085251
– reference: Bettenburg N, Just S, Schröter A., Weiß C, Premraj R, Zimmermann T (2007) Quality of bug reports in eclipse. In: Cheng L, Orso A, Robillard MP (eds) Proceedings of the 2007 OOPSLA workshop on Eclipse Technology eXchange, ETX 2007, October 21, 2007. ACM, Montreal, Quebec, Canada, pp 21–25, DOI https://doi.org/10.1145/1328279.1328284
– reference: Dosovitskiy A, Ros G, Codevilla F, López AM, Koltun V (2017) CARLA: an open urban driving simulator. In: 1st annual conference on robot learning, CoRL 2017, Proceedings of Machine Learning Research, vol 78. PMLR, pp 1–16. http://proceedings.mlr.press/v78/dosovitskiy17a.html
– reference: PanRBagherzadehMGhalebTABriandLCTest case selection and prioritization using machine learning: a systematic literature reviewEmpir Softw Eng20222722910.1007/s10664-021-10066-6https://doi.org/10.1007/s10664-021-10066-6
– reference: Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2018b) Testing autonomous cars for feature interaction failures using many-objective search. In: Huchard M, Kästner C, Fraser G (eds) Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ASE 2018, September 3-7, 2018. IEEE, ACM, Montpellier, France, pp 143–154. https://doi.org/10.1145/3238147.3238192
– reference: Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 24th international conference on neural information processing systems, NIPS’11. Curran Associates Inc., Red Hook, NY, USA, pp 2546–2554
– reference: HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601
– reference: Sorbo AD, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would users change in my app? summarizing app reviews for recommending software changes. In: Zimmermann T, Cleland-Huang J, Su Z (eds) International symposium on foundations of software engineering. ACM, pp 499–510. https://doi.org/10.1145/2950290.2950299
– reference: ArcuriABriandLCA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftw Test Verification Reliab201424321925010.1002/stvr.1486
– reference: Arrieta A, Wang S, Sagardui G, Etxeberria L (2016) Search-based test case selection of cyber-physical system product lines for simulation-based validation. In: Mei H (ed) Proceedings of the 20th international systems and software product line conference, SPLC 2016, September 16-23, 2016. ACM, Beijing, China, pp 297–306, DOI https://doi.org/10.1145/2934466.2946046
– reference: Briand L, Nejati S, Sabetzadeh M, Bianculli D (2016) Testing the untestable: Model testing of complex software-intensive systems. In: Dillon LK, Visser W, Williams LA (eds) Proc. int’l conf on software engineering (ICSE – Companion). ACM, pp 789–792. https://doi.org/10.1145/2889160.2889212
– reference: FrankEHallMAHolmesGKirkbyRPfahringerBWittenIHWeka: A machine learning workbench for data mining2005BerlinSpringer13051314http://researchcommons.waikato.ac.nz/handle/10289/1497
– reference: Sammut C, Webb GI (eds) (2011) Logistic regression. Springer US, Boston. https://doi.org/10.1007/978-0-387-30164-8_493
– reference: RefaeilzadehPTangLLiuHCross-validation2009BostonSpringer US532538https://doi.org/10.1007/978-0-387-39940-9_565
– reference: JiaYHarmanMHigher order mutation testingInf Softw Technol200951101379139310.1016/j.infsof.2009.04.016
– reference: Abdessalem RB, Nejati S, Briand LC, Stifter T (2018a) Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th international conference on software engineering. ACM, pp 1016–1026. https://doi.org/10.1145/3180155.3180160
– reference: Boumiza S, Braham R (2019) An anomaly detector for can bus networks in autonomous cars based on neural networks. In: 2019 international conference on wireless and mobile computing, networking and communications (WiMob), pp 1–6. https://doi.org/10.1109/WiMOB.2019.8923315
– reference: LiLHuangWLiuYZhengNWangFIntelligence testing for autonomous vehicles: A new approachIEEE Trans Intell Veh20161215816610.1109/TIV.2016.2608003
– reference: ElberzhagerFRosbachAMünchJEschbachRReducing test effort: A systematic mapping study on existing approachesInf Softw Technol201254101092110610.1016/j.infsof.2012.04.007
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213281305291370110.5555/2503308.21883951283.68282
– reference: CNX O (2021) Openstax university physics. http://cnx.org/contents/d50f6e32-0fda-46ef-a362-9bd36ca7c97d@10.16. Accessed 8 Nov 2022
– reference: YooSHarmanMUsing hybrid algorithm for Pareto efficient multi-objective test suite minimisationJ Syst Softw201083468970110.1016/j.jss.2009.11.706
– reference: ZimmermannTPremrajRBettenburgNJustSSchröterAWeissCWhat makes a good bug reportIEEE Trans Software Eng201036561864310.1109/TSE.2010.63
– reference: Roper M (2019) Using machine learning to classify test outcomes. In: IEEE international conference on artificial intelligence testing, AITest 2019, April 4-9, 2019. IEEE, Newark, CA, USA, pp 99–100. https://doi.org/10.1109/AITest.2019.00009
– reference: Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: Koschke R, Krinke J, Robillard MP (eds) International conference on software maintenance and evolution, ICSME. IEEE Computer Society, pp 281–290. https://doi.org/10.1109/ICSM.2015.7332474
– reference: Birchler C, Ganz N, Khatiri S, Gambi A, Panichella S (2022) Cost-effective simulation-based test selection in self-driving cars software with SDC-scissor. In: 2022 IEEE international conference on software analysis, evolution and reengineering (SANER), pp 164–168. https://doi.org/10.1109/SANER53432.2022.00030
– reference: Baeza-YatesRRibeiro-NetoBAModern Information Retrieval - the concepts and technology behind search20112nd edn.Harlow, EnglandPearson Education Ltd.http://www.mir2ed.org/
– reference: BahetiRGillHCyber-physical systemsImpact Control Technol2011121161166
– reference: RaniPPanichellaSLeuenbergerMDi SorboANierstraszOHow to identify class comment types? A multi-language approach for class comment classificationJ Syst Softw202118111104710.1016/j.jss.2021.111047https://doi.org/10.1016/j.jss.2021.111047, https://www.sciencedirect.com/science/article/pii/S0164121221001448
– reference: NucciDDPanichellaAZaidmanALuciaADA test case prioritization genetic algorithm guided by the hypervolume indicatorIEEE Trans Software Eng202046667469610.1109/TSE.2018.2868082https://doi.org/10.1109/TSE.2018.2868082
– reference: Abdessalem RB, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems using multi-objective search and neural networks. In: Lo D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE 2016, September 3-7. ACM, Singapore, pp 63–74. https://doi.org/10.1145/2970276.2970311
– reference: Arrieta A, Wang S, Markiegi U, Sagardui G, Etxeberria L (2018b) Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Trans Ind Inform 14(3):1055–1066. https://doi.org/10.1109/TII.2017.2788019
– reference: Li G, Li Y, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R (2020) AV-FUZZER: Finding safety violations in autonomous driving systems. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE). IEEE, pp 25–36
– reference: Gambi A, Jahangirova G, Riccio V, Zampetti F (2022) SBST tool competition 2022. In: 15th IEEE/ACM international workshop on search-based software testing, SBST@ICSE 2022, May 9, 2022. IEEE, Pittsburgh, PA, USA, pp 25–32. https://doi.org/10.1145/3526072.3527538
– reference: Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 2013 IEEE 6th international conference on software testing, verification and validation (ICST). IEEE, pp 252–261
– reference: Sorbo AD, Zampetti F, Visaggio CA, Penta MD, Panichella S (2022) Automated identification and qualitative characterization of safety concerns reported in UAV software platforms. Trans Softw Eng Methodol
– ident: 10286_CR44
  doi: 10.1145/3293882.3330566
– start-page: 1305
  volume-title: Weka: A machine learning workbench for data mining
  year: 2005
  ident: 10286_CR40
– ident: 10286_CR71
  doi: 10.1109/AITest.2019.00009
– ident: 10286_CR86
  doi: 10.1007/978-3-030-60508-7_9
– ident: 10286_CR24
  doi: 10.1109/WiMOB.2019.8923315
– ident: 10286_CR53
  doi: 10.1109/ICACTE.2008.204
– ident: 10286_CR79
  doi: 10.1145/2950290.2950299
– ident: 10286_CR20
  doi: 10.1016/j.scico.2023.102926
– ident: 10286_CR83
  doi: 10.1109/IROS40897.2019.8968102
– volume: 24
  start-page: 219
  issue: 3
  year: 2014
  ident: 10286_CR8
  publication-title: Softw Test Verification Reliab
  doi: 10.1002/stvr.1486
– ident: 10286_CR80
– ident: 10286_CR42
  doi: 10.1145/3526072.3527538
– volume: 13
  start-page: 281
  year: 2012
  ident: 10286_CR17
  publication-title: J Mach Learn Res
  doi: 10.5555/2503308.2188395
– volume: 316
  start-page: 533
  issue: 5
  year: 2016
  ident: 10286_CR82
  publication-title: JAMA
  doi: 10.1001/jama.2016.7653
– ident: 10286_CR9
  doi: 10.1145/3205455.3205490
– ident: 10286_CR56
  doi: 10.1109/ISSRE5003.2020.00012
– volume: 36
  start-page: 618
  issue: 5
  year: 2010
  ident: 10286_CR88
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2010.63
– ident: 10286_CR10
  doi: 10.1109/TII.2017.2788019
– ident: 10286_CR19
  doi: 10.1109/IJCNN.2007.4371415
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10286_CR48
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– ident: 10286_CR26
  doi: 10.1109/ICST.2013.38
– volume: 02
  start-page: 1750012
  issue: 03
  year: 2017
  ident: 10286_CR32
  publication-title: J Ind Integr Manag
  doi: 10.1142/S2424862217500129
– volume: 1
  start-page: 158
  issue: 2
  year: 2016
  ident: 10286_CR57
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2016.2608003
– ident: 10286_CR72
  doi: 10.1109/ICSM.1998.738487
– volume: 25
  start-page: 426
  issue: 4
  year: 2015
  ident: 10286_CR28
  publication-title: Softw Test Verification Reliab
  doi: 10.1002/stvr.1570
– volume: 51
  start-page: 1379
  issue: 10
  year: 2009
  ident: 10286_CR51
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2009.04.016
– volume: 19
  start-page: 1855
  issue: 6
  year: 2018
  ident: 10286_CR78
  publication-title: IEEE Trans Intell Trans Syst
  doi: 10.1109/TITS.2017.2742141
– ident: 10286_CR55
  doi: 10.1109/icstw.2019.00043
– volume: 8
  start-page: e803
  year: 2022
  ident: 10286_CR5
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.803
– ident: 10286_CR46
– ident: 10286_CR62
– volume: 83
  start-page: 689
  issue: 4
  year: 2010
  ident: 10286_CR84
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2009.11.706
– volume-title: Modern Information Retrieval - the concepts and technology behind search
  year: 2011
  ident: 10286_CR13
– volume: 94
  start-page: 182
  year: 2016
  ident: 10286_CR52
  publication-title: Transp Res A Policy Pract
  doi: 10.1016/j.tra.2016.09.010
– ident: 10286_CR54
  doi: 10.5281/zenodo.5085251
– ident: 10286_CR67
  doi: 10.1109/ICSM.2015.7332474
– volume: 54
  start-page: 1092
  issue: 10
  year: 2012
  ident: 10286_CR39
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2012.04.007
– ident: 10286_CR66
  doi: 10.1109/RE48521.2020.00057
– ident: 10286_CR43
  doi: 10.1109/icse-companion.2019.00030
– volume: 27
  start-page: 29
  issue: 2
  year: 2022
  ident: 10286_CR63
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-021-10066-6
– ident: 10286_CR7
  doi: 10.1109/IVS.2017.7995802
– ident: 10286_CR35
– ident: 10286_CR37
  doi: 10.1002/stvr.1838
– ident: 10286_CR65
  doi: 10.1109/SBST52555.2021.00011
– ident: 10286_CR2
  doi: 10.1145/3180155.3180160
– ident: 10286_CR50
  doi: 10.1109/IRC.2019.00059
– ident: 10286_CR21
  doi: 10.1109/SANER53432.2022.00030
– volume: 60
  start-page: 135
  issue: 3
  year: 1996
  ident: 10286_CR33
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(96)00135-4
– volume: 181
  start-page: 111047
  year: 2021
  ident: 10286_CR68
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2021.111047
– ident: 10286_CR64
  doi: 10.1109/ICSM.2015.7332519
– start-page: 532
  volume-title: Cross-validation
  year: 2009
  ident: 10286_CR69
  doi: 10.1007/978-0-387-39940-9_565
– volume: 22
  start-page: 67
  issue: 2
  year: 2012
  ident: 10286_CR85
  publication-title: Softw Test Verification Reliab
  doi: 10.1002/stv.430
– ident: 10286_CR60
  doi: 10.1007/978-3-642-39742-4_12
– ident: 10286_CR18
  doi: 10.1145/1328279.1328284
– ident: 10286_CR3
  doi: 10.1145/3238147.3238192
– ident: 10286_CR47
  doi: 10.1109/eIT53891.2022.9813985
– volume: 149
  start-page: 1
  year: 2019
  ident: 10286_CR12
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2018.09.055
– ident: 10286_CR38
– volume: 46
  start-page: 674
  issue: 6
  year: 2020
  ident: 10286_CR61
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2018.2868082
– ident: 10286_CR15
– ident: 10286_CR76
– ident: 10286_CR34
– ident: 10286_CR81
– ident: 10286_CR58
– ident: 10286_CR73
  doi: 10.1109/ICSM.1999.792604
– ident: 10286_CR6
  doi: 10.1109/ICST46399.2020.00020
– ident: 10286_CR11
  doi: 10.1145/2934466.2946046
– ident: 10286_CR22
  doi: 10.1145/3533818
– ident: 10286_CR49
  doi: 10.1145/2491956.2462167
– ident: 10286_CR31
  doi: 10.1109/EUROMICRO.2006.56
– ident: 10286_CR4
– ident: 10286_CR25
  doi: 10.1145/2889160.2889212
– volume: 12
  start-page: 161
  issue: 1
  year: 2011
  ident: 10286_CR14
  publication-title: Impact Control Technol
– ident: 10286_CR23
  doi: 10.1145/3209811.3209880
– ident: 10286_CR87
  doi: 10.1109/ISSRE5003.2020.00036
– ident: 10286_CR70
  doi: 10.1145/3368089.3409730
– ident: 10286_CR29
  doi: 10.1145/1143844.1143865
– ident: 10286_CR1
  doi: 10.1145/2970276.2970311
– ident: 10286_CR74
  doi: 10.1002/stvr.1794
– ident: 10286_CR41
  doi: 10.1145/3338906.3338942
– ident: 10286_CR75
  doi: 10.1007/978-0-387-30164-8_493
– ident: 10286_CR77
  doi: 10.1145/3213846.3213852
– ident: 10286_CR27
  doi: 10.1109/ICST.2013.38
– ident: 10286_CR30
  doi: 10.1109/SBST52555.2021.00016
– ident: 10286_CR16
– volume: 36
  start-page: 1
  issue: 1
  year: 2020
  ident: 10286_CR59
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2019.2942989
– ident: 10286_CR45
  doi: 10.1145/3239372.3239409
– ident: 10286_CR36
  doi: 10.1109/ITEC.2019.8790473
SSID ssj0009745
Score 2.5042048
Snippet Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Autonomous cars
Autonomous vehicles
Compilers
Computer Science
Context
Cost analysis
Cyber-physical systems
Effectiveness
Fault detection
Interpreters
Machine learning
Optimization
Platforms
Programming Languages
Simulation
Software Engineering/Programming and Operating Systems
Software testing
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sJSHY8cjQlQsVIiXuoU4tlElaFETQP33nF2HFARIsGQ5O4nufPm--HEfQodcG2a4naiiXBDKmCFSSQ0XrgQNtIhN7sQmeL-fDgbi0h8KK-vd7vWSpPtSzx12Y4wSwBhiQZGR6SJaArhLbTpeXd81pXa5kya2xfVIDIjuj8p8f4_PcNRwzC_Log5teu3_vecaWvXsEp_MhsM6WtCjDdSulRuwT-RNdH_h9lBq7EUjHohFM4WBd1a4dNI4EC8MhBaXwyev8DXXBnrgsbEtDVGToZ2UwAX8IuMSvupv-URvodve2c3pOfFaC6SIRViRNNQM8jc3QksVRQaALdR5xFUhE5UIQ8EcmAiMKXA8A7xGG86LSIWBFAUg4TZqjcYjvYMwlSaWsWQsUimQNQ0UNIDwJzKNKfAF1kFh7fKs8IXIrR7GY9aUULYuzMCFmXNhNu2go48-z7MyHL-27taRzHxKlpldQo54QHnyg9kuKAJ7izvouA5sY_75Ybt_a76HVqxi_Wy3WRe1qsmL3kfLxWs1LCcHbiS_A1QZ7sE
  priority: 102
  providerName: Springer Nature
Title Machine learning-based test selection for simulation-based testing of self-driving cars software
URI https://link.springer.com/article/10.1007/s10664-023-10286-y
https://www.proquest.com/docview/2806270475
https://www.proquest.com/docview/2819538933
Volume 28
WOSCitedRecordID wos000976870100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWDhjSgU5IENLPK0kwkBArFQVeUhxBLq2EaVoC1NAfXfc3YcAkiwsHg5O4lyZ9-Xu8t9AHtcaaa5CVRFPKURY5oKKRQOXKaRp9JQ9yzZBG-3k7u7tOMCboUrq6zORHtQy2FuYuSHZcLHkMMfjV6oYY0y2VVHoTELDdMlIbCle1d1011uSYpNmz0aom93P824X-cYiyh6LGpcLKPT746pRps_EqTW75wv_feJl2HRIU5yXJrICsyowSosVWwOxG3uNXi4tHWVijgiiUdqPJwkiEUnpLB0OahDgiCXFP1nx_r1ZQ6uIENtZmoqx30TqCA5fjaTAk_6995YrcPN-dn16QV1_As0D1N_QhNfMdzTPZ0qIYNAo7PzVS_gMhexjFMdodjTAQoTxH0asY7SnOeB9D2R5ugdN2BuMByoTSCR0KEIBWOBTBDAKYSlHppELJIwQgzBmuBXLz_LXXNyw5HxlNVtlY3CMlRYZhWWTZuw_7lmVLbm-HN2q9JS5rZpkZm0csC9iMe_iCsNNuGgMoNa_PvNtv6-2jYsGNb6suKsBXOT8avagfn8bdIvxrvQODlrd7q71pZx7MT3OHavbj8Azxz70A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkuilQAF1KQ8f4FQsEsdrJwdUVTwEAlZIUIlbiGO7Wqnd3SZL0f6p_kbGXoelSHDjwCWXsRMl_jzzxWPPB7AtjRVWuoUqLjPKhbBUaWXwInXGI5MltvBiE7LTSW9usssp-NechXHbKhuf6B217pdujXxvnPBx4vDfBn-oU41y2dVGQmMMizMzusdftnr_9BDHd4ex46PrgxMaVAVomWTxkKaxEYjUwmZGacYsuvDYFEzqUrV1O7MczZFlaEyRzViM4MZKWTIdRyor0efjfadhljvv77cKXk2K_EoviuzK-tEEuUQ4pBOO6gnBKUZI6kK6oKP_A-GE3T5LyPo4d7zw3r7QInwMjJp8H0-BJZgyvU-w0KhVkOC8luH2wu8bNSQIZfykLoJrglx7SGovB4QYJUjiSd39HVTNnrTBHqRvXUtLddV1CzGkLKqa1BjJ7ovKrMCPN3nPVZjp9XvmMxCubKISJQTTKRJUg7Q7Qsi3VZpw5EiiBXEz2HkZiq87DZBf-aRstANIjgDJPUDyUQu-PvYZjEuPvNp6vUFFHtxQnbu0OZMRl-0XzA1iWrDbwG5ifvlha6_fbQvmT64vzvPz087ZF_jAHOr9wtU6zAyrO7MBc-XfYbeuNv38IXD71nB8AJkqVdQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aG0Jc1vFLdCvDBziBtcRJ7OQwTdO6alWh6gGkiUsWxzaqBO1Iyqb-a_vr9uw6FCa1tx645PJsR4k_v_f51_sA3gltuBF2oSoWGY05N1QqqfEhVBYHOotM4cQmxHCYXl5moy24a-7C2GOVjU90jlpNS7tGfrTY8LHi8EfGH4sYdXsn17-oVZCyO62NnMYCIgM9v8XpW33c72Jfv2esd_7l7IJ6hQFaRlk4o2moOaK2MJmWijGD7jzUBROqlIlKMhOjOTAMjSkyG4PRXBshSqbCQGYl-n9s9xHsCJxj2onfKPm2TPgrnECyTfFHI-QV_sKOv7bHeUwxWlIb3jmd_xsUl0z3weasi3m91v_8t_Zg1zNtcroYGs9gS0-eQ6tRsSDeqb2Aq8_uPKkmXkDjO7WRXRHk4DNSO5kgxC5Bck_q8U-vdvZXGaxBpsaWNFRVY7tAQ8qiqkmNEe62qPRL-LqR73wF25PpRL8GEksTyUhyzlSKxFUjHQ9wKCQyjWLkTrwNYdPxeemTslttkB_5Mp20BUuOYMkdWPJ5Gz78qXO9SEmytnSnQUju3VOd2-10JoJYJCvMDXra8LGB4NK8-mX761t7C08Qhfmn_nBwAE-ZHQBuPasD27Pqt34Dj8ub2biuDt1QInC1aTTeA4S2Xrc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+test+selection+for+simulation-based+testing+of+self-driving+cars+software&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Birchler%2C+Christian&rft.au=Khatiri%2C+Sajad&rft.au=Bosshard%2C+Bill&rft.au=Gambi%2C+Alessio&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=3&rft.spage=71&rft_id=info:doi/10.1007%2Fs10664-023-10286-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon