Machine learning-based test selection for simulation-based testing of self-driving cars software
Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs...
Gespeichert in:
| Veröffentlicht in: | Empirical software engineering : an international journal Jg. 28; H. 3; S. 71 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-3256, 1573-7616 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called
SDC-Scissor
(
SDC
co
S
t-effe
C
t
I
ve te
S
t
S
elect
OR
) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of
unnecessary
tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings. |
|---|---|
| AbstractList | Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called
SDC-Scissor
(
SDC
co
S
t-effe
C
t
I
ve te
S
t
S
elect
OR
) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of
unnecessary
tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings. Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less dangerous than field operational test cases. Despite this, thoroughly testing SDCs in simulated environments remains challenging because SDCs must be tested in a sheer amount of long-running test cases. Past results on software testing optimization have shown that not all the test cases contribute equally to establishing confidence in test subjects’ quality and reliability, and the execution of “safe and uninformative” test cases can be skipped to reduce testing effort. However, this problem is only partially addressed in the context of SDC simulation platforms. In this paper, we investigate test selection strategies to increase the cost-effectiveness of simulation-based testing in the context of SDCs. We propose an approach called SDC-Scissor (SDC coS t-effeC tI ve teS t S electOR) that leverages Machine Learning (ML) strategies to identify and skip test cases that are unlikely to detect faults in SDCs before executing them. Our evaluation shows that SDC-Scissor outperforms the baselines. With the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a recall of 80% in selecting tests leading to a fault and improved testing cost-effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnecessary tests as well as outperformed two baseline strategies. Complementary to existing work, we also integrated SDC-Scissor into the context of an industrial organization in the automotive domain to demonstrate how it can be used in industrial settings. |
| ArticleNumber | 71 |
| Author | Bosshard, Bill Gambi, Alessio Birchler, Christian Khatiri, Sajad Panichella, Sebastiano |
| Author_xml | – sequence: 1 givenname: Christian orcidid: 0000-0003-3987-0276 surname: Birchler fullname: Birchler, Christian email: birc@zhaw.ch organization: Zurich University of Applied Science – sequence: 2 givenname: Sajad orcidid: 0000-0003-0354-9747 surname: Khatiri fullname: Khatiri, Sajad organization: Zurich University of Applied Science, Software Institute - USI – sequence: 3 givenname: Bill surname: Bosshard fullname: Bosshard, Bill organization: Meier Planungsdienste GmbH – sequence: 4 givenname: Alessio orcidid: 0000-0002-0132-6497 surname: Gambi fullname: Gambi, Alessio organization: IMC University of Applied Science Krems, University of Passau – sequence: 5 givenname: Sebastiano orcidid: 0000-0003-4120-626X surname: Panichella fullname: Panichella, Sebastiano organization: Zurich University of Applied Science |
| BookMark | eNp9kD1PwzAQhi0EEm3hDzBFYjac7cRORlTxJRWxwGwcxy6pUrvYKaj_HqdBAjF08p3ueXynd4qOnXcGoQsCVwRAXEcCnOcYKMMEaMnx7ghNSCEYFpzw41SzkmJGC36KpjGuAKASeTFBb09Kv7fOZJ1RwbVuiWsVTZP1JvZZNJ3RfetdZn3IYrvedmpo_zDJyLwdSIub0H4OvVYhZtHb_ksFc4ZOrOqiOf95Z-j17vZl_oAXz_eP85sF1qwiPS6J4ZBTZStTN5RaYJwYRUWj66IpKpunMViahmWRg-WsMlYITRsCdaVzwmbocvx3E_zHNl0mV34bXFopaUmqgpUVY4cp4FRALopE0ZHSwccYjJWb0K5V2EkCcshbjnnLlLfc5y13SSr_Sbrt93H1QbXdYZWNakx73NKE36sOWN9Kkpgy |
| CitedBy_id | crossref_primary_10_1145_3743673 crossref_primary_10_1016_j_bspc_2025_108046 crossref_primary_10_1145_3643768 crossref_primary_10_36930_40350416 crossref_primary_10_1007_s10515_025_00499_4 crossref_primary_10_1007_s10664_023_10433_5 crossref_primary_10_1145_3711906 crossref_primary_10_1007_s43621_025_01480_7 crossref_primary_10_1145_3744242 crossref_primary_10_3390_computers14030093 crossref_primary_10_1007_s11219_023_09639_z crossref_primary_10_1145_3672454 crossref_primary_10_1016_j_asoc_2024_111805 crossref_primary_10_1145_3640334 crossref_primary_10_3390_wevj15080356 crossref_primary_10_1109_TSE_2023_3343753 |
| Cites_doi | 10.1145/3293882.3330566 10.1109/AITest.2019.00009 10.1007/978-3-030-60508-7_9 10.1109/WiMOB.2019.8923315 10.1109/ICACTE.2008.204 10.1145/2950290.2950299 10.1016/j.scico.2023.102926 10.1109/IROS40897.2019.8968102 10.1002/stvr.1486 10.1145/3526072.3527538 10.5555/2503308.2188395 10.1001/jama.2016.7653 10.1145/3205455.3205490 10.1109/ISSRE5003.2020.00012 10.1109/TSE.2010.63 10.1109/TII.2017.2788019 10.1109/IJCNN.2007.4371415 10.1109/34.709601 10.1109/ICST.2013.38 10.1142/S2424862217500129 10.1109/TIV.2016.2608003 10.1109/ICSM.1998.738487 10.1002/stvr.1570 10.1016/j.infsof.2009.04.016 10.1109/TITS.2017.2742141 10.1109/icstw.2019.00043 10.7717/peerj-cs.803 10.1016/j.jss.2009.11.706 10.1016/j.tra.2016.09.010 10.5281/zenodo.5085251 10.1109/ICSM.2015.7332474 10.1016/j.infsof.2012.04.007 10.1109/RE48521.2020.00057 10.1109/icse-companion.2019.00030 10.1007/s10664-021-10066-6 10.1109/IVS.2017.7995802 10.1002/stvr.1838 10.1109/SBST52555.2021.00011 10.1145/3180155.3180160 10.1109/IRC.2019.00059 10.1109/SANER53432.2022.00030 10.1016/S0020-0190(96)00135-4 10.1016/j.jss.2021.111047 10.1109/ICSM.2015.7332519 10.1007/978-0-387-39940-9_565 10.1002/stv.430 10.1007/978-3-642-39742-4_12 10.1145/1328279.1328284 10.1145/3238147.3238192 10.1109/eIT53891.2022.9813985 10.1016/j.jss.2018.09.055 10.1109/TSE.2018.2868082 10.1109/ICSM.1999.792604 10.1109/ICST46399.2020.00020 10.1145/2934466.2946046 10.1145/3533818 10.1145/2491956.2462167 10.1109/EUROMICRO.2006.56 10.1145/2889160.2889212 10.1145/3209811.3209880 10.1109/ISSRE5003.2020.00036 10.1145/3368089.3409730 10.1145/1143844.1143865 10.1145/2970276.2970311 10.1002/stvr.1794 10.1145/3338906.3338942 10.1007/978-0-387-30164-8_493 10.1145/3213846.3213852 10.1109/SBST52555.2021.00016 10.1109/TRO.2019.2942989 10.1145/3239372.3239409 10.1109/ITEC.2019.8790473 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
| DOI | 10.1007/s10664-023-10286-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Technology Collection Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7616 |
| ExternalDocumentID | 10_1007_s10664_023_10286_y |
| GrantInformation_xml | – fundername: ZHAW Zurich University of Applied Sciences – fundername: horizon 2020 grantid: 957254-COSMOS funderid: https://doi.org/10.13039/501100007601 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c391t-81e6042af9ebd22f0361ea27dcb5d59f4e600f2ebd8540f639ef77c2d10b9c413 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976870100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-3256 |
| IngestDate | Tue Dec 02 15:56:23 EST 2025 Tue Dec 02 15:54:59 EST 2025 Sat Nov 29 05:37:47 EST 2025 Tue Nov 18 22:23:17 EST 2025 Fri Feb 21 02:43:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Regression testing Test case selection Self-driving cars Industrial integration Software simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-81e6042af9ebd22f0361ea27dcb5d59f4e600f2ebd8540f639ef77c2d10b9c413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0354-9747 0000-0002-0132-6497 0000-0003-4120-626X 0000-0003-3987-0276 |
| OpenAccessLink | https://link.springer.com/10.1007/s10664-023-10286-y |
| PQID | 2806270475 |
| PQPubID | 326341 |
| ParticipantIDs | proquest_journals_2819538933 proquest_journals_2806270475 crossref_primary_10_1007_s10664_023_10286_y crossref_citationtrail_10_1007_s10664_023_10286_y springer_journals_10_1007_s10664_023_10286_y |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Empirical software engineering : an international journal |
| PublicationTitleAbbrev | Empir Software Eng |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Devroey X, Gambi A, Galeotti JP, Just R, Kifetew F, Panichella A, Panichella S (2022) Juge: An infrastructure for benchmarking java unit test generators. Software Testing Verification and Reliability Nvidia (2020) Nvidia drive constellation. https://developer.nvidia.com/drive/drive-constellation. Accessed 8 Nov 2022 Gambi A, Jahangirova G, Riccio V, Zampetti F (2022) SBST tool competition 2022. In: 15th IEEE/ACM international workshop on search-based software testing, SBST@ICSE 2022, May 9, 2022. IEEE, Pittsburgh, PA, USA, pp 25–32. https://doi.org/10.1145/3526072.3527538 ZimmermannTPremrajRBettenburgNJustSSchröterAWeissCWhat makes a good bug reportIEEE Trans Software Eng201036561864310.1109/TSE.2010.63 Gambi A, Mueller M, Fraser G (2019) AsFault: Testing self-driving car software using search-based procedural content generation. In: J.M. Atlee, T. Bultan, J. Whittle (eds.) 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 27–30. IEEE, DOI https://doi.org/10.1109/icse-companion.2019.00030 CanforaGLuciaADPentaMDOlivetoRPanichellaAPanichellaSDefect prediction as a multiobjective optimization problemSoftw Test Verification Reliab201525442645910.1002/stvr.1570 Abdessalem RB, Nejati S, Briand LC, Stifter T (2018a) Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th international conference on software engineering. ACM, pp 1016–1026. https://doi.org/10.1145/3180155.3180160 NucciDDPanichellaAZaidmanALuciaADA test case prioritization genetic algorithm guided by the hypervolume indicatorIEEE Trans Software Eng202046667469610.1109/TSE.2018.2868082https://doi.org/10.1109/TSE.2018.2868082 Bettenburg N, Just S, Schröter A., Weiß C, Premraj R, Zimmermann T (2007) Quality of bug reports in eclipse. In: Cheng L, Orso A, Robillard MP (eds) Proceedings of the 2007 OOPSLA workshop on Eclipse Technology eXchange, ETX 2007, October 21, 2007. ACM, Montreal, Quebec, Canada, pp 21–25, DOI https://doi.org/10.1145/1328279.1328284 CIA (2017) History of can technology. https://www.can-cia.org/can-knowledge/can/can-history/. Accessed 8 Nov 2022 Kim J, Chon S, Park J (2019) Suggestion of testing method for industrial level cyber-physical system in complex environment. In: 2019 IEEE international conference on software testing, verification and validation workshops (ICSTW). IEEE. https://doi.org/10.1109/icstw.2019.00043 RaniPPanichellaSLeuenbergerMDi SorboANierstraszOHow to identify class comment types? A multi-language approach for class comment classificationJ Syst Softw202118111104710.1016/j.jss.2021.111047https://doi.org/10.1016/j.jss.2021.111047, https://www.sciencedirect.com/science/article/pii/S0164121221001448 Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proceedings of the ACM joint european software engineering conference and symposium on the foundations of software engineering, ESEC/FSE ’20. Association for Computing Machinery, p 13. https://doi.org/10.1145/3368089.3409730 Arrieta A, Wang S, Markiegi U, Sagardui G, Etxeberria L (2018b) Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Trans Ind Inform 14(3):1055–1066. https://doi.org/10.1109/TII.2017.2788019 Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 2013 IEEE 6th international conference on software testing, verification and validation (ICST). IEEE, pp 252–261 Birchler C, Khatiri S, Derakhshanfar P, Panichella S, Panichella A (2022c) Single and multi-objective test cases prioritization for self-driving cars in virtual environments. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3533818 YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftw Test Verification Reliab20122226712010.1002/stv.430 Arrieta A, Wang S, Sagardui G, Etxeberria L (2016) Search-based test case selection of cyber-physical system product lines for simulation-based validation. In: Mei H (ed) Proceedings of the 20th international systems and software product line conference, SPLC 2016, September 16-23, 2016. ACM, Beijing, China, pp 297–306, DOI https://doi.org/10.1145/2934466.2946046 Boumiza S, Braham R (2019) An anomaly detector for can bus networks in autonomous cars based on neural networks. In: 2019 international conference on wireless and mobile computing, networking and communications (WiMob), pp 1–6. https://doi.org/10.1109/WiMOB.2019.8923315 Althoff M, Koschi M, Manzinger S (2017) Commonroad: Composable benchmarks for motion planning on roads. In: IEEE intelligent vehicles symposium, IV 2017, June 11-14, 2017. IEEE, Los Angeles, CA, USA, pp 719–726. https://doi.org/10.1109/IVS.2017.7995802 FrankEHallMAHolmesGKirkbyRPfahringerBWittenIHWeka: A machine learning workbench for data mining2005BerlinSpringer13051314http://researchcommons.waikato.ac.nz/handle/10289/1497 The-Washington-Post (2019) Uber’s radar detected Elaine Herzberg nearly 6 seconds before she was fatally struck but “the system design did not include a consideration for jaywalking pedestrians” so it didn’t react as if she were a person. https://mobile.twitter.com/faizsays/status/1191885955088519168 Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: Koschke R, Krinke J, Robillard MP (eds) International conference on software maintenance and evolution, ICSME. IEEE Computer Society, pp 281–290. https://doi.org/10.1109/ICSM.2015.7332474 Huang J, Zhang C, Dolby J (2013) CLAP: recording local executions to reproduce concurrency failures. In: Boehm H, Flanagan C (eds) ACM SIGPLAN conference on programming language design and implementation, PLDI ’13, June 16-19, 2013. ACM, Seattle, WA, USA, pp 141–152. https://doi.org/10.1145/2491956.2462167 Briand L, Nejati S, Sabetzadeh M, Bianculli D (2016) Testing the untestable: Model testing of complex software-intensive systems. In: Dillon LK, Visser W, Williams LA (eds) Proc. int’l conf on software engineering (ICSE – Companion). ACM, pp 789–792. https://doi.org/10.1145/2889160.2889212 Roper M (2019) Using machine learning to classify test outcomes. In: IEEE international conference on artificial intelligence testing, AITest 2019, April 4-9, 2019. IEEE, Newark, CA, USA, pp 99–100. https://doi.org/10.1109/AITest.2019.00009 Panichella S, Ruiz M (2020) Requirements-collector: Automating requirements specification from elicitation sessions and user feedback. In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements engineering conference, RE 2020, August 31 - September 4, 2020. IEEE, Zurich, Switzerland, pp 404–407. https://doi.org/10.1109/RE48521.2020.00057 Abdessalem RB, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems using multi-objective search and neural networks. In: Lo D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE 2016, September 3-7. ACM, Singapore, pp 63–74. https://doi.org/10.1145/2970276.2970311 Sorbo AD, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would users change in my app? summarizing app reviews for recommending software changes. In: Zimmermann T, Cleland-Huang J, Su Z (eds) International symposium on foundations of software engineering. ACM, pp 499–510. https://doi.org/10.1145/2950290.2950299 BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213281305291370110.5555/2503308.21883951283.68282 Kaur A, Malhotra R (2008) Application of random forest in predicting fault-prone classes. In: 2008 international conference on advanced computer theory and engineering, pp 37–43 Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prioritization for acceptance testing of cyber physical systems: a multi-objective search-based approach. In: Tip F, Bodden E (eds) Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2018, July 16-21, 2018. ACM, Amsterdam, The Netherlands, pp 49–60. https://doi.org/10.1145/3213846.3213852 Sorbo AD, Zampetti F, Visaggio CA, Penta MD, Panichella S (2022) Automated identification and qualitative characterization of safety concerns reported in UAV software platforms. Trans Softw Eng Methodol Dosovitskiy A, Ros G, Codevilla F, López AM, Koltun V (2017) CARLA: an open urban driving simulator. In: 1st annual conference on robot learning, CoRL 2017, Proceedings of Machine Learning Research, vol 78. PMLR, pp 1–16. http://proceedings.mlr.press/v78/dosovitskiy17a.html Li G, Li Y, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R (2020) AV-FUZZER: Finding safety violations in autonomous driving systems. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE). IEEE, pp 25–36 AdnanMAlaroodAAUddinMIur RehmanIUtilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning modelsPeerJ Comput Sci20228e80310.7717/peerj-cs.803 Sammut C, Webb GI (eds) (2011) Logistic regression. Springer US, Boston. https://doi.org/10.1007/978-0-387-30164-8_493 ChenHApplications of cyber-physical system: A literature reviewJ Ind Integr Manag20170203175001210.1142/S2424862217500129 Rothermel G, Harrold MJ, Ostrin J, Hong C (1998) An empirical study of the effects of minimization on the fault detection capabilities of test suites. In: Proceedings of the international conference on software maintenance. IEEE CS Press, pp 34–44 Panichella S (2015) Supporting newcomers in software development projects. In: 2015 IEEE international conference on software maintenance and evolution (ICSME), pp 586–589. https://doi.org/10.1109/ICSM.2015.7332519 JiaYHarmanMHigher order mutation testingInf Soft 10286_CR20 10286_CR64 T Zimmermann (10286_CR88) 2010; 36 10286_CR62 S Sontges (10286_CR78) 2018; 19 10286_CR24 10286_CR23 10286_CR67 J Bergstra (10286_CR17) 2012; 13 10286_CR22 10286_CR66 10286_CR21 10286_CR65 R Baeza-Yates (10286_CR13) 2011 10286_CR60 A Arcuri (10286_CR8) 2014; 24 S Yoo (10286_CR84) 2010; 83 10286_CR16 10286_CR15 P Rani (10286_CR68) 2021; 181 10286_CR58 10286_CR19 S Yoo (10286_CR85) 2012; 22 10286_CR18 10286_CR53 10286_CR50 J Tolles (10286_CR82) 2016; 316 R Pan (10286_CR63) 2022; 27 10286_CR56 10286_CR11 10286_CR55 10286_CR10 10286_CR54 H Chen (10286_CR32) 2017; 02 R Baheti (10286_CR14) 2011; 12 F Elberzhager (10286_CR39) 2012; 54 10286_CR49 10286_CR47 E Frank (10286_CR40) 2005 TK Ho (10286_CR48) 1998; 20 10286_CR42 10286_CR86 10286_CR41 10286_CR83 10286_CR46 10286_CR45 10286_CR44 10286_CR43 10286_CR87 P Refaeilzadeh (10286_CR69) 2009 10286_CR81 G Canfora (10286_CR28) 2015; 25 10286_CR80 A Loquercio (10286_CR59) 2020; 36 10286_CR38 10286_CR37 10286_CR36 M Adnan (10286_CR5) 2022; 8 10286_CR31 10286_CR75 10286_CR9 10286_CR30 N Kalra (10286_CR52) 2016; 94 10286_CR74 10286_CR73 10286_CR72 10286_CR6 10286_CR35 10286_CR79 10286_CR34 10286_CR77 10286_CR7 10286_CR76 10286_CR2 10286_CR1 10286_CR4 10286_CR3 10286_CR71 10286_CR70 Y Jia (10286_CR51) 2009; 51 A Arrieta (10286_CR12) 2019; 149 DD Nucci (10286_CR61) 2020; 46 TY Chen (10286_CR33) 1996; 60 10286_CR27 10286_CR26 L Li (10286_CR57) 2016; 1 10286_CR25 10286_CR29 |
| References_xml | – reference: Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 6th IEEE international conference on software testing, verification and validation, ICST 2013, March 18-22, 2013. IEEE Computer Society, Luxembourg, pp 252–261. https://doi.org/10.1109/ICST.2013.38 – reference: ArrietaAWangSSagarduiGEtxeberriaLSearch-based test case prioritization for simulation-based testing of cyber-physical system product linesJ Syst Softw201914913410.1016/j.jss.2018.09.055 – reference: TollesJMeurerWJLogistic regressionJAMA2016316553310.1001/jama.2016.7653 – reference: Nvidia (2020) Nvidia drive constellation. https://developer.nvidia.com/drive/drive-constellation. Accessed 8 Nov 2022 – reference: Dalboni M, Soldati A (2019) Soft-body modeling: A scalable and efficient formulation for control-oriented simulation of electric vehicles. In: IEEE transportation electrification conference and expo (ITEC), pp 1–6 – reference: CIA (2017) History of can technology. https://www.can-cia.org/can-knowledge/can/can-history/. Accessed 8 Nov 2022 – reference: KalraNPaddockSDriving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?Transp Res A Policy Pract20169418219310.1016/j.tra.2016.09.010https://doi.org/10.1016/j.tra.2016.09.010 – reference: Birchler C, Khatiri S, Derakhshanfar P, Panichella S, Panichella A (2022c) Single and multi-objective test cases prioritization for self-driving cars in virtual environments. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3533818 – reference: Arrieta A, Wang S, Arruabarrena A, Markiegi U, Sagardui G, Etxeberria L (2018a) Multi-objective black-box test case selection for cost-effectively testing simulation models. In: Proceedings of the genetic and evolutionary computation conference, pp 1411–1418 – reference: Academies of Sciences (2017) A 21st century cyber-physical systems education. National Academies Press – reference: Sean CG (2022) Casper van der Wel. 2007-2022, S.C.: Shapely. https://github.com/shapely/shapely. Accessed 8 Nov 2022 – reference: Althoff M, Koschi M, Manzinger S (2017) Commonroad: Composable benchmarks for motion planning on roads. In: IEEE intelligent vehicles symposium, IV 2017, June 11-14, 2017. IEEE, Los Angeles, CA, USA, pp 719–726. https://doi.org/10.1109/IVS.2017.7995802 – reference: Gambi A, Müller M., Fraser G (2019) Automatically testing self-driving cars with search-based procedural content generation. In: Zhang D, Møller A (eds) Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2019, July 15-19, 2019. ACM, Beijing, China, pp 318–328. https://doi.org/10.1145/3293882.3330566 – reference: Gambi A, Huynh T, Fraser G (2019) Generating effective test cases for self-driving cars from police reports. In: Dumas M, Pfahl D, Apel S, Russo A (eds) Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering - ESEC/FSE 2019. ACM Press, pp 257–267. https://doi.org/10.1145/3338906.3338942 – reference: Rothermel G, Untch R, Chu C, Harrold M (1999) Test case prioritization: an empirical study. In: IEEE international conference on software maintenance, 1999. (ICSM ’99) Proceedings. IEEE, pp 179–188. https://doi.org/10.1109/ICSM.1999.792604 – reference: Huang J, Zhang C, Dolby J (2013) CLAP: recording local executions to reproduce concurrency failures. In: Boehm H, Flanagan C (eds) ACM SIGPLAN conference on programming language design and implementation, PLDI ’13, June 16-19, 2013. ACM, Seattle, WA, USA, pp 141–152. https://doi.org/10.1145/2491956.2462167 – reference: LoquercioAKaufmannERanftlRDosovitskiyAKoltunVScaramuzzaDDeep drone racing: From simulation to reality with domain randomizationIEEE Trans Robot202036111410.1109/TRO.2019.2942989 – reference: Xu J, Luo Q, Xu K, Xiao X, Yu S, Hu J, Miao J, Wang J (2019) An automated learning-based procedure for large-scale vehicle dynamics modeling on Baidu Apollo platform. In: 2019 IEEE/RSJ international conference on intelligent robots and systems, IROS. IEEE, pp 5049–5056. https://doi.org/10.1109/IROS40897.2019.8968102 – reference: Zhang XY, Arcaini P, Ishikawa F, Liu K (2020) Investigating the configurations of an industrial path planner in terms of collision avoidance. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE), pp 301–312. https://doi.org/10.1109/ISSRE5003.2020.00036 – reference: Zapridou E, Bartocci E, Katsaros P Deshmukh J, Ničković D (eds) (2020) Runtime verification of autonomous driving systems in Carla. Springer International Publishing, Cham – reference: Sadri-Moshkenani Z, Bradley JM, Rothermel G (2022) Survey on test case generation, selection and prioritization for cyber-physical systems. Softw Test Verification Reliab 32(1). https://doi.org/10.1002/stvr.1794 – reference: Guardian T (2018) Self-driving uber kills arizona woman in first fatal crash involving pedestrian. https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe. Accessed 8 Nov 2022 – reference: ChenHApplications of cyber-physical system: A literature reviewJ Ind Integr Manag20170203175001210.1142/S2424862217500129 – reference: ChenTYLauMFDividing strategies for the optimization of a test suiteInf Process Lett1996603135141142392010.1016/S0020-0190(96)00135-40875.68276 – reference: Castellano E, Cetinkaya A, Thanh CH, Klikovits S, Zhang X, Arcaini P (2021) Frenetic at the SBST 2021 tool competition. In: 14th IEEE/ACM international workshop on search-based software testing, SBST 2021, May 31, 2021. IEEE, Madrid, Spain, pp 36–37. https://doi.org/10.1109/SBST52555.2021.00016 – reference: Devroey X, Gambi A, Galeotti JP, Just R, Kifetew F, Panichella A, Panichella S (2022) Juge: An infrastructure for benchmarking java unit test generators. Software Testing Verification and Reliability – reference: Kaur A, Malhotra R (2008) Application of random forest in predicting fault-prone classes. In: 2008 international conference on advanced computer theory and engineering, pp 37–43 – reference: Gundu R, Maleki M (2022) Securing CAN bus in connected and autonomous vehicles using supervised machine learning approaches. In: 2022 IEEE international conference on electro information technology, EIT 2022, May 19-21, 2022. IEEE, Mankato, MN, USA, pp 42–46. https://doi.org/10.1109/eIT53891.2022.9813985 – reference: Panichella S, Ruiz M (2020) Requirements-collector: Automating requirements specification from elicitation sessions and user feedback. In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements engineering conference, RE 2020, August 31 - September 4, 2020. IEEE, Zurich, Switzerland, pp 404–407. https://doi.org/10.1109/RE48521.2020.00057 – reference: Rothermel G, Harrold MJ, Ostrin J, Hong C (1998) An empirical study of the effects of minimization on the fault detection capabilities of test suites. In: Proceedings of the international conference on software maintenance. IEEE CS Press, pp 34–44 – reference: Panichella S (2015) Supporting newcomers in software development projects. In: 2015 IEEE international conference on software maintenance and evolution (ICSME), pp 586–589. https://doi.org/10.1109/ICSM.2015.7332519 – reference: Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prioritization for acceptance testing of cyber physical systems: a multi-objective search-based approach. In: Tip F, Bodden E (eds) Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2018, July 16-21, 2018. ACM, Amsterdam, The Netherlands, pp 49–60. https://doi.org/10.1145/3213846.3213852 – reference: Ceylan E, Kutlubay FO, Bener AB (2006) Software defect identification using machine learning techniques. In: 32nd EUROMICRO conference on software engineering and advanced applications (EUROMICRO’06), pp 240–247 – reference: CanforaGLuciaADPentaMDOlivetoRPanichellaAPanichellaSDefect prediction as a multiobjective optimization problemSoftw Test Verification Reliab201525442645910.1002/stvr.1570 – reference: Bezerra MER, Oliveira ALI, Meira SRL (2007) A constructive RBF neural network for estimating the probability of defects in software modules. In: 2007 international joint conference on neural networks, pp 2869–2874 – reference: AdnanMAlaroodAAUddinMIur RehmanIUtilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning modelsPeerJ Comput Sci20228e80310.7717/peerj-cs.803 – reference: Birchler C, Ganz N, Khatiri S, Gambi A, Panichella S (2023) Cost-effective simulation-based test selection in self-driving cars software. Science of Computer Programming (SCP). https://doi.org/10.1016/j.scico.2023.102926 – reference: SontgesSAlthoffMComputing the drivable area of autonomous road vehicles in dynamic road scenesIEEE Trans Intell Trans Syst20181961855186610.1109/TITS.2017.2742141 – reference: Matinnejad R, Nejati S, Briand L, Bruckmann T, Poull C (2013) Automated model-in-the-loop testing of continuous controllers using search. In: International symposium on search based software engineering. Springer, pp 141–157 – reference: Ingrand F (2019) Recent trends in formal validation and verification of autonomous robots software. In: 3rd IEEE international conference on robotic computing, IRC 2019, February 25-27, 2019, Naples, Italy, pp 321–328 – reference: Caruana R, Niculescu-mizil A (2006) An empirical comparison of supervised learning algorithms. In: In Proc. 23 rd Intl. Conf. Machine learning (ICML’06), pp 161–168 – reference: The-Washington-Post (2019) Uber’s radar detected Elaine Herzberg nearly 6 seconds before she was fatally struck but “the system design did not include a consideration for jaywalking pedestrians” so it didn’t react as if she were a person. https://mobile.twitter.com/faizsays/status/1191885955088519168 – reference: Gambi A, Mueller M, Fraser G (2019) AsFault: Testing self-driving car software using search-based procedural content generation. In: J.M. Atlee, T. Bultan, J. Whittle (eds.) 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 27–30. IEEE, DOI https://doi.org/10.1109/icse-companion.2019.00030 – reference: Bondi E, Dey D, Kapoor A, Piavis J, Shah S, Fang F, Dilkina B, Hannaford R, Iyer A, Joppa L, Tambe M (2018) AirSim-w: A simulation environment for wildlife conservation with UAVs. In: Zegura EW (ed) Proceedings of the 1st ACM SIGCAS conference on computing and sustainable societies, COMPASS. ACM, pp 40:1–40:12. https://doi.org/10.1145/3209811.3209880 – reference: Kim J, Chon S, Park J (2019) Suggestion of testing method for industrial level cyber-physical system in complex environment. In: 2019 IEEE international conference on software testing, verification and validation workshops (ICSTW). IEEE. https://doi.org/10.1109/icstw.2019.00043 – reference: BeamNG GmbH (2022) BeamNG.tech. https://www.beamng.gmbh/research. Accessed 11 Oct 2018 – reference: YooSHarmanMRegression testing minimization, selection and prioritization: a surveySoftw Test Verification Reliab20122226712010.1002/stv.430 – reference: Afzal A, Katz DS, Goues CL, Timperley CS (2020) A study on the challenges of using robotics simulators for testing – reference: Ling CX, Li C (1998) Data mining for direct marketing: Problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data mining, KDD’98. AAAI Press, pp 73–79 – reference: Panichella S, Gambi A, Zampetti F, Riccio V (2021) SBST tool competition 2021. In: International conference on software engineering, workshops. ACM, Madrid, Spain – reference: González CA, Varmazyar M, Nejati S, Briand LC, Isasi Y (2018) Enabling model testing of cyber-physical systems. In: Proceedings of the 21th ACM/IEEE international conference on model driven engineering languages and systems, MODELS ’18. Association for Computing Machinery, New York, NY, USA, pp 176–186. https://doi.org/10.1145/3239372.3239409 – reference: Riccio V, Tonella P (2020) Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proceedings of the ACM joint european software engineering conference and symposium on the foundations of software engineering, ESEC/FSE ’20. Association for Computing Machinery, p 13. https://doi.org/10.1145/3368089.3409730 – reference: Khatiri S, Birchler C, Bosshard B, Gambi A, Panichella S (2021) Machine learning-based test selection for simulation-based testing of self-driving cars software. https://doi.org/10.5281/zenodo.5085251 – reference: Bettenburg N, Just S, Schröter A., Weiß C, Premraj R, Zimmermann T (2007) Quality of bug reports in eclipse. In: Cheng L, Orso A, Robillard MP (eds) Proceedings of the 2007 OOPSLA workshop on Eclipse Technology eXchange, ETX 2007, October 21, 2007. ACM, Montreal, Quebec, Canada, pp 21–25, DOI https://doi.org/10.1145/1328279.1328284 – reference: Dosovitskiy A, Ros G, Codevilla F, López AM, Koltun V (2017) CARLA: an open urban driving simulator. In: 1st annual conference on robot learning, CoRL 2017, Proceedings of Machine Learning Research, vol 78. PMLR, pp 1–16. http://proceedings.mlr.press/v78/dosovitskiy17a.html – reference: PanRBagherzadehMGhalebTABriandLCTest case selection and prioritization using machine learning: a systematic literature reviewEmpir Softw Eng20222722910.1007/s10664-021-10066-6https://doi.org/10.1007/s10664-021-10066-6 – reference: Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2018b) Testing autonomous cars for feature interaction failures using many-objective search. In: Huchard M, Kästner C, Fraser G (eds) Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, ASE 2018, September 3-7, 2018. IEEE, ACM, Montpellier, France, pp 143–154. https://doi.org/10.1145/3238147.3238192 – reference: Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 24th international conference on neural information processing systems, NIPS’11. Curran Associates Inc., Red Hook, NY, USA, pp 2546–2554 – reference: HoTKThe random subspace method for constructing decision forestsIEEE Trans Pattern Anal Mach Intell199820883284410.1109/34.709601 – reference: Sorbo AD, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would users change in my app? summarizing app reviews for recommending software changes. In: Zimmermann T, Cleland-Huang J, Su Z (eds) International symposium on foundations of software engineering. ACM, pp 499–510. https://doi.org/10.1145/2950290.2950299 – reference: ArcuriABriandLCA hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineeringSoftw Test Verification Reliab201424321925010.1002/stvr.1486 – reference: Arrieta A, Wang S, Sagardui G, Etxeberria L (2016) Search-based test case selection of cyber-physical system product lines for simulation-based validation. In: Mei H (ed) Proceedings of the 20th international systems and software product line conference, SPLC 2016, September 16-23, 2016. ACM, Beijing, China, pp 297–306, DOI https://doi.org/10.1145/2934466.2946046 – reference: Briand L, Nejati S, Sabetzadeh M, Bianculli D (2016) Testing the untestable: Model testing of complex software-intensive systems. In: Dillon LK, Visser W, Williams LA (eds) Proc. int’l conf on software engineering (ICSE – Companion). ACM, pp 789–792. https://doi.org/10.1145/2889160.2889212 – reference: FrankEHallMAHolmesGKirkbyRPfahringerBWittenIHWeka: A machine learning workbench for data mining2005BerlinSpringer13051314http://researchcommons.waikato.ac.nz/handle/10289/1497 – reference: Sammut C, Webb GI (eds) (2011) Logistic regression. Springer US, Boston. https://doi.org/10.1007/978-0-387-30164-8_493 – reference: RefaeilzadehPTangLLiuHCross-validation2009BostonSpringer US532538https://doi.org/10.1007/978-0-387-39940-9_565 – reference: JiaYHarmanMHigher order mutation testingInf Softw Technol200951101379139310.1016/j.infsof.2009.04.016 – reference: Abdessalem RB, Nejati S, Briand LC, Stifter T (2018a) Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th international conference on software engineering. ACM, pp 1016–1026. https://doi.org/10.1145/3180155.3180160 – reference: Boumiza S, Braham R (2019) An anomaly detector for can bus networks in autonomous cars based on neural networks. In: 2019 international conference on wireless and mobile computing, networking and communications (WiMob), pp 1–6. https://doi.org/10.1109/WiMOB.2019.8923315 – reference: LiLHuangWLiuYZhengNWangFIntelligence testing for autonomous vehicles: A new approachIEEE Trans Intell Veh20161215816610.1109/TIV.2016.2608003 – reference: ElberzhagerFRosbachAMünchJEschbachRReducing test effort: A systematic mapping study on existing approachesInf Softw Technol201254101092110610.1016/j.infsof.2012.04.007 – reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213281305291370110.5555/2503308.21883951283.68282 – reference: CNX O (2021) Openstax university physics. http://cnx.org/contents/d50f6e32-0fda-46ef-a362-9bd36ca7c97d@10.16. Accessed 8 Nov 2022 – reference: YooSHarmanMUsing hybrid algorithm for Pareto efficient multi-objective test suite minimisationJ Syst Softw201083468970110.1016/j.jss.2009.11.706 – reference: ZimmermannTPremrajRBettenburgNJustSSchröterAWeissCWhat makes a good bug reportIEEE Trans Software Eng201036561864310.1109/TSE.2010.63 – reference: Roper M (2019) Using machine learning to classify test outcomes. In: IEEE international conference on artificial intelligence testing, AITest 2019, April 4-9, 2019. IEEE, Newark, CA, USA, pp 99–100. https://doi.org/10.1109/AITest.2019.00009 – reference: Panichella S, Sorbo AD, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can I improve my app? classifying user reviews for software maintenance and evolution. In: Koschke R, Krinke J, Robillard MP (eds) International conference on software maintenance and evolution, ICSME. IEEE Computer Society, pp 281–290. https://doi.org/10.1109/ICSM.2015.7332474 – reference: Birchler C, Ganz N, Khatiri S, Gambi A, Panichella S (2022) Cost-effective simulation-based test selection in self-driving cars software with SDC-scissor. In: 2022 IEEE international conference on software analysis, evolution and reengineering (SANER), pp 164–168. https://doi.org/10.1109/SANER53432.2022.00030 – reference: Baeza-YatesRRibeiro-NetoBAModern Information Retrieval - the concepts and technology behind search20112nd edn.Harlow, EnglandPearson Education Ltd.http://www.mir2ed.org/ – reference: BahetiRGillHCyber-physical systemsImpact Control Technol2011121161166 – reference: RaniPPanichellaSLeuenbergerMDi SorboANierstraszOHow to identify class comment types? A multi-language approach for class comment classificationJ Syst Softw202118111104710.1016/j.jss.2021.111047https://doi.org/10.1016/j.jss.2021.111047, https://www.sciencedirect.com/science/article/pii/S0164121221001448 – reference: NucciDDPanichellaAZaidmanALuciaADA test case prioritization genetic algorithm guided by the hypervolume indicatorIEEE Trans Software Eng202046667469610.1109/TSE.2018.2868082https://doi.org/10.1109/TSE.2018.2868082 – reference: Abdessalem RB, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems using multi-objective search and neural networks. In: Lo D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE 2016, September 3-7. ACM, Singapore, pp 63–74. https://doi.org/10.1145/2970276.2970311 – reference: Arrieta A, Wang S, Markiegi U, Sagardui G, Etxeberria L (2018b) Employing multi-objective search to enhance reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE Trans Ind Inform 14(3):1055–1066. https://doi.org/10.1109/TII.2017.2788019 – reference: Li G, Li Y, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R (2020) AV-FUZZER: Finding safety violations in autonomous driving systems. In: 2020 IEEE 31st international symposium on software reliability engineering (ISSRE). IEEE, pp 25–36 – reference: Gambi A, Jahangirova G, Riccio V, Zampetti F (2022) SBST tool competition 2022. In: 15th IEEE/ACM international workshop on search-based software testing, SBST@ICSE 2022, May 9, 2022. IEEE, Pittsburgh, PA, USA, pp 25–32. https://doi.org/10.1145/3526072.3527538 – reference: Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project defect prediction. In: 2013 IEEE 6th international conference on software testing, verification and validation (ICST). IEEE, pp 252–261 – reference: Sorbo AD, Zampetti F, Visaggio CA, Penta MD, Panichella S (2022) Automated identification and qualitative characterization of safety concerns reported in UAV software platforms. Trans Softw Eng Methodol – ident: 10286_CR44 doi: 10.1145/3293882.3330566 – start-page: 1305 volume-title: Weka: A machine learning workbench for data mining year: 2005 ident: 10286_CR40 – ident: 10286_CR71 doi: 10.1109/AITest.2019.00009 – ident: 10286_CR86 doi: 10.1007/978-3-030-60508-7_9 – ident: 10286_CR24 doi: 10.1109/WiMOB.2019.8923315 – ident: 10286_CR53 doi: 10.1109/ICACTE.2008.204 – ident: 10286_CR79 doi: 10.1145/2950290.2950299 – ident: 10286_CR20 doi: 10.1016/j.scico.2023.102926 – ident: 10286_CR83 doi: 10.1109/IROS40897.2019.8968102 – volume: 24 start-page: 219 issue: 3 year: 2014 ident: 10286_CR8 publication-title: Softw Test Verification Reliab doi: 10.1002/stvr.1486 – ident: 10286_CR80 – ident: 10286_CR42 doi: 10.1145/3526072.3527538 – volume: 13 start-page: 281 year: 2012 ident: 10286_CR17 publication-title: J Mach Learn Res doi: 10.5555/2503308.2188395 – volume: 316 start-page: 533 issue: 5 year: 2016 ident: 10286_CR82 publication-title: JAMA doi: 10.1001/jama.2016.7653 – ident: 10286_CR9 doi: 10.1145/3205455.3205490 – ident: 10286_CR56 doi: 10.1109/ISSRE5003.2020.00012 – volume: 36 start-page: 618 issue: 5 year: 2010 ident: 10286_CR88 publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2010.63 – ident: 10286_CR10 doi: 10.1109/TII.2017.2788019 – ident: 10286_CR19 doi: 10.1109/IJCNN.2007.4371415 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10286_CR48 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – ident: 10286_CR26 doi: 10.1109/ICST.2013.38 – volume: 02 start-page: 1750012 issue: 03 year: 2017 ident: 10286_CR32 publication-title: J Ind Integr Manag doi: 10.1142/S2424862217500129 – volume: 1 start-page: 158 issue: 2 year: 2016 ident: 10286_CR57 publication-title: IEEE Trans Intell Veh doi: 10.1109/TIV.2016.2608003 – ident: 10286_CR72 doi: 10.1109/ICSM.1998.738487 – volume: 25 start-page: 426 issue: 4 year: 2015 ident: 10286_CR28 publication-title: Softw Test Verification Reliab doi: 10.1002/stvr.1570 – volume: 51 start-page: 1379 issue: 10 year: 2009 ident: 10286_CR51 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2009.04.016 – volume: 19 start-page: 1855 issue: 6 year: 2018 ident: 10286_CR78 publication-title: IEEE Trans Intell Trans Syst doi: 10.1109/TITS.2017.2742141 – ident: 10286_CR55 doi: 10.1109/icstw.2019.00043 – volume: 8 start-page: e803 year: 2022 ident: 10286_CR5 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.803 – ident: 10286_CR46 – ident: 10286_CR62 – volume: 83 start-page: 689 issue: 4 year: 2010 ident: 10286_CR84 publication-title: J Syst Softw doi: 10.1016/j.jss.2009.11.706 – volume-title: Modern Information Retrieval - the concepts and technology behind search year: 2011 ident: 10286_CR13 – volume: 94 start-page: 182 year: 2016 ident: 10286_CR52 publication-title: Transp Res A Policy Pract doi: 10.1016/j.tra.2016.09.010 – ident: 10286_CR54 doi: 10.5281/zenodo.5085251 – ident: 10286_CR67 doi: 10.1109/ICSM.2015.7332474 – volume: 54 start-page: 1092 issue: 10 year: 2012 ident: 10286_CR39 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2012.04.007 – ident: 10286_CR66 doi: 10.1109/RE48521.2020.00057 – ident: 10286_CR43 doi: 10.1109/icse-companion.2019.00030 – volume: 27 start-page: 29 issue: 2 year: 2022 ident: 10286_CR63 publication-title: Empir Softw Eng doi: 10.1007/s10664-021-10066-6 – ident: 10286_CR7 doi: 10.1109/IVS.2017.7995802 – ident: 10286_CR35 – ident: 10286_CR37 doi: 10.1002/stvr.1838 – ident: 10286_CR65 doi: 10.1109/SBST52555.2021.00011 – ident: 10286_CR2 doi: 10.1145/3180155.3180160 – ident: 10286_CR50 doi: 10.1109/IRC.2019.00059 – ident: 10286_CR21 doi: 10.1109/SANER53432.2022.00030 – volume: 60 start-page: 135 issue: 3 year: 1996 ident: 10286_CR33 publication-title: Inf Process Lett doi: 10.1016/S0020-0190(96)00135-4 – volume: 181 start-page: 111047 year: 2021 ident: 10286_CR68 publication-title: J Syst Softw doi: 10.1016/j.jss.2021.111047 – ident: 10286_CR64 doi: 10.1109/ICSM.2015.7332519 – start-page: 532 volume-title: Cross-validation year: 2009 ident: 10286_CR69 doi: 10.1007/978-0-387-39940-9_565 – volume: 22 start-page: 67 issue: 2 year: 2012 ident: 10286_CR85 publication-title: Softw Test Verification Reliab doi: 10.1002/stv.430 – ident: 10286_CR60 doi: 10.1007/978-3-642-39742-4_12 – ident: 10286_CR18 doi: 10.1145/1328279.1328284 – ident: 10286_CR3 doi: 10.1145/3238147.3238192 – ident: 10286_CR47 doi: 10.1109/eIT53891.2022.9813985 – volume: 149 start-page: 1 year: 2019 ident: 10286_CR12 publication-title: J Syst Softw doi: 10.1016/j.jss.2018.09.055 – ident: 10286_CR38 – volume: 46 start-page: 674 issue: 6 year: 2020 ident: 10286_CR61 publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2018.2868082 – ident: 10286_CR15 – ident: 10286_CR76 – ident: 10286_CR34 – ident: 10286_CR81 – ident: 10286_CR58 – ident: 10286_CR73 doi: 10.1109/ICSM.1999.792604 – ident: 10286_CR6 doi: 10.1109/ICST46399.2020.00020 – ident: 10286_CR11 doi: 10.1145/2934466.2946046 – ident: 10286_CR22 doi: 10.1145/3533818 – ident: 10286_CR49 doi: 10.1145/2491956.2462167 – ident: 10286_CR31 doi: 10.1109/EUROMICRO.2006.56 – ident: 10286_CR4 – ident: 10286_CR25 doi: 10.1145/2889160.2889212 – volume: 12 start-page: 161 issue: 1 year: 2011 ident: 10286_CR14 publication-title: Impact Control Technol – ident: 10286_CR23 doi: 10.1145/3209811.3209880 – ident: 10286_CR87 doi: 10.1109/ISSRE5003.2020.00036 – ident: 10286_CR70 doi: 10.1145/3368089.3409730 – ident: 10286_CR29 doi: 10.1145/1143844.1143865 – ident: 10286_CR1 doi: 10.1145/2970276.2970311 – ident: 10286_CR74 doi: 10.1002/stvr.1794 – ident: 10286_CR41 doi: 10.1145/3338906.3338942 – ident: 10286_CR75 doi: 10.1007/978-0-387-30164-8_493 – ident: 10286_CR77 doi: 10.1145/3213846.3213852 – ident: 10286_CR27 doi: 10.1109/ICST.2013.38 – ident: 10286_CR30 doi: 10.1109/SBST52555.2021.00016 – ident: 10286_CR16 – volume: 36 start-page: 1 issue: 1 year: 2020 ident: 10286_CR59 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2019.2942989 – ident: 10286_CR45 doi: 10.1145/3239372.3239409 – ident: 10286_CR36 doi: 10.1109/ITEC.2019.8790473 |
| SSID | ssj0009745 |
| Score | 2.5042048 |
| Snippet | Simulation platforms facilitate the development of emerging Cyber-Physical Systems (CPS) like self-driving cars (SDC) because they are more efficient and less... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 71 |
| SubjectTerms | Autonomous cars Autonomous vehicles Compilers Computer Science Context Cost analysis Cyber-physical systems Effectiveness Fault detection Interpreters Machine learning Optimization Platforms Programming Languages Simulation Software Engineering/Programming and Operating Systems Software testing |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sJSHY8cjQlQsVIiXuoU4tlElaFETQP33nF2HFARIsGQ5O4nufPm--HEfQodcG2a4naiiXBDKmCFSSQ0XrgQNtIhN7sQmeL-fDgbi0h8KK-vd7vWSpPtSzx12Y4wSwBhiQZGR6SJaArhLbTpeXd81pXa5kya2xfVIDIjuj8p8f4_PcNRwzC_Log5teu3_vecaWvXsEp_MhsM6WtCjDdSulRuwT-RNdH_h9lBq7EUjHohFM4WBd1a4dNI4EC8MhBaXwyev8DXXBnrgsbEtDVGToZ2UwAX8IuMSvupv-URvodve2c3pOfFaC6SIRViRNNQM8jc3QksVRQaALdR5xFUhE5UIQ8EcmAiMKXA8A7xGG86LSIWBFAUg4TZqjcYjvYMwlSaWsWQsUimQNQ0UNIDwJzKNKfAF1kFh7fKs8IXIrR7GY9aUULYuzMCFmXNhNu2go48-z7MyHL-27taRzHxKlpldQo54QHnyg9kuKAJ7izvouA5sY_75Ybt_a76HVqxi_Wy3WRe1qsmL3kfLxWs1LCcHbiS_A1QZ7sE priority: 102 providerName: Springer Nature |
| Title | Machine learning-based test selection for simulation-based testing of self-driving cars software |
| URI | https://link.springer.com/article/10.1007/s10664-023-10286-y https://www.proquest.com/docview/2806270475 https://www.proquest.com/docview/2819538933 |
| Volume | 28 |
| WOSCitedRecordID | wos000976870100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009745 issn: 1382-3256 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWDhjSgU5IENLPK0kwkBArFQVeUhxBLq2EaVoC1NAfXfc3YcAkiwsHg5O4lyZ9-Xu8t9AHtcaaa5CVRFPKURY5oKKRQOXKaRp9JQ9yzZBG-3k7u7tOMCboUrq6zORHtQy2FuYuSHZcLHkMMfjV6oYY0y2VVHoTELDdMlIbCle1d1011uSYpNmz0aom93P824X-cYiyh6LGpcLKPT746pRps_EqTW75wv_feJl2HRIU5yXJrICsyowSosVWwOxG3uNXi4tHWVijgiiUdqPJwkiEUnpLB0OahDgiCXFP1nx_r1ZQ6uIENtZmoqx30TqCA5fjaTAk_6995YrcPN-dn16QV1_As0D1N_QhNfMdzTPZ0qIYNAo7PzVS_gMhexjFMdodjTAQoTxH0asY7SnOeB9D2R5ugdN2BuMByoTSCR0KEIBWOBTBDAKYSlHppELJIwQgzBmuBXLz_LXXNyw5HxlNVtlY3CMlRYZhWWTZuw_7lmVLbm-HN2q9JS5rZpkZm0csC9iMe_iCsNNuGgMoNa_PvNtv6-2jYsGNb6suKsBXOT8avagfn8bdIvxrvQODlrd7q71pZx7MT3OHavbj8Azxz70A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkuilQAF1KQ8f4FQsEsdrJwdUVTwEAlZIUIlbiGO7Wqnd3SZL0f6p_kbGXoelSHDjwCWXsRMl_jzzxWPPB7AtjRVWuoUqLjPKhbBUaWXwInXGI5MltvBiE7LTSW9usssp-NechXHbKhuf6B217pdujXxvnPBx4vDfBn-oU41y2dVGQmMMizMzusdftnr_9BDHd4ex46PrgxMaVAVomWTxkKaxEYjUwmZGacYsuvDYFEzqUrV1O7MczZFlaEyRzViM4MZKWTIdRyor0efjfadhljvv77cKXk2K_EoviuzK-tEEuUQ4pBOO6gnBKUZI6kK6oKP_A-GE3T5LyPo4d7zw3r7QInwMjJp8H0-BJZgyvU-w0KhVkOC8luH2wu8bNSQIZfykLoJrglx7SGovB4QYJUjiSd39HVTNnrTBHqRvXUtLddV1CzGkLKqa1BjJ7ovKrMCPN3nPVZjp9XvmMxCubKISJQTTKRJUg7Q7Qsi3VZpw5EiiBXEz2HkZiq87DZBf-aRstANIjgDJPUDyUQu-PvYZjEuPvNp6vUFFHtxQnbu0OZMRl-0XzA1iWrDbwG5ifvlha6_fbQvmT64vzvPz087ZF_jAHOr9wtU6zAyrO7MBc-XfYbeuNv38IXD71nB8AJkqVdQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aG0Jc1vFLdCvDBziBtcRJ7OQwTdO6alWh6gGkiUsWxzaqBO1Iyqb-a_vr9uw6FCa1tx645PJsR4k_v_f51_sA3gltuBF2oSoWGY05N1QqqfEhVBYHOotM4cQmxHCYXl5moy24a-7C2GOVjU90jlpNS7tGfrTY8LHi8EfGH4sYdXsn17-oVZCyO62NnMYCIgM9v8XpW33c72Jfv2esd_7l7IJ6hQFaRlk4o2moOaK2MJmWijGD7jzUBROqlIlKMhOjOTAMjSkyG4PRXBshSqbCQGYl-n9s9xHsCJxj2onfKPm2TPgrnECyTfFHI-QV_sKOv7bHeUwxWlIb3jmd_xsUl0z3weasi3m91v_8t_Zg1zNtcroYGs9gS0-eQ6tRsSDeqb2Aq8_uPKkmXkDjO7WRXRHk4DNSO5kgxC5Bck_q8U-vdvZXGaxBpsaWNFRVY7tAQ8qiqkmNEe62qPRL-LqR73wF25PpRL8GEksTyUhyzlSKxFUjHQ9wKCQyjWLkTrwNYdPxeemTslttkB_5Mp20BUuOYMkdWPJ5Gz78qXO9SEmytnSnQUju3VOd2-10JoJYJCvMDXra8LGB4NK8-mX761t7C08Qhfmn_nBwAE-ZHQBuPasD27Pqt34Dj8ub2biuDt1QInC1aTTeA4S2Xrc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+test+selection+for+simulation-based+testing+of+self-driving+cars+software&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Birchler%2C+Christian&rft.au=Khatiri%2C+Sajad&rft.au=Bosshard%2C+Bill&rft.au=Gambi%2C+Alessio&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=3&rft.spage=71&rft_id=info:doi/10.1007%2Fs10664-023-10286-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |