Completeness of the ZX-Calculus
The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures al...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 16, Issue 2; číslo 2; s. 11:1 - 11:72 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science Association
04.06.2020
Logical Methods in Computer Science e.V |
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation for the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler. |
|---|---|
| AbstractList | The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation for the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler. The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation or the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler. |
| Author | Vilmart, Renaud Perdrix, Simon Jeandel, Emmanuel |
| Author_xml | – sequence: 1 givenname: Emmanuel surname: Jeandel fullname: Jeandel, Emmanuel – sequence: 2 givenname: Simon surname: Perdrix fullname: Perdrix, Simon – sequence: 3 givenname: Renaud surname: Vilmart fullname: Vilmart, Renaud |
| BackLink | https://hal.science/hal-02400081$$DView record in HAL |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AS_2qIfVTJLNH29lUVtY8aCCeAlpNrFbtpuy2Qp-e3dbBfXgzGGGx7zfwDtGgzrUDqFTwJeEciqv8vvsMQF-Tq4BLggm-AANQXKcpEqwwY_9CI1jXOGuKAVJ-BCdZWG9qVzrahfjJPhJu3ST15ckM5XdVtt4gg69qaIbf80Rer69ecpmSf5wN8-meWKpgjbhVsmUS4IdFQK7hfc0dZ4aZlJKBEsLL70g1LpUgRdsIbpmjnsQthMxoSM033OLYFZ605Rr03zoYEq9E0Lzpk3TlrZy2mBQzBKOHRRMGapSxQrunCfCs4JAx7rYs5am-oWaTXPda5iwLgIJ7_2t3N_aJsTYOK9t2Zq2DHXbmLLSgPUuY91nrIFrogF0n3FnJX-s37_-MX0CanV95g |
| CitedBy_id | crossref_primary_10_1088_1367_2630_ad1b80 crossref_primary_10_1088_1367_2630_acfab6 |
| ContentType | Journal Article |
| Copyright | licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 1XC DOA |
| DOI | 10.23638/LMCS-16(2:11)2020 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Physics |
| EISSN | 1860-5974 |
| EndPage | 11:72 |
| ExternalDocumentID | oai_doaj_org_article_a0194c260e1d49a39594d6eef27f4d21 oai:HAL:hal-02400081v1 10_23638_LMCS_16_2_11_2020 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB 1XC |
| ID | FETCH-LOGICAL-c391t-6c9856820e3770ebff35ef3a4a532745df8f723ce591f74b7b7b4e6f17c3ce023 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549432200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:52:27 EDT 2025 Sat Nov 22 06:20:30 EST 2025 Tue Nov 18 20:46:49 EST 2025 Sat Nov 29 08:05:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-6c9856820e3770ebff35ef3a4a532745df8f723ce591f74b7b7b4e6f17c3ce023 |
| ORCID | 0000-0002-1808-2409 0000-0002-8828-4671 0000-0001-7236-2906 |
| OpenAccessLink | https://doaj.org/article/a0194c260e1d49a39594d6eef27f4d21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a0194c260e1d49a39594d6eef27f4d21 hal_primary_oai_HAL_hal_02400081v1 crossref_citationtrail_10_23638_LMCS_16_2_11_2020 crossref_primary_10_23638_LMCS_16_2_11_2020 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-04 |
| PublicationDateYYYYMMDD | 2020-06-04 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2020 |
| Publisher | Logical Methods in Computer Science Association Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science Association – name: Logical Methods in Computer Science e.V |
| SSID | ssj0000331826 |
| Score | 2.3736205 |
| Snippet | The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 11:1 |
| SubjectTerms | Computational Complexity Computer Science computer science - logic in computer science Data Structures and Algorithms Discrete Mathematics Physics Quantum Physics |
| Title | Completeness of the ZX-Calculus |
| URI | https://hal.science/hal-02400081 https://doaj.org/article/a0194c260e1d49a39594d6eef27f4d21 |
| Volume | 16, Issue 2 |
| WOSCitedRecordID | wos000549432200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHrz4FutzEQ-KhG5e-_BWS0sPbRFUKF5Ckk1QKK20tUd_u5PstrQXvcjCHobsbjKTzXwTMt8gdMMF0czFAhdUx5g7Y3CWFRpTzVWWsBggR0gU7qb9fjYY5E8rpb78mbCSHrhUXF0BBuEGULclBc8Vy0XOi8RaR1PHi5BCTgH1rARTYQ1mzAPnMkuGMphk9W6v-YxJcksfCLmDkD9e80SBsB_8y_tiPzX4l_Ye2qmAYdQoO7SPNuzoAO0uii5E1T94iK68aOihLqxR0dhFgOCitwFuqqHfyZseodd266XZwVWVA2xYTmY4MXkmEnDElqVpbLVzTFjHFFeCQcgoCpe5lDKfLkVcynUKF7eJI6kBIbjcY7Q5Go_sCYoY01aBD4YA2XEC6IlwozVReZaLwhhXQ2QxYmkqCnBfiWIoIRQIWpJeS5IkkkJoIL2Wauh--cxnSYDxa-tHr8hlS09eHQRgUlmZVP5l0hq6BjOsvaPT6Eov84xsHsXMyel_fOkMbfteh6Nf_BxtziZf9gJtmfnsYzq5DFMK7r3v1g-PZcxl |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Completeness+of+the+ZX-Calculus&rft.jtitle=Logical+methods+in+computer+science&rft.au=Emmanuel+Jeandel&rft.au=Simon+Perdrix&rft.au=Renaud+Vilmart&rft.date=2020-06-04&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=16%2C+Issue+2&rft_id=info:doi/10.23638%2FLMCS-16%282%3A11%292020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a0194c260e1d49a39594d6eef27f4d21 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |