Completeness of the ZX-Calculus

The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 16, Issue 2; H. 2; S. 11:1 - 11:72
Hauptverfasser: Jeandel, Emmanuel, Perdrix, Simon, Vilmart, Renaud
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science Association 04.06.2020
Logical Methods in Computer Science e.V
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation for the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler.
AbstractList The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation or the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler.
The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational presentation. We focus here on a very important property of the language: completeness, which roughly ensures the equational theory captures all of quantum mechanics. We first improve on the known-to-be-complete presentation for the so-called Clifford fragment of the language - a restriction that is not universal - by adding some axioms. Thanks to a system of back-and-forth translation between the ZX-Calculus and a third-party complete graphical language, we prove that the provided axiomatisation is complete for the first approximately universal fragment of the language, namely Clifford+T. We then prove that the expressive power of this presentation, though aimed at achieving completeness for the aforementioned restriction, extends beyond Clifford+T, to a class of diagrams that we call linear with Clifford+T constants. We use another version of the third-party language - and an adapted system of back-and-forth translation - to complete the language for the ZX-Calculus as a whole, that is, with no restriction. We briefly discuss the added axioms, and finally, we provide a complete axiomatisation for an altered version of the language which involves an additional generator, making the presentation simpler.
Author Vilmart, Renaud
Perdrix, Simon
Jeandel, Emmanuel
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Jeandel
  fullname: Jeandel, Emmanuel
– sequence: 2
  givenname: Simon
  surname: Perdrix
  fullname: Perdrix, Simon
– sequence: 3
  givenname: Renaud
  surname: Vilmart
  fullname: Vilmart, Renaud
BackLink https://hal.science/hal-02400081$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsNZ-AS_2qIfVTJLNH29lUVtY8aCCeAlpNrFbtpuy2Qp-e3dbBfXgzGGGx7zfwDtGgzrUDqFTwJeEciqv8vvsMQF-Tq4BLggm-AANQXKcpEqwwY_9CI1jXOGuKAVJ-BCdZWG9qVzrahfjJPhJu3ST15ckM5XdVtt4gg69qaIbf80Rer69ecpmSf5wN8-meWKpgjbhVsmUS4IdFQK7hfc0dZ4aZlJKBEsLL70g1LpUgRdsIbpmjnsQthMxoSM033OLYFZ605Rr03zoYEq9E0Lzpk3TlrZy2mBQzBKOHRRMGapSxQrunCfCs4JAx7rYs5am-oWaTXPda5iwLgIJ7_2t3N_aJsTYOK9t2Zq2DHXbmLLSgPUuY91nrIFrogF0n3FnJX-s37_-MX0CanV95g
CitedBy_id crossref_primary_10_1088_1367_2630_ad1b80
crossref_primary_10_1088_1367_2630_acfab6
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
DOA
DOI 10.23638/LMCS-16(2:11)2020
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 1860-5974
EndPage 11:72
ExternalDocumentID oai_doaj_org_article_a0194c260e1d49a39594d6eef27f4d21
oai:HAL:hal-02400081v1
10_23638_LMCS_16_2_11_2020
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
ID FETCH-LOGICAL-c391t-6c9856820e3770ebff35ef3a4a532745df8f723ce591f74b7b7b4e6f17c3ce023
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549432200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:52:27 EDT 2025
Sat Nov 22 06:20:30 EST 2025
Tue Nov 18 20:46:49 EST 2025
Sat Nov 29 08:05:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-6c9856820e3770ebff35ef3a4a532745df8f723ce591f74b7b7b4e6f17c3ce023
ORCID 0000-0002-1808-2409
0000-0002-8828-4671
0000-0001-7236-2906
OpenAccessLink https://doaj.org/article/a0194c260e1d49a39594d6eef27f4d21
ParticipantIDs doaj_primary_oai_doaj_org_article_a0194c260e1d49a39594d6eef27f4d21
hal_primary_oai_HAL_hal_02400081v1
crossref_citationtrail_10_23638_LMCS_16_2_11_2020
crossref_primary_10_23638_LMCS_16_2_11_2020
PublicationCentury 2000
PublicationDate 2020-06-04
PublicationDateYYYYMMDD 2020-06-04
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-04
  day: 04
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2020
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.373709
Snippet The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. It comes equipped with an equational...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 11:1
SubjectTerms Computational Complexity
Computer Science
computer science - logic in computer science
Data Structures and Algorithms
Discrete Mathematics
Physics
Quantum Physics
Title Completeness of the ZX-Calculus
URI https://hal.science/hal-02400081
https://doaj.org/article/a0194c260e1d49a39594d6eef27f4d21
Volume 16, Issue 2
WOSCitedRecordID wos000549432200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iHrz4Lc7PIh4UCVuapGm8zbGxwzYEFYaX0DYJCmOTbe7o3-57aSfzohcp9PBI2-S9NO_3Qt7vEXIlmSusdAnl1sdUKM5pJmAxtFw0uHLK5Xkaik2owSAdDvXDSqkvPBNW0gOXiqtngEFEAajbMSt0xrXUwibO-Vh5YUMKeQyoZyWYCmsw5wicyyyZmMMkq_f6rUfKkuv4jrEbCPkbPzxRIOwH__K63E8N_qWzQ7YqYBg1yw7tkjU33iPby6ILUfUP7pMLFI0Q6sIaFU18BAguehnSVjbCnbzZAXnutJ9aXVpVOaAF12xOk0KnMgFH7LhSDZd7z6XzPBOZ5BAySutTr2KO6VLMK5EruIRLPFMFCMHlHpL18WTsjkiEVR5kbnUmJNLiqzTR2jtrc5nGWnJZI2w5YlNUFOBYiWJkIBQIWjKoJcMSE0NoYFBLNXL7_cx7SYDxa-t7VOR3SySvDgIwqalMav4yaY1cghl-vKPb7BmUISMbopgFO_6PL52QTex1OPolTsn6fPrhzshGsZi_zabnYUrBvf_Z_gJhYMt1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Completeness+of+the+ZX-Calculus&rft.jtitle=Logical+methods+in+computer+science&rft.au=Jeandel%2C+Emmanuel&rft.au=Perdrix%2C+Simon&rft.au=Vilmart%2C+Renaud&rft.date=2020-06-04&rft.pub=Logical+Methods+in+Computer+Science+Association&rft.eissn=1860-5974&rft.volume=16&rft.issue=2&rft.spage=11%3A1&rft.epage=11%3A72&rft_id=info:doi/10.23638%2FLMCS-16%282%3A11%292020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02400081v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon