Tribo-informatics approaches in tribology research: A review
Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of human society, tribology research objects have become increasingly extensive. Tribology research methods have also gone through the stages o...
Uloženo v:
| Vydáno v: | Friction Ročník 11; číslo 1; s. 1 - 22 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Tsinghua University Press
01.01.2023
Springer Nature B.V School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China |
| Témata: | |
| ISSN: | 2223-7690, 2223-7704 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of human society, tribology research objects have become increasingly extensive. Tribology research methods have also gone through the stages of empirical science based on phenomena, theoretical science based on models, and computational science based on simulations. Tribology research has a strong engineering background. Owing to the intense coupling characteristics of tribology, tribological information includes subject information related to mathematics, physics, chemistry, materials, machinery, etc. Constantly emerging data and models are the basis for the development of tribology. The development of information technology has provided new and more efficient methods for generating, collecting, processing, and analyzing tribological data. As a result, the concept of “tribo-informatics (triboinformatics)” has been introduced. In this paper, guided by the framework of tribo-informatics, the application of tribo-informatics methods in tribology is reviewed. This article aims to provide helpful guidance for efficient and scientific tribology research using tribo-informatics approaches. |
|---|---|
| AbstractList | Tribology research mainly focuses on the friction,wear,and lubrication between interacting surfaces.With the continuous increase in the industrialization of human society,tribology research objects have become increasingly extensive.Tribology research methods have also gone through the stages of empirical science based on phenomena,theoretical science based on models,and computational science based on simulations.Tribology research has a strong engineering background.Owing to the intense coupling characteristics of tribology,tribological information includes subject information related to mathematics,physics,chemistry,materials,machinery,etc.Constantly emerging data and models are the basis for the development of tribology.The development of information technology has provided new and more efficient methods for generating,collecting,processing,and analyzing tribological data.As a result,the concept of"tribo-informatics(triboinformatics)"has been introduced.In this paper,guided by the framework of tribo-informatics,the application of tribo-informatics methods in tribology is reviewed.This article aims to provide helpful guidance for efficient and scientific tribology research using tribo-informatics approaches. |
| Author | Yin, Nian Xing, Zhiguo He, Ke Zhang, Zhinan |
| AuthorAffiliation | State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China |
| AuthorAffiliation_xml | – name: State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China |
| Author_xml | – sequence: 1 givenname: Nian surname: Yin fullname: Yin, Nian organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 2 givenname: Zhiguo surname: Xing fullname: Xing, Zhiguo organization: National Key Laboratory for Remanufacturing, Army Academy of Armored Forces – sequence: 3 givenname: Ke surname: He fullname: He, Ke organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Zhinan surname: Zhang fullname: Zhang, Zhinan email: zhinanz@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University |
| BookMark | eNp9kMtKAzEUhoNUUGsfwN2AC1fRnCSTzIibUrxBwU1dh2SaaSNtUpOppW9vyiiCoKscyPedy3-GBj54i9AFkGsgRN4kTkrOMaEUk7IWWB6hU0opw1ISPviuRU1O0CglZwjjjJYgySm6m0VnAna-DXGtO9ekQm82MehmaVPhfNEd_ldhsS-iTVbHZnlbjHP94ezuHB23epXs6OsdoteH-9nkCU9fHp8n4yluWA0dFmVpBMwZnZvKCCalqSynxoCppGEVtDVpzRy0bqBqBdiS1aZuDVSCAghL2RBd9X132rfaL9Rb2EafJ6p1o_Y7QwllJCcBmbzsyXzC-9am7gelkgkiSw48U7KnmhhSirZVjevy8cF3UbuVAqIOuao-V5VzVYdclcwm_DI30a113P_r0N5JmfULG392-lv6BIs-io8 |
| CitedBy_id | crossref_primary_10_1007_s40544_023_0847_2 crossref_primary_10_3390_lubricants12040135 crossref_primary_10_1016_j_triboint_2023_108783 crossref_primary_10_1016_j_wear_2024_205722 crossref_primary_10_1007_s40544_023_0760_8 crossref_primary_10_1007_s40544_023_0765_3 crossref_primary_10_1007_s11465_024_0812_4 crossref_primary_10_26599_FRICT_2025_9441062 crossref_primary_10_1002_mame_70004 crossref_primary_10_3390_lubricants11110463 crossref_primary_10_1007_s11249_025_02015_x crossref_primary_10_1088_2051_672X_acc882 crossref_primary_10_1088_1361_6501_ad0939 crossref_primary_10_3390_app14146074 crossref_primary_10_1007_s40735_024_00849_x crossref_primary_10_26599_FRICT_2025_9441045 crossref_primary_10_1016_j_triboint_2025_111130 crossref_primary_10_26599_FRICT_2025_9440936 crossref_primary_10_1007_s40544_023_0810_2 crossref_primary_10_1016_j_triboint_2024_109914 crossref_primary_10_1016_j_wear_2022_204590 crossref_primary_10_1016_j_matdes_2022_111253 crossref_primary_10_1007_s40962_023_01147_x crossref_primary_10_1007_s00170_022_10544_1 crossref_primary_10_1016_j_triboint_2024_109988 crossref_primary_10_1088_1361_6501_ace7eb crossref_primary_10_1016_j_triboint_2024_110219 crossref_primary_10_1016_j_triboint_2024_109940 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_1016_j_triboint_2025_110597 crossref_primary_10_1007_s40544_023_0770_6 crossref_primary_10_3390_cryst13040671 crossref_primary_10_5194_ms_15_385_2024 crossref_primary_10_3390_lubricants12020033 crossref_primary_10_1016_j_apsusc_2023_159192 crossref_primary_10_1007_s10751_024_01978_y crossref_primary_10_1016_j_surfcoat_2024_131337 crossref_primary_10_3390_lubricants12020050 crossref_primary_10_26599_FRICT_2025_9440982 crossref_primary_10_1007_s13369_024_09835_4 crossref_primary_10_1007_s40544_023_0786_y crossref_primary_10_1016_j_triboint_2025_111087 crossref_primary_10_1007_s11431_024_2821_3 crossref_primary_10_1007_s12666_024_03366_0 crossref_primary_10_2514_1_D0436 crossref_primary_10_1016_j_heliyon_2024_e39248 crossref_primary_10_1039_D5MH01327E crossref_primary_10_26599_FRICT_2025_9440987 |
| Cites_doi | 10.1016/j.jmapro.2019.10.020 10.1016/j.jmsy.2015.03.005 10.1016/j.triboint.2021.107065 10.1016/j.jmatprotec.2006.04.123 10.1007/s10845-020-01625-7 10.1016/j.measurement.2017.02.034 10.1016/j.mser.2005.07.001 10.1016/j.mfglet.2021.05.010 10.1016/j.surfin.2020.100549 10.1016/j.knosys.2019.105324 10.1177/1350650119838896 10.1007/s00170-017-1460-1 10.1016/j.talanta.2020.121312 10.3390/s20030612 10.1680/jsuin.20.00024 10.1007/s12666-020-02108-2 10.3390/pr9060922 10.1016/j.promfg.2020.05.134 10.1016/j.nanoen.2020.105501 10.2174/2212797609666160714145845 10.1016/j.asoc.2018.04.048 10.1007/s11665-020-05146-5 10.1007/s00366-019-00839-5 10.1007/s00521-018-3555-5 10.1016/j.ymssp.2019.03.023 10.1038/s41524-019-0207-y 10.1007/s40544-020-0390-3 10.1016/j.wear.2009.08.016 10.3390/lubricants7040032 10.1016/j.matpr.2018.03.044 10.1080/0951192X.2018.1550681 10.1016/j.ymssp.2017.08.014 10.1080/00986445.2019.1578757 10.1007/s00170-018-3157-5 10.3390/s18030823 10.1016/j.wear.2018.12.089 10.3390/lubricants7110095 10.1016/j.heliyon.2018.e00938 10.1016/j.triboint.2005.03.012 10.1016/j.wear.2018.12.081 10.1016/j.ymssp.2010.07.014 10.1080/09715010.2017.1333926 10.1007/s10845-015-1155-0 10.1007/s40544-021-0493-5 10.1016/j.jmsy.2021.08.001 10.1016/j.apt.2020.12.024 10.1177/0021998319859924 10.1016/j.triboint.2019.06.006 10.1016/j.triboint.2020.106811 10.1007/s40544-016-0104-z 10.1115/1.4045291 10.1016/j.rcim.2018.03.011 10.1007/s40544-018-0249-z 10.1016/j.actamat.2020.03.047 10.1166/jctn.2019.8152 10.1115/1.4038688 10.1007/s11665-020-05132-x 10.1115/1.4045013 10.1007/s40544-021-0518-0 10.1007/s11249-012-9975-y 10.1016/j.triboint.2019.01.014 10.3390/lubricants6040108 10.3390/app10134421 10.3390/app10186357 10.3390/lubricants9090086 10.1021/acs.langmuir.1c00358 10.1016/j.ijmachtools.2019.103452 10.1016/j.jsv.2015.06.011 10.1016/j.promfg.2019.06.192 10.1080/02286203.2020.1803605 10.1016/j.triboint.2009.05.019 10.1016/j.measurement.2021.109599 10.1177/0954406219873932 10.1016/j.ijpe.2011.09.001 10.1088/2051-672X/abae13 10.1115/1.4050525 10.1007/s00170-009-2266-6 10.1016/j.ymssp.2017.11.021 10.1109/5254.708428 10.1115/1.4038002 10.1007/978-981-13-9382-2_3 10.1007/978-3-030-20131-9_379 10.1016/j.wear.2021.203616 10.1007/s40544-018-0244-4 10.1007/s10845-016-1206-1 10.1109/TII.2016.2635082 10.1007/s12205-019-2217-1 10.1115/1.4036350 10.1016/j.triboint.2015.10.009 10.1016/j.triboint.2020.106280 10.1016/j.triboint.2020.106379 10.1016/j.measurement.2019.05.018 10.1016/j.jmsy.2020.09.005 10.1007/s00170-015-7812-9 10.3390/lubricants9010002 10.48550/arXiv.2109.00570 10.1007/s12540-020-00809-3 10.3390/app9142788 10.3390/ma13163489 10.1016/j.wear.2021.203696 10.1177/0954405420935787 10.1007/s40544-017-0185-3 10.1007/s40544-020-0457-3 10.1007/s40544-019-0332-0 10.1016/j.mex.2018.09.002 10.3390/nano10112287 10.1002/aenm.202000137 10.1007/s00366-020-01272-9 10.3390/lubricants8030029 10.1016/j.wear.2020.203355 10.1016/j.mfglet.2021.07.005 10.1016/j.compind.2019.06.001 10.1016/j.jallcom.2008.03.035 10.1371/journal.pone.0255637 10.1115/1.4051332 10.1088/1757-899X/1047/1/012053 10.21037/atm.2016.03.37 10.1016/j.ymssp.2015.10.013 10.1007/s11423-013-9305-6 10.3389/fmech.2019.00030 10.3390/lubricants9050057 10.1016/j.apm.2011.12.059 10.1016/j.promfg.2020.04.189 10.1016/j.procir.2018.08.253 10.2118/187974-MS 10.1016/j.jmapro.2017.03.012 10.1377/hlthaff.2011.0178 10.1016/j.wear.2021.203902 10.1007/s12540-020-00854-y 10.1007/s40430-020-2235-4 10.1177/1350650120965754 10.1007/s00170-020-05785-x 10.1016/j.wear.2010.11.049 10.1016/j.procir.2019.04.031 10.1007/978-3-658-32182-6_7 10.1109/TII.2019.2948023 10.17576/jkukm-2020-32(2)-01 |
| ContentType | Journal Article |
| Copyright | The author(s) 2022 The author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: The author(s) 2022 – notice: The author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | C6C AAYXX CITATION 3V. 7RQ 7XB 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ KB. L6V M2O M7S MBDVC PADUT PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U U9A 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s40544-022-0596-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Career & Technical Education Database ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Research Library (subscription) Engineering Database Research Library (Corporate) Research Library China Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) Research Library China Engineering Collection Career and Technical Education (Alumni Edition) ProQuest Materials Science Collection Engineering Database ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 7RQ name: Career & Technical Education Database url: https://search.proquest.com/career sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2223-7704 |
| EndPage | 22 |
| ExternalDocumentID | mc_ywb202301001 10_1007_s40544_022_0596_7 |
| GroupedDBID | -A0 -SC -S~ 0R~ 3V. 4.4 5VS 7RQ 8FE 8FG 8G5 92E 92I 9D9 9DC AAFWJ AAKKN AAXDM ABEEZ ABFTD ABJCF ABUWG ACACY ACGFS ACIWK ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ASPBG AVWKF AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CAJEC CCPQU D1I DWQXO EBS EJD GNUQQ GROUPED_DOAJ GUQSH HCIFZ IPNFZ KB. L6V M2O M7S OK1 PADUT PDBOC PIMPY PQQKQ PROAC PTHSS Q-- RIG RSV SCL SOJ TCJ TGP U1G U5M AAYXX AFFHD CITATION PHGZM PHGZT PQGLB 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U U9A 2B. 4A8 93N PB1 PB6 PSX |
| ID | FETCH-LOGICAL-c391t-655b61d32db8b6377b8e42bb1b87b381f90fbd1aac18f61e539b9fb1862116e23 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789744400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2223-7690 |
| IngestDate | Thu May 29 04:05:09 EDT 2025 Fri Jul 25 11:20:01 EDT 2025 Tue Nov 18 21:29:47 EST 2025 Sat Nov 29 06:09:21 EST 2025 Fri Feb 21 02:44:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | tribo-informatics information technology machine learning data-driven artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-655b61d32db8b6377b8e42bb1b87b381f90fbd1aac18f61e539b9fb1862116e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s40544-022-0596-7 |
| PQID | 2736075414 |
| PQPubID | 2034759 |
| PageCount | 22 |
| ParticipantIDs | wanfang_journals_mc_ywb202301001 proquest_journals_2736075414 crossref_citationtrail_10_1007_s40544_022_0596_7 crossref_primary_10_1007_s40544_022_0596_7 springer_journals_10_1007_s40544_022_0596_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Heidelberg |
| PublicationTitle | Friction |
| PublicationTitleAbbrev | Friction |
| PublicationTitle_FL | Friction |
| PublicationYear | 2023 |
| Publisher | Tsinghua University Press Springer Nature B.V School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China |
| Publisher_xml | – name: Tsinghua University Press – name: Springer Nature B.V – name: School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China – name: State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China |
| References | Díaz Lantada, Franco-Martínez, Hengsbach, Rupp, Thelen, Bade (CR78) 2020; 10 Altay, Gurgenc, Ulas, Özel (CR47) 2020; 8 Argatov (CR9) 2019; 5 Tatipala, Wall, Johansson, Sigvant (CR66) 2018; 1063 Kordijazi, Roshan, Dhingra, Povolo, Rohatgi, Nosonovsky (CR86) 2021; 9 CR37 Gouarir, Martínez-Arellano, Terrazas, Benardos, Ratchev (CR42) 2018; 77 CR36 Gouda, Rycerz, Kadiric, Morales-Espejel (CR64) 2019; 233 Thankachan, Soorya Prakash, Kamarthin (CR43) 2018; 140 Humelnicu, Ciortan, Amortila (CR93) 2019; 7 Thankachan, Soorya Prakash, Kavimani, Silambarasan (CR40) 2021; 27 Wu, Jennings, Terpenny, Kumara, Gao (CR15) 2018; 140 Doshi, Ning (CR1) 2021; 88 Karandikar (CR46) 2019; 34 Wan, Wen, Ma, Zhang (CR99) 2019; 146 Kothuru, Nooka, Liu (CR21) 2018; 95 Cheng, Jiao, Shi, Wang, Yan, Li (CR63) 2020; 234 Peng, Cai, Wu, Cao, Kwok, Peng (CR135) 2020; 151 Peng, Bergs, Schraknepper, Klocke, Döbbeler (CR34) 2019; 82 Borjali, Monson, Raeymaekers (CR56) 2019; 133 Bucholz, Kong, Marchman, Sawyer, Phillpot, Sinnott, Rajan (CR88) 2012; 47 CR48 Wierzcholski, Łupicka (CR96) 2009; 16 Boidi, da Silva, Profito, Machado (CR68) 2020; 8 Leandro Cabral, Matamoros, Ferreira Costa, Vieira Pinto, Silva de Souza, Freire, Filgueira Bezerra, Santos Cabral, Silva Castro, Pires de Souza (CR20) 2019; 16 Aydin (CR55) 2021; 32 Perčić, Zelenika, Mezić (CR60) 2021; 9 Wang, Bi, Wang, Wang (CR131) 2018; 100 Ji, Bao, Yin, Ma (CR6) 2016; 9 Xu, Li, Zhang, Chen (CR100) 2021; 61 Banerjee, Dey, Sekhar, Datta, Das (CR83) 2020; 73 Wu, Kwok, Liu, Li, Wu, Peng (CR137) 2019; 426–427 Tysoe, Spencer (CR89) 2020; 76 Xu, Zhao, Xu, Yang, Chang, Yan, Wang (CR62) 2020; 190 Wang, Wu, Wang, Sarkodie-Gyan (CR133) 2020; 20 Wang, Yan, Li, Gao, Zhao (CR106) 2019; 111 Mishra, Ma (CR125) 2005; 50 Kordijazi, Kumar Behera, Suri, Wang, Povolo, Salowitz, Rohatgi (CR57) 2020; 20 Kordijazi, Behera, Patel, Rohatgi, Nosonovsky (CR79) 2021; 37 Schölkopf (CR11) 1998; 13 Patil, Phalle (CR17) 2018; 31 Wang (CR144) 2020; 10 Tran, Furlan, Pagalthivarthi, Visintainer, Wildey, Wang (CR53) 2019; 422–423 Verma, Gupta, Misra (CR115) 2018; 5 CR134 Egala, Jagadeesh, Setti (CR59) 2021; 9 Balavignesh (CR18) 2018; 14 Hasan, Kordijazi, Rohatgi, Nosonovsky (CR16) 2022; 144 Gupta, Pandey, Kumar (CR120) 2018; 232 Das, Pal, Bag (CR122) 2017; 103 Chang, Borghesani, Peng (CR25) 2020; 147 Niazkar (CR71) 2019; 23 Moder, Bergmann, Grün (CR32) 2018; 6 Zhou, Liu, Wang, Wang (CR145) 2020; 8 Jia, Duan, Zhan, Jin, Cheng, Li (CR91) 2019; 9 Šabanovič, Žuraulis, Prentkovskis, Skrickij (CR72) 2020; 20 Davies, Dean, Ball (CR4) 2013; 61 Gropper, Wang, Harvey (CR73) 2016; 94 König, Marheineke, Jacobs, Sous, Zuo, Tian (CR26) 2021; 476 Zeng, Song, Zhang, Zhou, Xie, Tang (CR39) 2020; 456–457 Bellotti, Wu, Qian, Reynaerts (CR51) 2020; 10 Wang, Ma, Xu, Yong, He (CR146) 2017; 5 Mishra, Tiwari, Dubey (CR128) 2020; 7 Nasir, Asmael, Zeeshan, Solyali (CR116) 2020; 32 Caggiano (CR107) 2018; 18 Shevchik, Saeidi, Meylan, Wasmer (CR139) 2017; 13 Zambrano, Brase, Hernández-Gascón, Wangenheim, Gracia, Viejo, Izquierdo, Valdés (CR77) 2021; 9 Cavaleri, Asteris, Psyllaki, Douvika, Skentou, Vaxevanidis (CR81) 2019; 9 Sathish (CR85) 2018; 5 Zhang (CR12) 2016; 4 Li, Yao, Zhang (CR97) 2020; 29 Alambeigi, Khadem, Khorsand, Mirza Seied Hasan (CR61) 2016; 84 Zhang, Xu (CR98) 2021; 29 Yan, Zhao, Lu, Zhou, Xiao (CR30) 2005; 38 Verma, Misra, Popli (CR126) 2022; 42 Luo, Fridrici, Kapsa (CR87) 2011; 271 Thangarasu, Shankar, Mohanraj, Devendran (CR111) 2020; 234 Chimeno-Trinchet, Murru, Díaz-García, Fernández-González, Badía-Laíño (CR33) 2020; 219 Shankar, Mohanraj, Rajasekar (CR45) 2019; 32 Kügler, Marian, Schleich, Tremmel, Wartzack (CR7) 2020; 10 Du, Mukherjee, DebRoy (CR121) 2019; 5 Sudhagar, Sakthivel, Ganeshkumar (CR118) 2019; 144 Zhang, Yin, Wu, Pan, Wang (CR143) 2021; 79 Buntin, Burke, Hoaglin, Blumenthal (CR2) 2011; 30 Hao, Zhu, Li, Turyagyenda (CR101) 2006; 180 D’Addona, Ullah, Matarazzo (CR110) 2017; 28 CR130 Zhang, Yin, Chen, Liu (CR5) 2021; 9 Parveen, Zaidi, Danish (CR69) 2020; 207 Gao, Dai, Wang, Wang, He (CR58) 2016; 4 Prajogo, Olhager (CR3) 2012; 135 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR10) 2018; 4 Pandiyan, Prost, Vorlaufer, Varga, Wasmer (CR19) 2022; 10 Rosenkranz, Marian, Profito, Aragon, Shah (CR8) 2020; 9 Kilundu, Dehombreux, Chiementin (CR24) 2011; 25 Marian, Tremmel (CR142) 2021; 9 Hanachi, Yu, Kim, Liu, Mechefske (CR22) 2019; 101 Jurkovic, Cukor, Brezocnik, Brajkovic (CR102) 2018; 29 Wu, Jennings, Terpenny, Gao, Kumara (CR14) 2017; 139 Tansel, Demetgul, Okuyucu, Yapici (CR129) 2010; 48 Xie, Wang, Qin, Du, Qian (CR67) 2020; 142 Ramkumar, Selvakumar (CR94) 2021 Kong, Chen, Li (CR104) 2018; 104 Farias, Almeida, Delijaicov, Seriacopi, Bordinassi (CR49) 2020; 109 Kurdi, Alhazmi, Alhazmi, Tabbakh (CR74) 2020; 13 Nugraha, Chen, Yin, Wu, Zhang (CR138) 2021; 181 Bergs, Holst, Gupta, Augspurger (CR113) 2020; 48 Grützmacher, Profito, Rosenkranz (CR80) 2019; 7 Wang, Wu, Wang (CR132) 2021; 476 Li, Liu, Wu (CR109) 2019; 48 Hayajneh, Hassan, Alrashdan, Mayyas (CR54) 2009; 470 Zhang, Xu, Liu, Zhang, Zhu, Li (CR141) 2021; 16 König, Sous, Chaib, Jacobs (CR27) 2021; 155 Mokhtari, Pelham, Nowoisky, Bote-Garcia, Gühmann (CR28) 2020; 8 Desai, Granja, Higgs (CR76) 2021; 9 Eren, Guvenc, Mistikoglu (CR119) 2021; 27 Luo, Bui, Nguyen, Moayedi (CR38) 2021; 37 Shabani, Mazahery (CR82) 2012; 36 Towsyfyan, Gu, Ball, Liang (CR31) 2019; 7 Yuan, Chin, Hua, Dong, Wang (CR29) 2016; 72–73 Kong, Chen, Li, Duan, Lu, Chen (CR112) 2019; 127 Du, Mukherjee, Mitra, DebRoy (CR123) 2020; 192 Bustillo, Pimenov, Matuszewski, Mikolajczyk (CR41) 2018; 53 Thapliyal, Mishra (CR117) 2021; 29 Peng, Wang, Liao (CR103) 2015; 354 Wang, Liu, Wu, Wang (CR136) 2020; 42 Xiao, Zhu (CR140) 2010; 43 Bhaumik, Pathak, Dey, Datta (CR90) 2019; 140 Wang, Li, Zhao, Gao (CR44) 2020; 57 Shen, Yang, Habibullah, Ahmed, Das, Zhou, Ho (CR23) 2021; 32 Bhaumik, Kamaraj (CR92) 2021; 235 Wang, Wang, Gao (CR105) 2015; 36 Vendan, Kamal, Karan, Gao, Niu, Garg (CR124) 2020 Das, Pal, Bag (CR127) 2017; 27 Hasan, Kordijazi, Rohatgi, Nosonovsky (CR13) 2021; 161 Zhang, Xu (CR75) 2020; 29 Vinoth, Datta (CR84) 2020; 54 Babin (CR95) 2021; 1047 Bock, Blaga, Klusemann (CR35) 2020; 47 Kolodziejczyk, Toscano, Fouvry, Morales-Espejel (CR50) 2010; 268 Najafzadeh, Shiri, Sadeghi, Ghaemi (CR70) 2018; 24 Atwya, Panoutsos (CR114) 2020; 16 Kronberger, Kommenda, Lughofer, Saminger-Platz, Promberger, Nickel, Winkler, Affenzeller (CR52) 2018; 69 Moayedi, Hayati (CR65) 2019; 31 He, Shi, Xuan, Li (CR108) 2021; 478–479 I N Tansel (596_CR129) 2010; 48 Z N Zhang (596_CR5) 2021; 9 B Schölkopf (596_CR11) 1998; 13 Y P Peng (596_CR135) 2020; 151 D Z Wu (596_CR14) 2017; 139 F König (596_CR26) 2021; 476 B Das (596_CR122) 2017; 103 X J Xu (596_CR62) 2020; 190 B Das (596_CR127) 2017; 27 M Marian (596_CR142) 2021; 9 C Chimeno-Trinchet (596_CR33) 2020; 219 I Argatov (596_CR9) 2019; 5 Z L Wang (596_CR144) 2020; 10 O I Abiodun (596_CR10) 2018; 4 L Cavaleri (596_CR81) 2019; 9 K Xu (596_CR100) 2021; 61 W Yuan (596_CR29) 2016; 72–73 Y Du (596_CR123) 2020; 192 A Vinoth (596_CR84) 2020; 54 596_CR48 V Zambrano (596_CR77) 2021; 9 M Atwya (596_CR114) 2020; 16 D B Luo (596_CR87) 2011; 271 M S Hasan (596_CR13) 2021; 161 Y Shen (596_CR23) 2021; 32 A Borjali (596_CR56) 2019; 133 H B Xie (596_CR67) 2020; 142 P S Desai (596_CR76) 2021; 9 A Rosenkranz (596_CR8) 2020; 9 S Verma (596_CR115) 2018; 5 B Kilundu (596_CR24) 2011; 25 F E Bock (596_CR35) 2020; 47 M Doshi (596_CR1) 2021; 88 T Thankachan (596_CR43) 2018; 140 H Moayedi (596_CR65) 2019; 31 A Kurdi (596_CR74) 2020; 13 596_CR37 A Kordijazi (596_CR57) 2020; 20 O Altay (596_CR47) 2020; 8 M Bellotti (596_CR51) 2020; 10 D Jia (596_CR91) 2019; 9 M H Cheng (596_CR63) 2020; 234 T Ramkumar (596_CR94) 2021 D D Kong (596_CR112) 2019; 127 C Peng (596_CR103) 2015; 354 A Farias (596_CR49) 2020; 109 M B Buntin (596_CR2) 2011; 30 A Bustillo (596_CR41) 2018; 53 S Wang (596_CR132) 2021; 476 Z N Zhang (596_CR143) 2021; 79 M Najafzadeh (596_CR70) 2018; 24 Z Y Luo (596_CR38) 2021; 37 S K Gupta (596_CR120) 2018; 232 S Tatipala (596_CR66) 2018; 1063 E W Bucholz (596_CR88) 2012; 47 J J Wang (596_CR106) 2019; 111 G P Xiao (596_CR140) 2010; 43 S Sudhagar (596_CR118) 2019; 144 B Eren (596_CR119) 2021; 27 D Prajogo (596_CR3) 2012; 135 T Kolodziejczyk (596_CR50) 2010; 268 E Šabanovič (596_CR72) 2020; 20 A Díaz Lantada (596_CR78) 2020; 10 S K Thangarasu (596_CR111) 2020; 234 H D Wang (596_CR146) 2017; 5 T Bergs (596_CR113) 2020; 48 M S Hasan (596_CR16) 2022; 144 Z X Li (596_CR109) 2019; 48 J Karandikar (596_CR46) 2019; 34 V Pandiyan (596_CR19) 2022; 10 J J Wang (596_CR105) 2015; 36 T Banerjee (596_CR83) 2020; 73 596_CR36 W S Hao (596_CR101) 2006; 180 J Q Wang (596_CR136) 2020; 42 M Hayajneh (596_CR54) 2009; 470 R Egala (596_CR59) 2021; 9 Y C Zeng (596_CR39) 2020; 456–457 D Gropper (596_CR73) 2016; 94 A Caggiano (596_CR107) 2018; 18 A Tran (596_CR53) 2019; 422–423 G Boidi (596_CR68) 2020; 8 S Verma (596_CR126) 2022; 42 K Wierzcholski (596_CR96) 2009; 16 W T Tysoe (596_CR89) 2020; 76 Y Y Ji (596_CR6) 2016; 9 M A Leandro Cabral (596_CR20) 2019; 16 T Thankachan (596_CR40) 2021; 27 S A Vendan (596_CR124) 2020 H C Chang (596_CR25) 2020; 147 M O Shabani (596_CR82) 2012; 36 Y Du (596_CR121) 2019; 5 A Kordijazi (596_CR86) 2021; 9 R S Davies (596_CR4) 2013; 61 S A Shevchik (596_CR139) 2017; 13 F Alambeigi (596_CR61) 2016; 84 S Thapliyal (596_CR117) 2021; 29 Y Zhang (596_CR75) 2020; 29 F Aydin (596_CR55) 2021; 32 J J Wang (596_CR44) 2020; 57 A Mishra (596_CR128) 2020; 7 R S Mishra (596_CR125) 2005; 50 K Gouda (596_CR64) 2019; 233 R D Nugraha (596_CR138) 2021; 181 H Hanachi (596_CR22) 2019; 101 S Bhaumik (596_CR92) 2021; 235 A Kordijazi (596_CR79) 2021; 37 P G Grützmacher (596_CR80) 2019; 7 A Gouarir (596_CR42) 2018; 77 M Perčić (596_CR60) 2021; 9 A Babin (596_CR95) 2021; 1047 S Shankar (596_CR45) 2019; 32 N Mokhtari (596_CR28) 2020; 8 Z P He (596_CR108) 2021; 478–479 X L Gao (596_CR58) 2016; 4 J Y Li (596_CR97) 2020; 29 596_CR130 Z H Zhang (596_CR12) 2016; 4 B X Peng (596_CR34) 2019; 82 G Kronberger (596_CR52) 2018; 69 596_CR134 J Moder (596_CR32) 2018; 6 H K Wu (596_CR137) 2019; 426–427 Y Zhang (596_CR98) 2021; 29 T Nasir (596_CR116) 2020; 32 T Sathish (596_CR85) 2018; 5 D M D’Addona (596_CR110) 2017; 28 V N Balavignesh (596_CR18) 2018; 14 F König (596_CR27) 2021; 155 S Patil (596_CR17) 2018; 31 Humelnicu (596_CR93) 2019; 7 A Kothuru (596_CR21) 2018; 95 D Z Wu (596_CR15) 2018; 140 J Q Wang (596_CR131) 2018; 100 Y Zhang (596_CR141) 2021; 16 X P Yan (596_CR30) 2005; 38 H Towsyfyan (596_CR31) 2019; 7 L L Zhou (596_CR145) 2020; 8 S Wang (596_CR133) 2020; 20 M Niazkar (596_CR71) 2019; 23 S Bhaumik (596_CR90) 2019; 140 Z Jurkovic (596_CR102) 2018; 29 M Wan (596_CR99) 2019; 146 D D Kong (596_CR104) 2018; 104 N Parveen (596_CR69) 2020; 207 P Kügler (596_CR7) 2020; 10 |
| References_xml | – volume: 13 start-page: 1541 issue: 4 year: 2017 end-page: 1553 ident: CR139 article-title: Prediction of failure in lubricated surfaces using acoustic time-frequency features and random forest algorithm publication-title: IEEE Trans Ind Inform – volume: 7 start-page: 5 issue: 1 year: 2020 end-page: 17 ident: CR128 article-title: Machine learning approach to determine corrosion potential of friction stir welded joints publication-title: Journal of Image Processing & Pattern Recognition Progress – volume: 38 start-page: 879 issue: 10 year: 2005 end-page: 886 ident: CR30 article-title: A study of information technology used in oil monitoring publication-title: Tribol Int – volume: 1063 start-page: 012135 year: 2018 ident: CR66 article-title: Data-driven modelling in the era of Industry 4.0: A case study of friction modelling in sheet metal forming simulations publication-title: J Phys: Conf Ser – volume: 27 start-page: 220 issue: 2 year: 2021 end-page: 234 ident: CR40 article-title: Machine learning and statistical approach to predict and analyze wear rates in copper surface composites publication-title: Met Mater Int – volume: 10 start-page: 6357 issue: 18 year: 2020 ident: CR51 article-title: Tool wear and material removal predictions in micro-EDM drilling: Advantages of data-driven approaches publication-title: Appl Sci – volume: 190 start-page: 105324 year: 2020 ident: CR62 article-title: Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models publication-title: Knowl Based Syst – volume: 36 start-page: 5455 issue: 11 year: 2012 end-page: 5465 ident: CR82 article-title: Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites publication-title: Appl Math Model – volume: 29 start-page: 84 year: 2021 end-page: 89 ident: CR98 article-title: Machine learning cutting force, surface roughness, and tool life in high speed turning processes publication-title: Manuf Lett – volume: 48 start-page: 95 issue: 1–4 year: 2010 end-page: 101 ident: CR129 article-title: Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network publication-title: Int J Adv Manuf Technol – volume: 95 start-page: 3797 issue: 9–12 year: 2018 end-page: 3808 ident: CR21 article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling publication-title: Int J Adv Manuf Technol – volume: 36 start-page: 35 year: 2015 end-page: 45 ident: CR105 article-title: Enhanced particle filter for tool wear prediction publication-title: J Manuf Syst – volume: 61 start-page: 1 year: 2021 end-page: 15 ident: CR100 article-title: ForceNet: An offline cutting force prediction model based on neuro-physical learning approach publication-title: J Manuf Syst – volume: 146 start-page: 103452 year: 2019 ident: CR99 article-title: On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone publication-title: Int J Mach Tools Manuf – volume: 104 start-page: 556 year: 2018 end-page: 574 ident: CR104 article-title: Gaussian process regression for tool wear prediction publication-title: Mech Syst Signal Process – volume: 42 start-page: 1 issue: 1 year: 2022 end-page: 8 ident: CR126 article-title: Modeling of friction stir welding of aviation grade aluminium alloy using machine learning approaches publication-title: Int J Model Simul – volume: 271 start-page: 2132 issue: 9–10 year: 2011 end-page: 2143 ident: CR87 article-title: A systematic approach for the selection of tribological coatings publication-title: Wear – volume: 10 start-page: 4421 issue: 13 year: 2020 ident: CR7 article-title: TribAIn—towards an explicit specification of shared tribological understanding publication-title: Appl Sci – volume: 147 start-page: 106280 year: 2020 ident: CR25 article-title: Automated assessment of gear wear mechanism and severity using mould images and convolutional neural networks publication-title: Tribol Int – volume: 232 start-page: 333 issue: 4 year: 2018 end-page: 342 ident: CR120 article-title: Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys publication-title: Proc Inst Mech Eng Part L J Mater Des Appl – volume: 31 start-page: 1972 issue: 11 year: 2018 end-page: 1981 ident: CR17 article-title: Fault detection of anti-friction bearing using ensemble machine learning methods publication-title: Int J Eng – volume: 151 start-page: 106379 year: 2020 ident: CR135 article-title: WP-DRnet: A novel wear particle detection and recognition network for automatic ferrograph image analysis publication-title: Tribol Int – volume: 10 start-page: 583 year: 2022 end-page: 596 ident: CR19 article-title: Identification of abnormal tribological regimes using a microphone and semi-supervised machine-learning algorithm publication-title: Friction – volume: 25 start-page: 400 issue: 1 year: 2011 end-page: 415 ident: CR24 article-title: Tool wear monitoring by machine learning techniques and singular spectrum analysis publication-title: Mech Syst Signal Process – volume: 28 start-page: 1285 issue: 6 year: 2017 end-page: 1301 ident: CR110 article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing publication-title: J Intell Manuf – volume: 9 start-page: 111 issue: 2–3 year: 2021 end-page: 119 ident: CR86 article-title: Machine-learning methods to predict the wetting properties of iron-based composites publication-title: Surf Innov – volume: 144 start-page: 135 year: 2019 end-page: 143 ident: CR118 article-title: Monitoring of friction stir welding based on vision system coupled with machine learning algorithm publication-title: Measurement – volume: 111 start-page: 1 year: 2019 end-page: 14 ident: CR106 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction publication-title: Comput Ind – volume: 23 start-page: 4311 issue: 10 year: 2019 end-page: 4326 ident: CR71 article-title: Revisiting the estimation of colebrook friction factor: A comparison between artificial intelligence models and C-W based explicit equations publication-title: KSCE J Civ Eng – volume: 9 start-page: 642 issue: 3 year: 2021 end-page: 655 ident: CR5 article-title: Tribo-informatics: Concept, architecture, and case study publication-title: Friction – volume: 76 start-page: 78 issue: 6 year: 2020 ident: CR89 article-title: Designing lubricants by artificial intelligence publication-title: Tribol Lubr Technol – ident: CR36 – volume: 476 start-page: 203696 year: 2021 ident: CR132 article-title: Automated 3D ferrograph image analysis for similar particle identification with the knowledge-embedded double-CNN model publication-title: Wear – volume: 155 start-page: 106811 year: 2021 ident: CR27 article-title: Machine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systems publication-title: Tribol Int – volume: 135 start-page: 514 issue: 1 year: 2012 end-page: 522 ident: CR3 article-title: Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration publication-title: Int J Prod Econ – volume: 29 start-page: 6605 issue: 10 year: 2020 end-page: 6616 ident: CR75 article-title: Machine learning decomposition onset temperature of lubricant additives publication-title: J Mater Eng Perform – volume: 16 start-page: 4423 issue: 7 year: 2020 end-page: 4435 ident: CR114 article-title: Transient thermography for flaw detection in friction stir welding: A machine learning approach publication-title: IEEE Trans Ind Inform – volume: 8 start-page: 044002 issue: 4 year: 2020 ident: CR68 article-title: Using machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfaces publication-title: Surf Topogr: Metrol Prop – volume: 16 start-page: 489 issue: 3 year: 2009 end-page: 495 ident: CR96 article-title: Network analysis for artificial intelligent micro-bearing systems publication-title: Journal of KONES – volume: 133 start-page: 101 year: 2019 end-page: 110 ident: CR56 article-title: Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods publication-title: Tribol Int – volume: 54 start-page: 179 issue: 2 year: 2020 end-page: 192 ident: CR84 article-title: Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach publication-title: J Compos Mater – volume: 9 start-page: 86 issue: 9 year: 2021 ident: CR142 article-title: Current trends and applications of machine learning in tribology—A review publication-title: Lubricants – volume: 5 start-page: 14545 issue: 6 year: 2018 end-page: 14552 ident: CR85 article-title: BONN technique: Tribological properties predictor for plasma nitrided 316L stainless steel publication-title: Mater Today Proc – volume: 142 start-page: 021703 issue: 2 year: 2020 ident: CR67 article-title: Prediction of friction coefficients during scratch based on an integrated finite element and artificial neural network method publication-title: J Tribol – volume: 27 start-page: 193 issue: 2 year: 2021 end-page: 219 ident: CR119 article-title: Artificial intelligence applications for friction stir welding: A review publication-title: Met Mater Int – volume: 4 start-page: 218 issue: 11 year: 2016 ident: CR12 article-title: Introduction to machine learning: -nearest neighbors publication-title: Ann Transl Med – volume: 29 start-page: 1683 issue: 8 year: 2018 end-page: 1693 ident: CR102 article-title: A comparison of machine learning methods for cutting parameters prediction in high speed turning process publication-title: J Intell Manuf – volume: 470 start-page: 584 issue: 1–2 year: 2009 end-page: 588 ident: CR54 article-title: Prediction of tribological behavior of aluminum-copper based composite using artificial neural network publication-title: J Alloys Compd – volume: 235 start-page: 1575 issue: 8 year: 2021 end-page: 1589 ident: CR92 article-title: Artificial neural network and multi-criterion decision making approach of designing a blend of biodegradable lubricants and investigating its tribological properties publication-title: Proc Inst Mech Eng Part J J Eng Tribol – volume: 478–479 start-page: 203902 year: 2021 ident: CR108 article-title: Research on tool wear prediction based on temperature signals and deep learning publication-title: Wear – volume: 57 start-page: 298 year: 2020 end-page: 310 ident: CR44 article-title: Physics guided neural network for machining tool wear prediction publication-title: J Manuf Syst – volume: 32 start-page: 174 issue: 2 year: 2019 end-page: 182 ident: CR45 article-title: Prediction of cutting tool wear during milling process using artificial intelligence techniques publication-title: Int J Comput Integr Manuf – volume: 234 start-page: 329 issue: 1 year: 2020 end-page: 342 ident: CR111 article-title: Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network publication-title: Proc Inst Mech Eng C J Mech Eng Sci – volume: 77 start-page: 501 year: 2018 end-page: 504 ident: CR42 article-title: In-process tool wear prediction system based on machine learning techniques and force analysis publication-title: Procedia CIRP – volume: 234 start-page: 1580 issue: 13 year: 2020 end-page: 1597 ident: CR63 article-title: An intelligent prediction model of the tool wear based on machine learning in turning high strength steel publication-title: Proc Inst Mech Eng B J Eng Manuf – volume: 37 start-page: 3766 issue: 12 year: 2021 end-page: 3777 ident: CR79 article-title: Predictive analysis of wettability of Al-Si based multiphase alloys and aluminum matrix composites by machine learning and physical modeling publication-title: Langmuir – volume: 20 start-page: 021001 issue: 2 year: 2020 ident: CR133 article-title: Ferrograph analysis with improved particle segmentation and classification methods publication-title: J Comput Inf Sci Eng – volume: 50 start-page: 1 issue: 1–2 year: 2005 end-page: 78 ident: CR125 article-title: Friction stir welding and processing publication-title: Mater Sci Eng R Rep – volume: 47 start-page: 615 year: 2020 end-page: 622 ident: CR35 article-title: Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning publication-title: Procedia Manuf – volume: 27 start-page: 8 year: 2017 end-page: 17 ident: CR127 article-title: Torque based defect detection and weld quality modelling in friction stir welding process publication-title: J Manuf Process – volume: 4 start-page: 105 issue: 2 year: 2016 end-page: 115 ident: CR58 article-title: Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network publication-title: Friction – ident: CR134 – volume: 13 start-page: 18 issue: 4 year: 1998 end-page: 21 ident: CR11 article-title: Support vector machines: A practical consequence of learning theory publication-title: IEEE Intelligent Systems and Their Applications – volume: 8 start-page: 29 issue: 3 year: 2020 ident: CR28 article-title: Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning publication-title: Lubricants – volume: 180 start-page: 23 issue: 1–3 year: 2006 end-page: 29 ident: CR101 article-title: Prediction of cutting force for self-propelled rotary tool using artificial neural networks publication-title: J Mater Process Technol – volume: 72–73 start-page: 346 year: 2016 end-page: 358 ident: CR29 article-title: Shape classification of wear particles by image boundary analysis using machine learning algorithms publication-title: Mech Syst Signal Process – volume: 207 start-page: 213 issue: 2 year: 2020 end-page: 230 ident: CR69 article-title: Artificial intelligence (AI)-based friction factor models for large piping networks publication-title: Chem Eng Commun – volume: 79 start-page: 105501 year: 2021 ident: CR143 article-title: Research methods of contact electrification: Theoretical simulation and experiment publication-title: Nano Energy – volume: 103 start-page: 186 year: 2017 end-page: 198 ident: CR122 article-title: Design and development of force and torque measurement setup for real time monitoring of friction stir welding process publication-title: Measurement – volume: 219 start-page: 121312 year: 2020 ident: CR33 article-title: Artificial Intelligence and Fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils publication-title: Talanta – volume: 73 start-page: 3059 issue: 12 year: 2020 end-page: 3069 ident: CR83 article-title: Design of alumina reinforced aluminium alloy composites with improved tribo-mechanical properties: A machine learning approach publication-title: Trans Indian Inst Met – volume: 268 start-page: 309 issue: 1–2 year: 2010 end-page: 315 ident: CR50 article-title: Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction publication-title: Wear – volume: 48 start-page: 947 year: 2020 end-page: 958 ident: CR113 article-title: Digital image processing with deep learning for automated cutting tool wear detection publication-title: Procedia Manuf – volume: 140 start-page: 031610 issue: 3 year: 2018 ident: CR43 article-title: Optimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniques publication-title: J Tribol – volume: 422–423 start-page: 9 year: 2019 end-page: 26 ident: CR53 article-title: WearGP: A computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processes publication-title: Wear – volume: 7 start-page: 95 issue: 11 year: 2019 ident: CR80 article-title: Multi-scale surface texturing in tribology—Current knowledge and future perspectives publication-title: Lubricants – volume: 18 start-page: 823 issue: 3 year: 2018 ident: CR107 article-title: Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition publication-title: Sensors – volume: 32 start-page: 445 issue: 2 year: 2021 end-page: 463 ident: CR55 article-title: The investigation of the effect of particle size on wear performance of AA7075/Al O composites using statistical analysis and different machine learning methods publication-title: Adv Powder Technol – volume: 354 start-page: 118 year: 2015 end-page: 131 ident: CR103 article-title: A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine publication-title: J Sound Vib – volume: 9 start-page: 2 issue: 1 year: 2020 ident: CR8 article-title: The use of artificial intelligence in tribology—A perspective publication-title: Lubricants – volume: 109 start-page: 2491 issue: 9–12 year: 2020 end-page: 2501 ident: CR49 article-title: Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes publication-title: Int J Adv Manuf Technol – volume: 88 start-page: 081007 issue: 8 year: 2021 ident: CR1 article-title: A data-driven framework for buckling analysis of near-spherical composite shells under external pressure publication-title: J Appl Mech – volume: 5 start-page: 1048 year: 2018 end-page: 1058 ident: CR115 article-title: Performance evaluation of friction stir welding using machine learning approaches publication-title: MethodsX – volume: 29 start-page: 52 year: 2021 end-page: 55 ident: CR117 article-title: Machine learning classification-based approach for mechanical properties of friction stir welding of copper publication-title: Manuf Lett – volume: 48 start-page: 66 year: 2019 end-page: 76 ident: CR109 article-title: Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning publication-title: J Manuf Process – volume: 140 start-page: 105813 year: 2019 ident: CR90 article-title: Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties publication-title: Tribol Int – volume: 6 start-page: 108 issue: 4 year: 2018 ident: CR32 article-title: Lubrication regime classification of hydrodynamic journal bearings by machine learning using torque data publication-title: Lubricants – volume: 101 start-page: 2861 issue: 9–12 year: 2019 end-page: 2872 ident: CR22 article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction publication-title: Int J Adv Manuf Technol – volume: 5 start-page: 351 issue: 3 year: 2017 end-page: 360 ident: CR146 article-title: Design and application of friction pair surface modification coating for remanufacturing publication-title: Friction – volume: 43 start-page: 218 issue: 1–2 year: 2010 end-page: 227 ident: CR140 article-title: Friction materials development by using DOE/RSM and artificial neural network publication-title: Tribol Int – volume: 69 start-page: 610 year: 2018 end-page: 624 ident: CR52 article-title: Using robust generalized fuzzy modeling and enhanced symbolic regression to model tribological systems publication-title: Appl Soft Comput – volume: 29 start-page: 6591 issue: 10 year: 2020 end-page: 6604 ident: CR97 article-title: Physical model based on data-driven analysis of chemical composition effects of friction stir welding publication-title: J Mater Eng Perform – volume: 181 start-page: 109599 year: 2021 ident: CR138 article-title: Running-in real-time wear generation under vary working condition based on Gaussian process regression approximation publication-title: Measurement – volume: 5 start-page: 30 year: 2019 ident: CR9 article-title: Artificial neural networks (ANNs) as a novel modeling technique in tribology publication-title: Front Mech Eng – volume: 4 start-page: e00938 issue: 11 year: 2018 ident: CR10 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon – volume: 9 start-page: 193 issue: 3 year: 2016 end-page: 205 ident: CR6 article-title: Applications of artificial intelligence in tribology publication-title: Recent Pat Mech Eng – volume: 144 start-page: 011701 issue: 1 year: 2022 ident: CR16 article-title: Triboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methods publication-title: J Tribol – volume: 61 start-page: 563 issue: 4 year: 2013 end-page: 580 ident: CR4 article-title: Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course publication-title: Educ Technol Res Dev – volume: 140 start-page: 041005 issue: 4 year: 2018 ident: CR15 article-title: Cloud-based parallel machine learning for tool wear prediction publication-title: J Manuf Sci Eng – volume: 84 start-page: 1981 issue: 9–12 year: 2016 end-page: 1994 ident: CR61 article-title: A comparison of performance of artificial intelligence methods in prediction of dry sliding wear behavior publication-title: Int J Adv Manuf Technol – volume: 476 start-page: 203616 year: 2021 ident: CR26 article-title: Data-driven wear monitoring for sliding bearings using acoustic emission signals and long short-term memory neural networks publication-title: Wear – volume: 32 start-page: 1753 issue: 6 year: 2021 end-page: 1766 ident: CR23 article-title: Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques publication-title: J Intell Manuf – volume: 7 start-page: 572 issue: 6 year: 2019 end-page: 586 ident: CR31 article-title: Tribological behaviour diagnostic and fault detection of mechanical seals based on acoustic emission measurements publication-title: Friction – volume: 9 start-page: 922 issue: 6 year: 2021 ident: CR76 article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas publication-title: Processes – volume: 8 start-page: 481 issue: 3 year: 2020 end-page: 506 ident: CR145 article-title: Triboelectric nano-generators: Fundamental physics and potential applications publication-title: Friction – volume: 94 start-page: 509 year: 2016 end-page: 529 ident: CR73 article-title: Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings publication-title: Tribol Int – year: 2021 ident: CR94 article-title: Artificial intelligence in predicting the optimized wear behaviour parameters of sintered titanium grade 5 reinforced with nano B4C particles publication-title: Artificial Intelligence in Mechanical and Industrial Engineering – volume: 82 start-page: 302 year: 2019 end-page: 307 ident: CR34 article-title: A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear publication-title: Procedia CIRP – volume: 1047 start-page: 012053 issue: 1 year: 2021 ident: CR95 article-title: Data-driven system identification and optimal control of an active rotor-bearing system publication-title: IOP Conf Ser: Mater Sci Eng – volume: 16 start-page: 2644 issue: 7 year: 2019 end-page: 2659 ident: CR20 article-title: Automated classification of tribological faults of alternative systems with the use of unsupervised artificial neural networks publication-title: J Comput Theor Nanosci – volume: 53 start-page: 215 year: 2018 end-page: 227 ident: CR41 article-title: Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels publication-title: Robotics Comput Integr Manuf – ident: CR37 – volume: 139 start-page: 071018 issue: 7 year: 2017 ident: CR14 article-title: A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests publication-title: J Manuf Sci Eng – volume: 456–457 start-page: 203355 year: 2020 ident: CR39 article-title: A new physics-based data-driven guideline for wear modelling and prediction of train wheels publication-title: Wear – volume: 9 start-page: 2788 issue: 14 year: 2019 ident: CR81 article-title: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks publication-title: Appl Sci – volume: 32 start-page: 171 issue: 2 year: 2020 end-page: 186 ident: CR116 article-title: Applications of machine learning to friction stir welding process optimization publication-title: Jurnal Kejuruteraan – volume: 9 start-page: 1726 issue: 6 year: 2021 end-page: 1748 ident: CR60 article-title: Artificial intelligence-based predictive model of nanoscale friction using experimental data publication-title: Friction – volume: 100 start-page: 863 year: 2018 end-page: 876 ident: CR131 article-title: A non-reference evaluation method for edge detection of wear particles in ferrograph images publication-title: Mech Syst Signal Process – volume: 42 start-page: 1 issue: 4 year: 2020 end-page: 10 ident: CR136 article-title: Direct detection of wear conditions by classification of ferrograph images publication-title: J Braz Soc Mech Sci Eng – volume: 24 start-page: 9 issue: 1 year: 2018 end-page: 15 ident: CR70 article-title: Prediction of the friction factor in pipes using model tree publication-title: ISH J Hydraul Eng – volume: 9 start-page: 57 issue: 5 year: 2021 ident: CR77 article-title: A digital twin for friction prediction in dynamic rubber applications with surface textures publication-title: Lubricants – volume: 233 start-page: 1523 issue: 10 year: 2019 end-page: 1540 ident: CR64 article-title: Assessing the effectiveness of data-driven time-domain condition indicators in predicting the progression of surface distress under rolling contact publication-title: Proc Inst Mech Eng Part J J Eng Tribol – volume: 5 start-page: 68 year: 2019 ident: CR121 article-title: Conditions for void formation in friction stir welding from machine learning publication-title: npj Comput Mater – volume: 20 start-page: 612 issue: 3 year: 2020 ident: CR72 article-title: Identification of road-surface type using deep neural networks for friction coefficient estimation publication-title: Sensors – volume: 16 start-page: e0255637 issue: 8 year: 2021 ident: CR141 article-title: Bandgap prediction of two-dimensional materials using machine learning publication-title: PLoS One – volume: 127 start-page: 573 year: 2019 end-page: 594 ident: CR112 article-title: Relevance vector machine for tool wear prediction publication-title: Mech Syst Signal Process – volume: 30 start-page: 464 issue: 3 year: 2011 end-page: 471 ident: CR2 article-title: The benefits of health information technology: A review of the recent literature shows predominantly positive results publication-title: Health Aff (Millwood) – volume: 426–427 start-page: 1740 year: 2019 end-page: 1747 ident: CR137 article-title: Restoration of defocused ferrograph images using a large kernel convolutional neural network publication-title: Wear – volume: 192 start-page: 67 year: 2020 end-page: 77 ident: CR123 article-title: Machine learning based hierarchy of causative variables for tool failure in friction stir welding publication-title: Acta Mater – volume: 8 start-page: 107 issue: 1 year: 2020 end-page: 114 ident: CR47 article-title: Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms publication-title: Friction – volume: 161 start-page: 107065 year: 2021 ident: CR13 article-title: Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms publication-title: Tribol Int – volume: 31 start-page: 7429 issue: 11 year: 2019 end-page: 7445 ident: CR65 article-title: Artificial intelligence design charts for predicting friction capacity of driven pile in clay publication-title: Neural Comput Appl – ident: CR48 – volume: 47 start-page: 211 issue: 2 year: 2012 end-page: 221 ident: CR88 article-title: Data-driven model for estimation of friction coefficient via informatics methods publication-title: Tribol Lett – volume: 34 start-page: 446 year: 2019 end-page: 454 ident: CR46 article-title: Machine learning classification for tool life modeling using production shop-floor tool wear data publication-title: Procedia Manuf – ident: CR130 – volume: 20 start-page: 100549 year: 2020 ident: CR57 article-title: Data-driven modeling of wetting angle and corrosion resistance of hypereutectic cast aluminum-silicon alloys based on physical and chemical properties of surface publication-title: Surf Interfaces – volume: 14 start-page: 397 issue: 3 year: 2018 end-page: 412 ident: CR18 article-title: Comparison of conventional method of fault determination with data-driven approach for ball bearings in a wind turbine gearbox publication-title: Int J Perform Eng – volume: 10 start-page: 2287 issue: 11 year: 2020 ident: CR78 article-title: Artificial intelligence aided design of microtextured surfaces: Application to controlling wettability publication-title: Nanomaterials – volume: 7 start-page: 32 issue: 4 year: 2019 ident: CR93 article-title: Artificial neural network-based analysis of the tribological behavior of vegetable oil-diesel fuel mixtures publication-title: Lubricants – volume: 13 start-page: 3489 issue: 16 year: 2020 ident: CR74 article-title: Practice of simulation and life cycle assessment in tribology—A review publication-title: Materials – volume: 9 start-page: 20277 year: 2019 ident: CR91 article-title: Design and development of lubricating material database and research on performance prediction method of machine learning publication-title: Sci Reports – volume: 10 start-page: 2000137 issue: 17 year: 2020 ident: CR144 article-title: Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution publication-title: Adv Energy Mater – volume: 37 start-page: 533 issue: 1 year: 2021 end-page: 544 ident: CR38 article-title: A novel artificial intelligence technique for analyzing slope stability using PSO-CA model publication-title: Eng Comput – volume: 9 start-page: 250 issue: 2 year: 2021 end-page: 272 ident: CR59 article-title: Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites publication-title: Friction – start-page: 119 year: 2020 end-page: 185 ident: CR124 article-title: Supervised machine learning in friction stir welding (FSW) publication-title: Welding and Cutting Case Studies with Supervised Machine Learning – volume: 48 start-page: 66 year: 2019 ident: 596_CR109 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.10.020 – volume: 232 start-page: 333 issue: 4 year: 2018 ident: 596_CR120 publication-title: Proc Inst Mech Eng Part L J Mater Des Appl – volume: 36 start-page: 35 year: 2015 ident: 596_CR105 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2015.03.005 – volume: 161 start-page: 107065 year: 2021 ident: 596_CR13 publication-title: Tribol Int doi: 10.1016/j.triboint.2021.107065 – volume: 180 start-page: 23 issue: 1–3 year: 2006 ident: 596_CR101 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2006.04.123 – volume: 32 start-page: 1753 issue: 6 year: 2021 ident: 596_CR23 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01625-7 – volume: 103 start-page: 186 year: 2017 ident: 596_CR122 publication-title: Measurement doi: 10.1016/j.measurement.2017.02.034 – volume: 50 start-page: 1 issue: 1–2 year: 2005 ident: 596_CR125 publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2005.07.001 – volume: 29 start-page: 52 year: 2021 ident: 596_CR117 publication-title: Manuf Lett doi: 10.1016/j.mfglet.2021.05.010 – volume: 20 start-page: 100549 year: 2020 ident: 596_CR57 publication-title: Surf Interfaces doi: 10.1016/j.surfin.2020.100549 – volume: 190 start-page: 105324 year: 2020 ident: 596_CR62 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105324 – volume: 233 start-page: 1523 issue: 10 year: 2019 ident: 596_CR64 publication-title: Proc Inst Mech Eng Part J J Eng Tribol doi: 10.1177/1350650119838896 – volume: 95 start-page: 3797 issue: 9–12 year: 2018 ident: 596_CR21 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1460-1 – volume: 219 start-page: 121312 year: 2020 ident: 596_CR33 publication-title: Talanta doi: 10.1016/j.talanta.2020.121312 – volume: 20 start-page: 612 issue: 3 year: 2020 ident: 596_CR72 publication-title: Sensors doi: 10.3390/s20030612 – volume: 9 start-page: 111 issue: 2–3 year: 2021 ident: 596_CR86 publication-title: Surf Innov doi: 10.1680/jsuin.20.00024 – volume: 73 start-page: 3059 issue: 12 year: 2020 ident: 596_CR83 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-020-02108-2 – volume: 7 start-page: 5 issue: 1 year: 2020 ident: 596_CR128 publication-title: Journal of Image Processing & Pattern Recognition Progress – volume: 9 start-page: 922 issue: 6 year: 2021 ident: 596_CR76 publication-title: Processes doi: 10.3390/pr9060922 – volume: 48 start-page: 947 year: 2020 ident: 596_CR113 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2020.05.134 – volume: 79 start-page: 105501 year: 2021 ident: 596_CR143 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105501 – volume: 9 start-page: 193 issue: 3 year: 2016 ident: 596_CR6 publication-title: Recent Pat Mech Eng doi: 10.2174/2212797609666160714145845 – volume: 69 start-page: 610 year: 2018 ident: 596_CR52 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.04.048 – volume: 29 start-page: 6605 issue: 10 year: 2020 ident: 596_CR75 publication-title: J Mater Eng Perform doi: 10.1007/s11665-020-05146-5 – volume: 37 start-page: 533 issue: 1 year: 2021 ident: 596_CR38 publication-title: Eng Comput doi: 10.1007/s00366-019-00839-5 – volume: 31 start-page: 7429 issue: 11 year: 2019 ident: 596_CR65 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3555-5 – volume: 127 start-page: 573 year: 2019 ident: 596_CR112 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.03.023 – volume: 5 start-page: 68 year: 2019 ident: 596_CR121 publication-title: npj Comput Mater doi: 10.1038/s41524-019-0207-y – volume: 8 start-page: 481 issue: 3 year: 2020 ident: 596_CR145 publication-title: Friction doi: 10.1007/s40544-020-0390-3 – volume: 268 start-page: 309 issue: 1–2 year: 2010 ident: 596_CR50 publication-title: Wear doi: 10.1016/j.wear.2009.08.016 – volume: 7 start-page: 32 issue: 4 year: 2019 ident: 596_CR93 publication-title: Lubricants doi: 10.3390/lubricants7040032 – volume: 5 start-page: 14545 issue: 6 year: 2018 ident: 596_CR85 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2018.03.044 – volume: 32 start-page: 174 issue: 2 year: 2019 ident: 596_CR45 publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2018.1550681 – volume: 100 start-page: 863 year: 2018 ident: 596_CR131 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.08.014 – volume: 207 start-page: 213 issue: 2 year: 2020 ident: 596_CR69 publication-title: Chem Eng Commun doi: 10.1080/00986445.2019.1578757 – volume: 101 start-page: 2861 issue: 9–12 year: 2019 ident: 596_CR22 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3157-5 – volume: 18 start-page: 823 issue: 3 year: 2018 ident: 596_CR107 publication-title: Sensors doi: 10.3390/s18030823 – volume: 426–427 start-page: 1740 year: 2019 ident: 596_CR137 publication-title: Wear doi: 10.1016/j.wear.2018.12.089 – volume: 7 start-page: 95 issue: 11 year: 2019 ident: 596_CR80 publication-title: Lubricants doi: 10.3390/lubricants7110095 – volume: 4 start-page: e00938 issue: 11 year: 2018 ident: 596_CR10 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 38 start-page: 879 issue: 10 year: 2005 ident: 596_CR30 publication-title: Tribol Int doi: 10.1016/j.triboint.2005.03.012 – volume: 422–423 start-page: 9 year: 2019 ident: 596_CR53 publication-title: Wear doi: 10.1016/j.wear.2018.12.081 – volume: 25 start-page: 400 issue: 1 year: 2011 ident: 596_CR24 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2010.07.014 – volume: 24 start-page: 9 issue: 1 year: 2018 ident: 596_CR70 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2017.1333926 – volume: 28 start-page: 1285 issue: 6 year: 2017 ident: 596_CR110 publication-title: J Intell Manuf doi: 10.1007/s10845-015-1155-0 – volume: 31 start-page: 1972 issue: 11 year: 2018 ident: 596_CR17 publication-title: Int J Eng – volume: 9 start-page: 1726 issue: 6 year: 2021 ident: 596_CR60 publication-title: Friction doi: 10.1007/s40544-021-0493-5 – volume: 61 start-page: 1 year: 2021 ident: 596_CR100 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.08.001 – volume: 32 start-page: 445 issue: 2 year: 2021 ident: 596_CR55 publication-title: Adv Powder Technol doi: 10.1016/j.apt.2020.12.024 – volume: 54 start-page: 179 issue: 2 year: 2020 ident: 596_CR84 publication-title: J Compos Mater doi: 10.1177/0021998319859924 – volume: 140 start-page: 105813 year: 2019 ident: 596_CR90 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.06.006 – volume: 155 start-page: 106811 year: 2021 ident: 596_CR27 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106811 – volume: 4 start-page: 105 issue: 2 year: 2016 ident: 596_CR58 publication-title: Friction doi: 10.1007/s40544-016-0104-z – volume: 20 start-page: 021001 issue: 2 year: 2020 ident: 596_CR133 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4045291 – volume: 53 start-page: 215 year: 2018 ident: 596_CR41 publication-title: Robotics Comput Integr Manuf doi: 10.1016/j.rcim.2018.03.011 – volume: 1063 start-page: 012135 year: 2018 ident: 596_CR66 publication-title: J Phys: Conf Ser – volume: 8 start-page: 107 issue: 1 year: 2020 ident: 596_CR47 publication-title: Friction doi: 10.1007/s40544-018-0249-z – volume: 76 start-page: 78 issue: 6 year: 2020 ident: 596_CR89 publication-title: Tribol Lubr Technol – volume: 192 start-page: 67 year: 2020 ident: 596_CR123 publication-title: Acta Mater doi: 10.1016/j.actamat.2020.03.047 – volume: 16 start-page: 2644 issue: 7 year: 2019 ident: 596_CR20 publication-title: J Comput Theor Nanosci doi: 10.1166/jctn.2019.8152 – volume: 140 start-page: 031610 issue: 3 year: 2018 ident: 596_CR43 publication-title: J Tribol doi: 10.1115/1.4038688 – volume: 29 start-page: 6591 issue: 10 year: 2020 ident: 596_CR97 publication-title: J Mater Eng Perform doi: 10.1007/s11665-020-05132-x – volume: 142 start-page: 021703 issue: 2 year: 2020 ident: 596_CR67 publication-title: J Tribol doi: 10.1115/1.4045013 – volume: 10 start-page: 583 year: 2022 ident: 596_CR19 publication-title: Friction doi: 10.1007/s40544-021-0518-0 – volume: 47 start-page: 211 issue: 2 year: 2012 ident: 596_CR88 publication-title: Tribol Lett doi: 10.1007/s11249-012-9975-y – volume: 133 start-page: 101 year: 2019 ident: 596_CR56 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.01.014 – volume: 6 start-page: 108 issue: 4 year: 2018 ident: 596_CR32 publication-title: Lubricants doi: 10.3390/lubricants6040108 – volume: 10 start-page: 4421 issue: 13 year: 2020 ident: 596_CR7 publication-title: Appl Sci doi: 10.3390/app10134421 – volume: 10 start-page: 6357 issue: 18 year: 2020 ident: 596_CR51 publication-title: Appl Sci doi: 10.3390/app10186357 – volume: 9 start-page: 86 issue: 9 year: 2021 ident: 596_CR142 publication-title: Lubricants doi: 10.3390/lubricants9090086 – volume: 37 start-page: 3766 issue: 12 year: 2021 ident: 596_CR79 publication-title: Langmuir doi: 10.1021/acs.langmuir.1c00358 – volume: 146 start-page: 103452 year: 2019 ident: 596_CR99 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2019.103452 – volume: 354 start-page: 118 year: 2015 ident: 596_CR103 publication-title: J Sound Vib doi: 10.1016/j.jsv.2015.06.011 – volume: 34 start-page: 446 year: 2019 ident: 596_CR46 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2019.06.192 – volume: 42 start-page: 1 issue: 1 year: 2022 ident: 596_CR126 publication-title: Int J Model Simul doi: 10.1080/02286203.2020.1803605 – volume: 43 start-page: 218 issue: 1–2 year: 2010 ident: 596_CR140 publication-title: Tribol Int doi: 10.1016/j.triboint.2009.05.019 – volume: 181 start-page: 109599 year: 2021 ident: 596_CR138 publication-title: Measurement doi: 10.1016/j.measurement.2021.109599 – volume: 16 start-page: 489 issue: 3 year: 2009 ident: 596_CR96 publication-title: Journal of KONES – volume: 234 start-page: 329 issue: 1 year: 2020 ident: 596_CR111 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1177/0954406219873932 – volume: 135 start-page: 514 issue: 1 year: 2012 ident: 596_CR3 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2011.09.001 – volume: 8 start-page: 044002 issue: 4 year: 2020 ident: 596_CR68 publication-title: Surf Topogr: Metrol Prop doi: 10.1088/2051-672X/abae13 – volume: 144 start-page: 011701 issue: 1 year: 2022 ident: 596_CR16 publication-title: J Tribol doi: 10.1115/1.4050525 – volume: 48 start-page: 95 issue: 1–4 year: 2010 ident: 596_CR129 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2266-6 – volume: 104 start-page: 556 year: 2018 ident: 596_CR104 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.021 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 596_CR11 publication-title: IEEE Intelligent Systems and Their Applications doi: 10.1109/5254.708428 – volume: 140 start-page: 041005 issue: 4 year: 2018 ident: 596_CR15 publication-title: J Manuf Sci Eng doi: 10.1115/1.4038002 – start-page: 119 volume-title: Welding and Cutting Case Studies with Supervised Machine Learning year: 2020 ident: 596_CR124 doi: 10.1007/978-981-13-9382-2_3 – ident: 596_CR134 doi: 10.1007/978-3-030-20131-9_379 – volume: 476 start-page: 203616 year: 2021 ident: 596_CR26 publication-title: Wear doi: 10.1016/j.wear.2021.203616 – volume: 7 start-page: 572 issue: 6 year: 2019 ident: 596_CR31 publication-title: Friction doi: 10.1007/s40544-018-0244-4 – volume: 29 start-page: 1683 issue: 8 year: 2018 ident: 596_CR102 publication-title: J Intell Manuf doi: 10.1007/s10845-016-1206-1 – volume: 13 start-page: 1541 issue: 4 year: 2017 ident: 596_CR139 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2016.2635082 – volume: 23 start-page: 4311 issue: 10 year: 2019 ident: 596_CR71 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-2217-1 – volume: 139 start-page: 071018 issue: 7 year: 2017 ident: 596_CR14 publication-title: J Manuf Sci Eng doi: 10.1115/1.4036350 – volume: 94 start-page: 509 year: 2016 ident: 596_CR73 publication-title: Tribol Int doi: 10.1016/j.triboint.2015.10.009 – volume: 147 start-page: 106280 year: 2020 ident: 596_CR25 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106280 – volume: 151 start-page: 106379 year: 2020 ident: 596_CR135 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106379 – volume: 144 start-page: 135 year: 2019 ident: 596_CR118 publication-title: Measurement doi: 10.1016/j.measurement.2019.05.018 – volume: 57 start-page: 298 year: 2020 ident: 596_CR44 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.09.005 – volume: 84 start-page: 1981 issue: 9–12 year: 2016 ident: 596_CR61 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7812-9 – volume: 9 start-page: 2 issue: 1 year: 2020 ident: 596_CR8 publication-title: Lubricants doi: 10.3390/lubricants9010002 – ident: 596_CR130 doi: 10.48550/arXiv.2109.00570 – volume: 27 start-page: 220 issue: 2 year: 2021 ident: 596_CR40 publication-title: Met Mater Int doi: 10.1007/s12540-020-00809-3 – volume: 9 start-page: 2788 issue: 14 year: 2019 ident: 596_CR81 publication-title: Appl Sci doi: 10.3390/app9142788 – volume: 13 start-page: 3489 issue: 16 year: 2020 ident: 596_CR74 publication-title: Materials doi: 10.3390/ma13163489 – volume: 476 start-page: 203696 year: 2021 ident: 596_CR132 publication-title: Wear doi: 10.1016/j.wear.2021.203696 – volume: 9 start-page: 20277 year: 2019 ident: 596_CR91 publication-title: Sci Reports – volume: 234 start-page: 1580 issue: 13 year: 2020 ident: 596_CR63 publication-title: Proc Inst Mech Eng B J Eng Manuf doi: 10.1177/0954405420935787 – volume: 5 start-page: 351 issue: 3 year: 2017 ident: 596_CR146 publication-title: Friction doi: 10.1007/s40544-017-0185-3 – volume: 9 start-page: 642 issue: 3 year: 2021 ident: 596_CR5 publication-title: Friction doi: 10.1007/s40544-020-0457-3 – volume: 9 start-page: 250 issue: 2 year: 2021 ident: 596_CR59 publication-title: Friction doi: 10.1007/s40544-019-0332-0 – volume: 5 start-page: 1048 year: 2018 ident: 596_CR115 publication-title: MethodsX doi: 10.1016/j.mex.2018.09.002 – volume: 10 start-page: 2287 issue: 11 year: 2020 ident: 596_CR78 publication-title: Nanomaterials doi: 10.3390/nano10112287 – volume: 10 start-page: 2000137 issue: 17 year: 2020 ident: 596_CR144 publication-title: Adv Energy Mater doi: 10.1002/aenm.202000137 – ident: 596_CR36 doi: 10.1007/s00366-020-01272-9 – volume: 8 start-page: 29 issue: 3 year: 2020 ident: 596_CR28 publication-title: Lubricants doi: 10.3390/lubricants8030029 – volume: 456–457 start-page: 203355 year: 2020 ident: 596_CR39 publication-title: Wear doi: 10.1016/j.wear.2020.203355 – volume: 29 start-page: 84 year: 2021 ident: 596_CR98 publication-title: Manuf Lett doi: 10.1016/j.mfglet.2021.07.005 – volume: 111 start-page: 1 year: 2019 ident: 596_CR106 publication-title: Comput Ind doi: 10.1016/j.compind.2019.06.001 – volume: 470 start-page: 584 issue: 1–2 year: 2009 ident: 596_CR54 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.03.035 – volume: 16 start-page: e0255637 issue: 8 year: 2021 ident: 596_CR141 publication-title: PLoS One doi: 10.1371/journal.pone.0255637 – volume: 88 start-page: 081007 issue: 8 year: 2021 ident: 596_CR1 publication-title: J Appl Mech doi: 10.1115/1.4051332 – volume: 1047 start-page: 012053 issue: 1 year: 2021 ident: 596_CR95 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/1047/1/012053 – volume: 4 start-page: 218 issue: 11 year: 2016 ident: 596_CR12 publication-title: Ann Transl Med doi: 10.21037/atm.2016.03.37 – volume-title: Artificial Intelligence in Mechanical and Industrial Engineering year: 2021 ident: 596_CR94 – volume: 72–73 start-page: 346 year: 2016 ident: 596_CR29 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.10.013 – volume: 61 start-page: 563 issue: 4 year: 2013 ident: 596_CR4 publication-title: Educ Technol Res Dev doi: 10.1007/s11423-013-9305-6 – volume: 5 start-page: 30 year: 2019 ident: 596_CR9 publication-title: Front Mech Eng doi: 10.3389/fmech.2019.00030 – volume: 9 start-page: 57 issue: 5 year: 2021 ident: 596_CR77 publication-title: Lubricants doi: 10.3390/lubricants9050057 – volume: 36 start-page: 5455 issue: 11 year: 2012 ident: 596_CR82 publication-title: Appl Math Model doi: 10.1016/j.apm.2011.12.059 – volume: 47 start-page: 615 year: 2020 ident: 596_CR35 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2020.04.189 – volume: 77 start-page: 501 year: 2018 ident: 596_CR42 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.253 – ident: 596_CR37 doi: 10.2118/187974-MS – volume: 27 start-page: 8 year: 2017 ident: 596_CR127 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.03.012 – volume: 30 start-page: 464 issue: 3 year: 2011 ident: 596_CR2 publication-title: Health Aff (Millwood) doi: 10.1377/hlthaff.2011.0178 – volume: 478–479 start-page: 203902 year: 2021 ident: 596_CR108 publication-title: Wear doi: 10.1016/j.wear.2021.203902 – volume: 27 start-page: 193 issue: 2 year: 2021 ident: 596_CR119 publication-title: Met Mater Int doi: 10.1007/s12540-020-00854-y – volume: 42 start-page: 1 issue: 4 year: 2020 ident: 596_CR136 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-020-2235-4 – volume: 235 start-page: 1575 issue: 8 year: 2021 ident: 596_CR92 publication-title: Proc Inst Mech Eng Part J J Eng Tribol doi: 10.1177/1350650120965754 – volume: 14 start-page: 397 issue: 3 year: 2018 ident: 596_CR18 publication-title: Int J Perform Eng – volume: 109 start-page: 2491 issue: 9–12 year: 2020 ident: 596_CR49 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05785-x – volume: 271 start-page: 2132 issue: 9–10 year: 2011 ident: 596_CR87 publication-title: Wear doi: 10.1016/j.wear.2010.11.049 – volume: 82 start-page: 302 year: 2019 ident: 596_CR34 publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.04.031 – ident: 596_CR48 doi: 10.1007/978-3-658-32182-6_7 – volume: 16 start-page: 4423 issue: 7 year: 2020 ident: 596_CR114 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2948023 – volume: 32 start-page: 171 issue: 2 year: 2020 ident: 596_CR116 publication-title: Jurnal Kejuruteraan doi: 10.17576/jkukm-2020-32(2)-01 |
| SSID | ssib034325170 ssib051869655 ssib044737295 ssj0001507040 ssib051367616 ssib042110735 ssib044084447 |
| Score | 2.4899797 |
| SecondaryResourceType | review_article |
| Snippet | Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of... Tribology research mainly focuses on the friction,wear,and lubrication between interacting surfaces.With the continuous increase in the industrialization of... |
| SourceID | wanfang proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Corrosion and Coatings Empirical analysis Engineering Informatics Mechanical Engineering Nanotechnology Physical Chemistry Review Article Surfaces and Interfaces Thin Films Tribology |
| SummonAdditionalLinks | – databaseName: Career & Technical Education Database dbid: 7RQ link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-DnrwLa4vcvCkBJtt0rQiiIjiQUREwVvptKkK2lV3Vfz3zqRpq5e9eCskbelMJjOdyXwfY7sA6PQCmwkTBSCUCSzanFYiAdMvrFJag2sUvjRXV_H9fXLtE25Df6yy2RPdRl0McsqRH6CbjdC9KamOX98EsUZRddVTaEyyaXTUEa1zc9OGQ9QzqWW3HpX72enCAyJbVqoLp_GSiljtuHZwZl34pIm-qenjrLuQ0WBczyV5WfzcpC2cUncexkJKCTouTxw3wvx1fV0825ZgXeNQVWbVwy8fd77wX-kssnkf3fKTejkusQlbLbO5X5iHK-yIsEoGwgO2Ekg0b3DN7ZA_VZwouFyun3sgosdDfsLrFptVdnd-dnt6ITyFg8jDRI4ESgsiWYT9AmKIQmMgtqoPICE2gMFCmQQlFDLLchmXkbQ6TCApAQWNuopsP1xjU9WgsuuMZ2BlDLjfQFEqqwvIISg16jQ3BT5P9VjQSDfNPb450Ww8py0ys1NIigpJSSGp6bG99pbXGtxj3OStRvSpt_Nh2sm9x_YbNXbDYx7Gvaa7yS95-v0FRGcfEDDWxvj3bbJZmlpng7bY1Oj9w26zmfxz9DR833F28AMPaAGA priority: 102 providerName: ProQuest |
| Title | Tribo-informatics approaches in tribology research: A review |
| URI | https://link.springer.com/article/10.1007/s40544-022-0596-7 https://www.proquest.com/docview/2736075414 https://d.wanfangdata.com.cn/periodical/mc-ywb202301001 |
| Volume | 11 |
| WOSCitedRecordID | wos000789744400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044737295 issn: 2223-7690 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Career & Technical Education Database customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: 7RQ dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/career providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (subscription) customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: M2O dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2223-7704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001507040 issn: 2223-7690 databaseCode: C24 dateStart: 20130301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V6KEc6BPx6sqHnlq5ihM7ThAXQIuKWrZb2kr0FGUSp0WCgNiFqpf-9s44LypVSOViRYrtJDN-fLH9fQPwCpEmvcDl0sYBSm0DR33OaJmiDUuntTHoicIf7GSSnJyk05bHPetOu3dbkn6k7sluBC20lnz6nEPGSLsAS0YlKZ_j2x8kx5koadTQCLX_wxkwAUdY1nrA0HTJO1f9feM1zAbMZDhmU0febKjH1Es80ZKnVvrGtN8t_ddb_j3fDSC233f1bKG6yuvvtya2g8f3MskTWGlxrNhtGt5TeODqZ7B8S93wOeywKsmFbKVZWQ5adArmbiZOa8HBtvyqvmglh35si13RkGlewNeD8Zf9d7IN1iCLKFVzSSbCWJVRWGKCcWQtJk6HiAoTiwQLqjSosFR5XqikipUzUYpphWRdclDswmgVFuuL2q2ByNGpBGlkwbLSzpRYYFAZcmRhS6pPr0PQmTQrWiVzDqhxlvUazN4wGRkmY8Nkdh1e90UuGxmPuzJvdX7K2h49ywjmxQSvtKLHv-m8Mdy-ozLRunfIfF5kv34iB64PWAJr478q3IRHXLJZBtqCxfnVtXsJD4ub-ensagQL9vjTCJb2xpPp8cj3jJFfZ6D0_d5bSo_Cj5zaz5z-HlPe6eHR9NsfgAX_bg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRL0UN5qSoE9wAW0wuvsem0EQhVQNWoa5VCkcjIee00rFac0gap_it_IjO21yyW3HrhZ8lOebx7r8fcNwAtESnqBy6SNApTaBo58zmiZoA0Lp7UxWBOFJ3Y6jY-Pk9ka_PFcGP6t0sfEOlAX85y_kb-hNBtRetNKfzj_KXlqFHdX_QiNBhYH7uqSlmyL9-NPZN-XYbj3-ejjvmynCsh8lKiljOj2kSpGYYExRiNrMXY6RFQYW6T8VSZBiYXKslzFZaScGSWYlKio9Fcqcix0QCF_XTPYB7A-Gx_OvnoEM0vTqN4DdL286gsSHu-sdV_A0ya3zbr9phZQ6ws2wwOjPHO04T2Ti9YsT87r9IKTrlXLfECqvrSW_IM-T9WR9t9k21fQXdO3pipVZVZ9v5ZV9-7-b_a4B5tt_S52G4e7D2uuegAb11QdH8I7VmOZy1aSlmWwhVdudwtxWgkeMlZ3M0QrtXTyVuyKhkT0CL7cyOM_hkE1r9wWiAydipEiKhaldqbAHIPSEIZyW9D19BACb800bxXceZDIWdppT9cASAkAKQMgtUN41Z1y3siXrDp4x5s6bSPZIu3tPITXHjb97hUXEy2y-oN_5OnVJYa87GXpr-3V93sOt_ePDifpZDw9eAJ3-LTm29cODJYXv9xTuJX_Xp4uLp61Xijg200D7S_aCV-G |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJwKM-KtAX2ABfQql5n7bURCFWUiKglygGkclo89hoqgdM2aav-NX4dM7bXLpfceuAWyY9Ynm8e69nvG4AXiJT0ApdJEwcotQkc-VykZYomLJzWUYQ1UfjQTKfJ0VE6W4M_ngvD2yp9TKwDdTHP-Rv5LqXZmNKbVnq3bLdFzPbH709OJU-Q4k6rH6fRQOTAXV3S8m3xbrJPtn4ZhuOPXz58ku2EAZmPUrWUMT1KrIpRWGCC8cgYTJwOERUmBimXlWlQYqGyLFdJGSsXjVJMS1S0DFAqdix6QOF_nUpyHQ5gfTb5PPvm0cyMzUj13qDrpVZfnPCoZ637Yp5-cgutOx7VYmp98Rbx8CjPIm040OSuNeOTczy97LRr2zI3kCoxrSVv1ucJO9L8m3j7arprANe0parMqh_XMuz43v9sm_uw0db1Yq9xxAew5qqHcPea2uMjeMsqLXPZStWyPLbwiu5uIY4rwcPH6i6HaCWYfr4Re6IhFz2Grzfy-JswqOaVewIiQ6cSpEiLRaldVGCOQRkRnnJT0P30EAJvWZu3yu48YOSX7TSpazBYAoNlMFgzhFfdJSeNrMmqk3e82W0b4Ra2t_kQXnsI9YdX3Ey0KOtP_p3bq0sMeTnMkmBbq__vOdwmdNnDyfRgG-7wVc0nsR0YLM_O3VO4lV8sjxdnz1qHFPD9pnH2FwoFaEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tribo-informatics+approaches+in+tribology+research%3AA+review&rft.jtitle=%E6%91%A9%E6%93%A6%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Nian+YIN&rft.au=Zhiguo+XING&rft.au=Ke+HE&rft.au=Zhinan+ZHANG&rft.date=2023&rft.pub=School+of+Mechanical+Engineering%2CShanghai+Jiao+Tong+University%2CShanghai+200240%2CChina%25National+Key+Laboratory+for+Remanufacturing%2CArmy+Academy+of+Armored+Forces%2CBeijing+100072%2CChina&rft.issn=2223-7690&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs40544-022-0596-7&rft.externalDocID=mc_ywb202301001 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmc-ywb%2Fmc-ywb.jpg |