Tribo-informatics approaches in tribology research: A review

Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of human society, tribology research objects have become increasingly extensive. Tribology research methods have also gone through the stages o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Friction Ročník 11; číslo 1; s. 1 - 22
Hlavní autoři: Yin, Nian, Xing, Zhiguo, He, Ke, Zhang, Zhinan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Tsinghua University Press 01.01.2023
Springer Nature B.V
School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China
State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China
Témata:
ISSN:2223-7690, 2223-7704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of human society, tribology research objects have become increasingly extensive. Tribology research methods have also gone through the stages of empirical science based on phenomena, theoretical science based on models, and computational science based on simulations. Tribology research has a strong engineering background. Owing to the intense coupling characteristics of tribology, tribological information includes subject information related to mathematics, physics, chemistry, materials, machinery, etc. Constantly emerging data and models are the basis for the development of tribology. The development of information technology has provided new and more efficient methods for generating, collecting, processing, and analyzing tribological data. As a result, the concept of “tribo-informatics (triboinformatics)” has been introduced. In this paper, guided by the framework of tribo-informatics, the application of tribo-informatics methods in tribology is reviewed. This article aims to provide helpful guidance for efficient and scientific tribology research using tribo-informatics approaches.
AbstractList Tribology research mainly focuses on the friction,wear,and lubrication between interacting surfaces.With the continuous increase in the industrialization of human society,tribology research objects have become increasingly extensive.Tribology research methods have also gone through the stages of empirical science based on phenomena,theoretical science based on models,and computational science based on simulations.Tribology research has a strong engineering background.Owing to the intense coupling characteristics of tribology,tribological information includes subject information related to mathematics,physics,chemistry,materials,machinery,etc.Constantly emerging data and models are the basis for the development of tribology.The development of information technology has provided new and more efficient methods for generating,collecting,processing,and analyzing tribological data.As a result,the concept of"tribo-informatics(triboinformatics)"has been introduced.In this paper,guided by the framework of tribo-informatics,the application of tribo-informatics methods in tribology is reviewed.This article aims to provide helpful guidance for efficient and scientific tribology research using tribo-informatics approaches.
Author Yin, Nian
Xing, Zhiguo
He, Ke
Zhang, Zhinan
AuthorAffiliation State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China
AuthorAffiliation_xml – name: State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China
Author_xml – sequence: 1
  givenname: Nian
  surname: Yin
  fullname: Yin, Nian
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 2
  givenname: Zhiguo
  surname: Xing
  fullname: Xing, Zhiguo
  organization: National Key Laboratory for Remanufacturing, Army Academy of Armored Forces
– sequence: 3
  givenname: Ke
  surname: He
  fullname: He, Ke
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Zhinan
  surname: Zhang
  fullname: Zhang, Zhinan
  email: zhinanz@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai Jiao Tong University
BookMark eNp9kMtKAzEUhoNUUGsfwN2AC1fRnCSTzIibUrxBwU1dh2SaaSNtUpOppW9vyiiCoKscyPedy3-GBj54i9AFkGsgRN4kTkrOMaEUk7IWWB6hU0opw1ISPviuRU1O0CglZwjjjJYgySm6m0VnAna-DXGtO9ekQm82MehmaVPhfNEd_ldhsS-iTVbHZnlbjHP94ezuHB23epXs6OsdoteH-9nkCU9fHp8n4yluWA0dFmVpBMwZnZvKCCalqSynxoCppGEVtDVpzRy0bqBqBdiS1aZuDVSCAghL2RBd9X132rfaL9Rb2EafJ6p1o_Y7QwllJCcBmbzsyXzC-9am7gelkgkiSw48U7KnmhhSirZVjevy8cF3UbuVAqIOuao-V5VzVYdclcwm_DI30a113P_r0N5JmfULG392-lv6BIs-io8
CitedBy_id crossref_primary_10_1007_s40544_023_0847_2
crossref_primary_10_3390_lubricants12040135
crossref_primary_10_1016_j_triboint_2023_108783
crossref_primary_10_1016_j_wear_2024_205722
crossref_primary_10_1007_s40544_023_0760_8
crossref_primary_10_1007_s40544_023_0765_3
crossref_primary_10_1007_s11465_024_0812_4
crossref_primary_10_26599_FRICT_2025_9441062
crossref_primary_10_1002_mame_70004
crossref_primary_10_3390_lubricants11110463
crossref_primary_10_1007_s11249_025_02015_x
crossref_primary_10_1088_2051_672X_acc882
crossref_primary_10_1088_1361_6501_ad0939
crossref_primary_10_3390_app14146074
crossref_primary_10_1007_s40735_024_00849_x
crossref_primary_10_26599_FRICT_2025_9441045
crossref_primary_10_1016_j_triboint_2025_111130
crossref_primary_10_26599_FRICT_2025_9440936
crossref_primary_10_1007_s40544_023_0810_2
crossref_primary_10_1016_j_triboint_2024_109914
crossref_primary_10_1016_j_wear_2022_204590
crossref_primary_10_1016_j_matdes_2022_111253
crossref_primary_10_1007_s40962_023_01147_x
crossref_primary_10_1007_s00170_022_10544_1
crossref_primary_10_1016_j_triboint_2024_109988
crossref_primary_10_1088_1361_6501_ace7eb
crossref_primary_10_1016_j_triboint_2024_110219
crossref_primary_10_1016_j_triboint_2024_109940
crossref_primary_10_1007_s40544_024_0879_2
crossref_primary_10_1016_j_triboint_2025_110597
crossref_primary_10_1007_s40544_023_0770_6
crossref_primary_10_3390_cryst13040671
crossref_primary_10_5194_ms_15_385_2024
crossref_primary_10_3390_lubricants12020033
crossref_primary_10_1016_j_apsusc_2023_159192
crossref_primary_10_1007_s10751_024_01978_y
crossref_primary_10_1016_j_surfcoat_2024_131337
crossref_primary_10_3390_lubricants12020050
crossref_primary_10_26599_FRICT_2025_9440982
crossref_primary_10_1007_s13369_024_09835_4
crossref_primary_10_1007_s40544_023_0786_y
crossref_primary_10_1016_j_triboint_2025_111087
crossref_primary_10_1007_s11431_024_2821_3
crossref_primary_10_1007_s12666_024_03366_0
crossref_primary_10_2514_1_D0436
crossref_primary_10_1016_j_heliyon_2024_e39248
crossref_primary_10_1039_D5MH01327E
crossref_primary_10_26599_FRICT_2025_9440987
Cites_doi 10.1016/j.jmapro.2019.10.020
10.1016/j.jmsy.2015.03.005
10.1016/j.triboint.2021.107065
10.1016/j.jmatprotec.2006.04.123
10.1007/s10845-020-01625-7
10.1016/j.measurement.2017.02.034
10.1016/j.mser.2005.07.001
10.1016/j.mfglet.2021.05.010
10.1016/j.surfin.2020.100549
10.1016/j.knosys.2019.105324
10.1177/1350650119838896
10.1007/s00170-017-1460-1
10.1016/j.talanta.2020.121312
10.3390/s20030612
10.1680/jsuin.20.00024
10.1007/s12666-020-02108-2
10.3390/pr9060922
10.1016/j.promfg.2020.05.134
10.1016/j.nanoen.2020.105501
10.2174/2212797609666160714145845
10.1016/j.asoc.2018.04.048
10.1007/s11665-020-05146-5
10.1007/s00366-019-00839-5
10.1007/s00521-018-3555-5
10.1016/j.ymssp.2019.03.023
10.1038/s41524-019-0207-y
10.1007/s40544-020-0390-3
10.1016/j.wear.2009.08.016
10.3390/lubricants7040032
10.1016/j.matpr.2018.03.044
10.1080/0951192X.2018.1550681
10.1016/j.ymssp.2017.08.014
10.1080/00986445.2019.1578757
10.1007/s00170-018-3157-5
10.3390/s18030823
10.1016/j.wear.2018.12.089
10.3390/lubricants7110095
10.1016/j.heliyon.2018.e00938
10.1016/j.triboint.2005.03.012
10.1016/j.wear.2018.12.081
10.1016/j.ymssp.2010.07.014
10.1080/09715010.2017.1333926
10.1007/s10845-015-1155-0
10.1007/s40544-021-0493-5
10.1016/j.jmsy.2021.08.001
10.1016/j.apt.2020.12.024
10.1177/0021998319859924
10.1016/j.triboint.2019.06.006
10.1016/j.triboint.2020.106811
10.1007/s40544-016-0104-z
10.1115/1.4045291
10.1016/j.rcim.2018.03.011
10.1007/s40544-018-0249-z
10.1016/j.actamat.2020.03.047
10.1166/jctn.2019.8152
10.1115/1.4038688
10.1007/s11665-020-05132-x
10.1115/1.4045013
10.1007/s40544-021-0518-0
10.1007/s11249-012-9975-y
10.1016/j.triboint.2019.01.014
10.3390/lubricants6040108
10.3390/app10134421
10.3390/app10186357
10.3390/lubricants9090086
10.1021/acs.langmuir.1c00358
10.1016/j.ijmachtools.2019.103452
10.1016/j.jsv.2015.06.011
10.1016/j.promfg.2019.06.192
10.1080/02286203.2020.1803605
10.1016/j.triboint.2009.05.019
10.1016/j.measurement.2021.109599
10.1177/0954406219873932
10.1016/j.ijpe.2011.09.001
10.1088/2051-672X/abae13
10.1115/1.4050525
10.1007/s00170-009-2266-6
10.1016/j.ymssp.2017.11.021
10.1109/5254.708428
10.1115/1.4038002
10.1007/978-981-13-9382-2_3
10.1007/978-3-030-20131-9_379
10.1016/j.wear.2021.203616
10.1007/s40544-018-0244-4
10.1007/s10845-016-1206-1
10.1109/TII.2016.2635082
10.1007/s12205-019-2217-1
10.1115/1.4036350
10.1016/j.triboint.2015.10.009
10.1016/j.triboint.2020.106280
10.1016/j.triboint.2020.106379
10.1016/j.measurement.2019.05.018
10.1016/j.jmsy.2020.09.005
10.1007/s00170-015-7812-9
10.3390/lubricants9010002
10.48550/arXiv.2109.00570
10.1007/s12540-020-00809-3
10.3390/app9142788
10.3390/ma13163489
10.1016/j.wear.2021.203696
10.1177/0954405420935787
10.1007/s40544-017-0185-3
10.1007/s40544-020-0457-3
10.1007/s40544-019-0332-0
10.1016/j.mex.2018.09.002
10.3390/nano10112287
10.1002/aenm.202000137
10.1007/s00366-020-01272-9
10.3390/lubricants8030029
10.1016/j.wear.2020.203355
10.1016/j.mfglet.2021.07.005
10.1016/j.compind.2019.06.001
10.1016/j.jallcom.2008.03.035
10.1371/journal.pone.0255637
10.1115/1.4051332
10.1088/1757-899X/1047/1/012053
10.21037/atm.2016.03.37
10.1016/j.ymssp.2015.10.013
10.1007/s11423-013-9305-6
10.3389/fmech.2019.00030
10.3390/lubricants9050057
10.1016/j.apm.2011.12.059
10.1016/j.promfg.2020.04.189
10.1016/j.procir.2018.08.253
10.2118/187974-MS
10.1016/j.jmapro.2017.03.012
10.1377/hlthaff.2011.0178
10.1016/j.wear.2021.203902
10.1007/s12540-020-00854-y
10.1007/s40430-020-2235-4
10.1177/1350650120965754
10.1007/s00170-020-05785-x
10.1016/j.wear.2010.11.049
10.1016/j.procir.2019.04.031
10.1007/978-3-658-32182-6_7
10.1109/TII.2019.2948023
10.17576/jkukm-2020-32(2)-01
ContentType Journal Article
Copyright The author(s) 2022
The author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The author(s) 2022
– notice: The author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7XB
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
L6V
M2O
M7S
MBDVC
PADUT
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
U9A
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s40544-022-0596-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Research Library (subscription)
Engineering Database
Research Library (Corporate)
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Research Library China
Engineering Collection
Career and Technical Education (Alumni Edition)
ProQuest Materials Science Collection
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 7RQ
  name: Career & Technical Education Database
  url: https://search.proquest.com/career
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2223-7704
EndPage 22
ExternalDocumentID mc_ywb202301001
10_1007_s40544_022_0596_7
GroupedDBID -A0
-SC
-S~
0R~
3V.
4.4
5VS
7RQ
8FE
8FG
8G5
92E
92I
9D9
9DC
AAFWJ
AAKKN
AAXDM
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFS
ACIWK
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ASPBG
AVWKF
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CAJEC
CCPQU
D1I
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
IPNFZ
KB.
L6V
M2O
M7S
OK1
PADUT
PDBOC
PIMPY
PQQKQ
PROAC
PTHSS
Q--
RIG
RSV
SCL
SOJ
TCJ
TGP
U1G
U5M
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
2B.
4A8
93N
PB1
PB6
PSX
ID FETCH-LOGICAL-c391t-655b61d32db8b6377b8e42bb1b87b381f90fbd1aac18f61e539b9fb1862116e23
IEDL.DBID C24
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789744400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2223-7690
IngestDate Thu May 29 04:05:09 EDT 2025
Fri Jul 25 11:20:01 EDT 2025
Tue Nov 18 21:29:47 EST 2025
Sat Nov 29 06:09:21 EST 2025
Fri Feb 21 02:44:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords tribo-informatics
information technology
machine learning
data-driven
artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-655b61d32db8b6377b8e42bb1b87b381f90fbd1aac18f61e539b9fb1862116e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s40544-022-0596-7
PQID 2736075414
PQPubID 2034759
PageCount 22
ParticipantIDs wanfang_journals_mc_ywb202301001
proquest_journals_2736075414
crossref_citationtrail_10_1007_s40544_022_0596_7
crossref_primary_10_1007_s40544_022_0596_7
springer_journals_10_1007_s40544_022_0596_7
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Friction
PublicationTitleAbbrev Friction
PublicationTitle_FL Friction
PublicationYear 2023
Publisher Tsinghua University Press
Springer Nature B.V
School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China
State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China
Publisher_xml – name: Tsinghua University Press
– name: Springer Nature B.V
– name: School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China%National Key Laboratory for Remanufacturing,Army Academy of Armored Forces,Beijing 100072,China
– name: State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China
References Díaz Lantada, Franco-Martínez, Hengsbach, Rupp, Thelen, Bade (CR78) 2020; 10
Altay, Gurgenc, Ulas, Özel (CR47) 2020; 8
Argatov (CR9) 2019; 5
Tatipala, Wall, Johansson, Sigvant (CR66) 2018; 1063
Kordijazi, Roshan, Dhingra, Povolo, Rohatgi, Nosonovsky (CR86) 2021; 9
CR37
Gouarir, Martínez-Arellano, Terrazas, Benardos, Ratchev (CR42) 2018; 77
CR36
Gouda, Rycerz, Kadiric, Morales-Espejel (CR64) 2019; 233
Thankachan, Soorya Prakash, Kamarthin (CR43) 2018; 140
Humelnicu, Ciortan, Amortila (CR93) 2019; 7
Thankachan, Soorya Prakash, Kavimani, Silambarasan (CR40) 2021; 27
Wu, Jennings, Terpenny, Kumara, Gao (CR15) 2018; 140
Doshi, Ning (CR1) 2021; 88
Karandikar (CR46) 2019; 34
Wan, Wen, Ma, Zhang (CR99) 2019; 146
Kothuru, Nooka, Liu (CR21) 2018; 95
Cheng, Jiao, Shi, Wang, Yan, Li (CR63) 2020; 234
Peng, Cai, Wu, Cao, Kwok, Peng (CR135) 2020; 151
Peng, Bergs, Schraknepper, Klocke, Döbbeler (CR34) 2019; 82
Borjali, Monson, Raeymaekers (CR56) 2019; 133
Bucholz, Kong, Marchman, Sawyer, Phillpot, Sinnott, Rajan (CR88) 2012; 47
CR48
Wierzcholski, Łupicka (CR96) 2009; 16
Boidi, da Silva, Profito, Machado (CR68) 2020; 8
Leandro Cabral, Matamoros, Ferreira Costa, Vieira Pinto, Silva de Souza, Freire, Filgueira Bezerra, Santos Cabral, Silva Castro, Pires de Souza (CR20) 2019; 16
Aydin (CR55) 2021; 32
Perčić, Zelenika, Mezić (CR60) 2021; 9
Wang, Bi, Wang, Wang (CR131) 2018; 100
Ji, Bao, Yin, Ma (CR6) 2016; 9
Xu, Li, Zhang, Chen (CR100) 2021; 61
Banerjee, Dey, Sekhar, Datta, Das (CR83) 2020; 73
Wu, Kwok, Liu, Li, Wu, Peng (CR137) 2019; 426–427
Tysoe, Spencer (CR89) 2020; 76
Xu, Zhao, Xu, Yang, Chang, Yan, Wang (CR62) 2020; 190
Wang, Wu, Wang, Sarkodie-Gyan (CR133) 2020; 20
Wang, Yan, Li, Gao, Zhao (CR106) 2019; 111
Mishra, Ma (CR125) 2005; 50
Kordijazi, Kumar Behera, Suri, Wang, Povolo, Salowitz, Rohatgi (CR57) 2020; 20
Kordijazi, Behera, Patel, Rohatgi, Nosonovsky (CR79) 2021; 37
Schölkopf (CR11) 1998; 13
Patil, Phalle (CR17) 2018; 31
Wang (CR144) 2020; 10
Tran, Furlan, Pagalthivarthi, Visintainer, Wildey, Wang (CR53) 2019; 422–423
Verma, Gupta, Misra (CR115) 2018; 5
CR134
Egala, Jagadeesh, Setti (CR59) 2021; 9
Balavignesh (CR18) 2018; 14
Hasan, Kordijazi, Rohatgi, Nosonovsky (CR16) 2022; 144
Gupta, Pandey, Kumar (CR120) 2018; 232
Das, Pal, Bag (CR122) 2017; 103
Chang, Borghesani, Peng (CR25) 2020; 147
Niazkar (CR71) 2019; 23
Moder, Bergmann, Grün (CR32) 2018; 6
Zhou, Liu, Wang, Wang (CR145) 2020; 8
Jia, Duan, Zhan, Jin, Cheng, Li (CR91) 2019; 9
Šabanovič, Žuraulis, Prentkovskis, Skrickij (CR72) 2020; 20
Davies, Dean, Ball (CR4) 2013; 61
Gropper, Wang, Harvey (CR73) 2016; 94
König, Marheineke, Jacobs, Sous, Zuo, Tian (CR26) 2021; 476
Zeng, Song, Zhang, Zhou, Xie, Tang (CR39) 2020; 456–457
Bellotti, Wu, Qian, Reynaerts (CR51) 2020; 10
Wang, Ma, Xu, Yong, He (CR146) 2017; 5
Mishra, Tiwari, Dubey (CR128) 2020; 7
Nasir, Asmael, Zeeshan, Solyali (CR116) 2020; 32
Caggiano (CR107) 2018; 18
Shevchik, Saeidi, Meylan, Wasmer (CR139) 2017; 13
Zambrano, Brase, Hernández-Gascón, Wangenheim, Gracia, Viejo, Izquierdo, Valdés (CR77) 2021; 9
Cavaleri, Asteris, Psyllaki, Douvika, Skentou, Vaxevanidis (CR81) 2019; 9
Sathish (CR85) 2018; 5
Zhang (CR12) 2016; 4
Li, Yao, Zhang (CR97) 2020; 29
Alambeigi, Khadem, Khorsand, Mirza Seied Hasan (CR61) 2016; 84
Zhang, Xu (CR98) 2021; 29
Yan, Zhao, Lu, Zhou, Xiao (CR30) 2005; 38
Verma, Misra, Popli (CR126) 2022; 42
Luo, Fridrici, Kapsa (CR87) 2011; 271
Thangarasu, Shankar, Mohanraj, Devendran (CR111) 2020; 234
Chimeno-Trinchet, Murru, Díaz-García, Fernández-González, Badía-Laíño (CR33) 2020; 219
Shankar, Mohanraj, Rajasekar (CR45) 2019; 32
Kügler, Marian, Schleich, Tremmel, Wartzack (CR7) 2020; 10
Du, Mukherjee, DebRoy (CR121) 2019; 5
Sudhagar, Sakthivel, Ganeshkumar (CR118) 2019; 144
Zhang, Yin, Wu, Pan, Wang (CR143) 2021; 79
Buntin, Burke, Hoaglin, Blumenthal (CR2) 2011; 30
Hao, Zhu, Li, Turyagyenda (CR101) 2006; 180
D’Addona, Ullah, Matarazzo (CR110) 2017; 28
CR130
Zhang, Yin, Chen, Liu (CR5) 2021; 9
Parveen, Zaidi, Danish (CR69) 2020; 207
Gao, Dai, Wang, Wang, He (CR58) 2016; 4
Prajogo, Olhager (CR3) 2012; 135
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR10) 2018; 4
Pandiyan, Prost, Vorlaufer, Varga, Wasmer (CR19) 2022; 10
Rosenkranz, Marian, Profito, Aragon, Shah (CR8) 2020; 9
Kilundu, Dehombreux, Chiementin (CR24) 2011; 25
Marian, Tremmel (CR142) 2021; 9
Hanachi, Yu, Kim, Liu, Mechefske (CR22) 2019; 101
Jurkovic, Cukor, Brezocnik, Brajkovic (CR102) 2018; 29
Wu, Jennings, Terpenny, Gao, Kumara (CR14) 2017; 139
Tansel, Demetgul, Okuyucu, Yapici (CR129) 2010; 48
Xie, Wang, Qin, Du, Qian (CR67) 2020; 142
Ramkumar, Selvakumar (CR94) 2021
Kong, Chen, Li (CR104) 2018; 104
Farias, Almeida, Delijaicov, Seriacopi, Bordinassi (CR49) 2020; 109
Kurdi, Alhazmi, Alhazmi, Tabbakh (CR74) 2020; 13
Nugraha, Chen, Yin, Wu, Zhang (CR138) 2021; 181
Bergs, Holst, Gupta, Augspurger (CR113) 2020; 48
Grützmacher, Profito, Rosenkranz (CR80) 2019; 7
Wang, Wu, Wang (CR132) 2021; 476
Li, Liu, Wu (CR109) 2019; 48
Hayajneh, Hassan, Alrashdan, Mayyas (CR54) 2009; 470
Zhang, Xu, Liu, Zhang, Zhu, Li (CR141) 2021; 16
König, Sous, Chaib, Jacobs (CR27) 2021; 155
Mokhtari, Pelham, Nowoisky, Bote-Garcia, Gühmann (CR28) 2020; 8
Desai, Granja, Higgs (CR76) 2021; 9
Eren, Guvenc, Mistikoglu (CR119) 2021; 27
Luo, Bui, Nguyen, Moayedi (CR38) 2021; 37
Shabani, Mazahery (CR82) 2012; 36
Towsyfyan, Gu, Ball, Liang (CR31) 2019; 7
Yuan, Chin, Hua, Dong, Wang (CR29) 2016; 72–73
Kong, Chen, Li, Duan, Lu, Chen (CR112) 2019; 127
Du, Mukherjee, Mitra, DebRoy (CR123) 2020; 192
Bustillo, Pimenov, Matuszewski, Mikolajczyk (CR41) 2018; 53
Thapliyal, Mishra (CR117) 2021; 29
Peng, Wang, Liao (CR103) 2015; 354
Wang, Liu, Wu, Wang (CR136) 2020; 42
Xiao, Zhu (CR140) 2010; 43
Bhaumik, Pathak, Dey, Datta (CR90) 2019; 140
Wang, Li, Zhao, Gao (CR44) 2020; 57
Shen, Yang, Habibullah, Ahmed, Das, Zhou, Ho (CR23) 2021; 32
Bhaumik, Kamaraj (CR92) 2021; 235
Wang, Wang, Gao (CR105) 2015; 36
Vendan, Kamal, Karan, Gao, Niu, Garg (CR124) 2020
Das, Pal, Bag (CR127) 2017; 27
Hasan, Kordijazi, Rohatgi, Nosonovsky (CR13) 2021; 161
Zhang, Xu (CR75) 2020; 29
Vinoth, Datta (CR84) 2020; 54
Babin (CR95) 2021; 1047
Bock, Blaga, Klusemann (CR35) 2020; 47
Kolodziejczyk, Toscano, Fouvry, Morales-Espejel (CR50) 2010; 268
Najafzadeh, Shiri, Sadeghi, Ghaemi (CR70) 2018; 24
Atwya, Panoutsos (CR114) 2020; 16
Kronberger, Kommenda, Lughofer, Saminger-Platz, Promberger, Nickel, Winkler, Affenzeller (CR52) 2018; 69
Moayedi, Hayati (CR65) 2019; 31
He, Shi, Xuan, Li (CR108) 2021; 478–479
I N Tansel (596_CR129) 2010; 48
Z N Zhang (596_CR5) 2021; 9
B Schölkopf (596_CR11) 1998; 13
Y P Peng (596_CR135) 2020; 151
D Z Wu (596_CR14) 2017; 139
F König (596_CR26) 2021; 476
B Das (596_CR122) 2017; 103
X J Xu (596_CR62) 2020; 190
B Das (596_CR127) 2017; 27
M Marian (596_CR142) 2021; 9
C Chimeno-Trinchet (596_CR33) 2020; 219
I Argatov (596_CR9) 2019; 5
Z L Wang (596_CR144) 2020; 10
O I Abiodun (596_CR10) 2018; 4
L Cavaleri (596_CR81) 2019; 9
K Xu (596_CR100) 2021; 61
W Yuan (596_CR29) 2016; 72–73
Y Du (596_CR123) 2020; 192
A Vinoth (596_CR84) 2020; 54
596_CR48
V Zambrano (596_CR77) 2021; 9
M Atwya (596_CR114) 2020; 16
D B Luo (596_CR87) 2011; 271
M S Hasan (596_CR13) 2021; 161
Y Shen (596_CR23) 2021; 32
A Borjali (596_CR56) 2019; 133
H B Xie (596_CR67) 2020; 142
P S Desai (596_CR76) 2021; 9
A Rosenkranz (596_CR8) 2020; 9
S Verma (596_CR115) 2018; 5
B Kilundu (596_CR24) 2011; 25
F E Bock (596_CR35) 2020; 47
M Doshi (596_CR1) 2021; 88
T Thankachan (596_CR43) 2018; 140
H Moayedi (596_CR65) 2019; 31
A Kurdi (596_CR74) 2020; 13
596_CR37
A Kordijazi (596_CR57) 2020; 20
O Altay (596_CR47) 2020; 8
M Bellotti (596_CR51) 2020; 10
D Jia (596_CR91) 2019; 9
M H Cheng (596_CR63) 2020; 234
T Ramkumar (596_CR94) 2021
D D Kong (596_CR112) 2019; 127
C Peng (596_CR103) 2015; 354
A Farias (596_CR49) 2020; 109
M B Buntin (596_CR2) 2011; 30
A Bustillo (596_CR41) 2018; 53
S Wang (596_CR132) 2021; 476
Z N Zhang (596_CR143) 2021; 79
M Najafzadeh (596_CR70) 2018; 24
Z Y Luo (596_CR38) 2021; 37
S K Gupta (596_CR120) 2018; 232
S Tatipala (596_CR66) 2018; 1063
E W Bucholz (596_CR88) 2012; 47
J J Wang (596_CR106) 2019; 111
G P Xiao (596_CR140) 2010; 43
S Sudhagar (596_CR118) 2019; 144
B Eren (596_CR119) 2021; 27
D Prajogo (596_CR3) 2012; 135
T Kolodziejczyk (596_CR50) 2010; 268
E Šabanovič (596_CR72) 2020; 20
A Díaz Lantada (596_CR78) 2020; 10
S K Thangarasu (596_CR111) 2020; 234
H D Wang (596_CR146) 2017; 5
T Bergs (596_CR113) 2020; 48
M S Hasan (596_CR16) 2022; 144
Z X Li (596_CR109) 2019; 48
J Karandikar (596_CR46) 2019; 34
V Pandiyan (596_CR19) 2022; 10
J J Wang (596_CR105) 2015; 36
T Banerjee (596_CR83) 2020; 73
596_CR36
W S Hao (596_CR101) 2006; 180
J Q Wang (596_CR136) 2020; 42
M Hayajneh (596_CR54) 2009; 470
R Egala (596_CR59) 2021; 9
Y C Zeng (596_CR39) 2020; 456–457
D Gropper (596_CR73) 2016; 94
A Caggiano (596_CR107) 2018; 18
A Tran (596_CR53) 2019; 422–423
G Boidi (596_CR68) 2020; 8
S Verma (596_CR126) 2022; 42
K Wierzcholski (596_CR96) 2009; 16
W T Tysoe (596_CR89) 2020; 76
Y Y Ji (596_CR6) 2016; 9
M A Leandro Cabral (596_CR20) 2019; 16
T Thankachan (596_CR40) 2021; 27
S A Vendan (596_CR124) 2020
H C Chang (596_CR25) 2020; 147
M O Shabani (596_CR82) 2012; 36
Y Du (596_CR121) 2019; 5
A Kordijazi (596_CR86) 2021; 9
R S Davies (596_CR4) 2013; 61
S A Shevchik (596_CR139) 2017; 13
F Alambeigi (596_CR61) 2016; 84
S Thapliyal (596_CR117) 2021; 29
Y Zhang (596_CR75) 2020; 29
F Aydin (596_CR55) 2021; 32
J J Wang (596_CR44) 2020; 57
A Mishra (596_CR128) 2020; 7
R S Mishra (596_CR125) 2005; 50
K Gouda (596_CR64) 2019; 233
R D Nugraha (596_CR138) 2021; 181
H Hanachi (596_CR22) 2019; 101
S Bhaumik (596_CR92) 2021; 235
A Kordijazi (596_CR79) 2021; 37
P G Grützmacher (596_CR80) 2019; 7
A Gouarir (596_CR42) 2018; 77
M Perčić (596_CR60) 2021; 9
A Babin (596_CR95) 2021; 1047
S Shankar (596_CR45) 2019; 32
N Mokhtari (596_CR28) 2020; 8
Z P He (596_CR108) 2021; 478–479
X L Gao (596_CR58) 2016; 4
J Y Li (596_CR97) 2020; 29
596_CR130
Z H Zhang (596_CR12) 2016; 4
B X Peng (596_CR34) 2019; 82
G Kronberger (596_CR52) 2018; 69
596_CR134
J Moder (596_CR32) 2018; 6
H K Wu (596_CR137) 2019; 426–427
Y Zhang (596_CR98) 2021; 29
T Nasir (596_CR116) 2020; 32
T Sathish (596_CR85) 2018; 5
D M D’Addona (596_CR110) 2017; 28
V N Balavignesh (596_CR18) 2018; 14
F König (596_CR27) 2021; 155
S Patil (596_CR17) 2018; 31
Humelnicu (596_CR93) 2019; 7
A Kothuru (596_CR21) 2018; 95
D Z Wu (596_CR15) 2018; 140
J Q Wang (596_CR131) 2018; 100
Y Zhang (596_CR141) 2021; 16
X P Yan (596_CR30) 2005; 38
H Towsyfyan (596_CR31) 2019; 7
L L Zhou (596_CR145) 2020; 8
S Wang (596_CR133) 2020; 20
M Niazkar (596_CR71) 2019; 23
S Bhaumik (596_CR90) 2019; 140
Z Jurkovic (596_CR102) 2018; 29
M Wan (596_CR99) 2019; 146
D D Kong (596_CR104) 2018; 104
N Parveen (596_CR69) 2020; 207
P Kügler (596_CR7) 2020; 10
References_xml – volume: 13
  start-page: 1541
  issue: 4
  year: 2017
  end-page: 1553
  ident: CR139
  article-title: Prediction of failure in lubricated surfaces using acoustic time-frequency features and random forest algorithm
  publication-title: IEEE Trans Ind Inform
– volume: 7
  start-page: 5
  issue: 1
  year: 2020
  end-page: 17
  ident: CR128
  article-title: Machine learning approach to determine corrosion potential of friction stir welded joints
  publication-title: Journal of Image Processing & Pattern Recognition Progress
– volume: 38
  start-page: 879
  issue: 10
  year: 2005
  end-page: 886
  ident: CR30
  article-title: A study of information technology used in oil monitoring
  publication-title: Tribol Int
– volume: 1063
  start-page: 012135
  year: 2018
  ident: CR66
  article-title: Data-driven modelling in the era of Industry 4.0: A case study of friction modelling in sheet metal forming simulations
  publication-title: J Phys: Conf Ser
– volume: 27
  start-page: 220
  issue: 2
  year: 2021
  end-page: 234
  ident: CR40
  article-title: Machine learning and statistical approach to predict and analyze wear rates in copper surface composites
  publication-title: Met Mater Int
– volume: 10
  start-page: 6357
  issue: 18
  year: 2020
  ident: CR51
  article-title: Tool wear and material removal predictions in micro-EDM drilling: Advantages of data-driven approaches
  publication-title: Appl Sci
– volume: 190
  start-page: 105324
  year: 2020
  ident: CR62
  article-title: Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models
  publication-title: Knowl Based Syst
– volume: 36
  start-page: 5455
  issue: 11
  year: 2012
  end-page: 5465
  ident: CR82
  article-title: Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites
  publication-title: Appl Math Model
– volume: 29
  start-page: 84
  year: 2021
  end-page: 89
  ident: CR98
  article-title: Machine learning cutting force, surface roughness, and tool life in high speed turning processes
  publication-title: Manuf Lett
– volume: 48
  start-page: 95
  issue: 1–4
  year: 2010
  end-page: 101
  ident: CR129
  article-title: Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network
  publication-title: Int J Adv Manuf Technol
– volume: 95
  start-page: 3797
  issue: 9–12
  year: 2018
  end-page: 3808
  ident: CR21
  article-title: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling
  publication-title: Int J Adv Manuf Technol
– volume: 36
  start-page: 35
  year: 2015
  end-page: 45
  ident: CR105
  article-title: Enhanced particle filter for tool wear prediction
  publication-title: J Manuf Syst
– volume: 61
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR100
  article-title: ForceNet: An offline cutting force prediction model based on neuro-physical learning approach
  publication-title: J Manuf Syst
– volume: 146
  start-page: 103452
  year: 2019
  ident: CR99
  article-title: On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone
  publication-title: Int J Mach Tools Manuf
– volume: 104
  start-page: 556
  year: 2018
  end-page: 574
  ident: CR104
  article-title: Gaussian process regression for tool wear prediction
  publication-title: Mech Syst Signal Process
– volume: 42
  start-page: 1
  issue: 1
  year: 2022
  end-page: 8
  ident: CR126
  article-title: Modeling of friction stir welding of aviation grade aluminium alloy using machine learning approaches
  publication-title: Int J Model Simul
– volume: 271
  start-page: 2132
  issue: 9–10
  year: 2011
  end-page: 2143
  ident: CR87
  article-title: A systematic approach for the selection of tribological coatings
  publication-title: Wear
– volume: 10
  start-page: 4421
  issue: 13
  year: 2020
  ident: CR7
  article-title: TribAIn—towards an explicit specification of shared tribological understanding
  publication-title: Appl Sci
– volume: 147
  start-page: 106280
  year: 2020
  ident: CR25
  article-title: Automated assessment of gear wear mechanism and severity using mould images and convolutional neural networks
  publication-title: Tribol Int
– volume: 232
  start-page: 333
  issue: 4
  year: 2018
  end-page: 342
  ident: CR120
  article-title: Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys
  publication-title: Proc Inst Mech Eng Part L J Mater Des Appl
– volume: 31
  start-page: 1972
  issue: 11
  year: 2018
  end-page: 1981
  ident: CR17
  article-title: Fault detection of anti-friction bearing using ensemble machine learning methods
  publication-title: Int J Eng
– volume: 151
  start-page: 106379
  year: 2020
  ident: CR135
  article-title: WP-DRnet: A novel wear particle detection and recognition network for automatic ferrograph image analysis
  publication-title: Tribol Int
– volume: 10
  start-page: 583
  year: 2022
  end-page: 596
  ident: CR19
  article-title: Identification of abnormal tribological regimes using a microphone and semi-supervised machine-learning algorithm
  publication-title: Friction
– volume: 25
  start-page: 400
  issue: 1
  year: 2011
  end-page: 415
  ident: CR24
  article-title: Tool wear monitoring by machine learning techniques and singular spectrum analysis
  publication-title: Mech Syst Signal Process
– volume: 28
  start-page: 1285
  issue: 6
  year: 2017
  end-page: 1301
  ident: CR110
  article-title: Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing
  publication-title: J Intell Manuf
– volume: 9
  start-page: 111
  issue: 2–3
  year: 2021
  end-page: 119
  ident: CR86
  article-title: Machine-learning methods to predict the wetting properties of iron-based composites
  publication-title: Surf Innov
– volume: 144
  start-page: 135
  year: 2019
  end-page: 143
  ident: CR118
  article-title: Monitoring of friction stir welding based on vision system coupled with machine learning algorithm
  publication-title: Measurement
– volume: 111
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR106
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction
  publication-title: Comput Ind
– volume: 23
  start-page: 4311
  issue: 10
  year: 2019
  end-page: 4326
  ident: CR71
  article-title: Revisiting the estimation of colebrook friction factor: A comparison between artificial intelligence models and C-W based explicit equations
  publication-title: KSCE J Civ Eng
– volume: 9
  start-page: 642
  issue: 3
  year: 2021
  end-page: 655
  ident: CR5
  article-title: Tribo-informatics: Concept, architecture, and case study
  publication-title: Friction
– volume: 76
  start-page: 78
  issue: 6
  year: 2020
  ident: CR89
  article-title: Designing lubricants by artificial intelligence
  publication-title: Tribol Lubr Technol
– ident: CR36
– volume: 476
  start-page: 203696
  year: 2021
  ident: CR132
  article-title: Automated 3D ferrograph image analysis for similar particle identification with the knowledge-embedded double-CNN model
  publication-title: Wear
– volume: 155
  start-page: 106811
  year: 2021
  ident: CR27
  article-title: Machine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systems
  publication-title: Tribol Int
– volume: 135
  start-page: 514
  issue: 1
  year: 2012
  end-page: 522
  ident: CR3
  article-title: Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration
  publication-title: Int J Prod Econ
– volume: 29
  start-page: 6605
  issue: 10
  year: 2020
  end-page: 6616
  ident: CR75
  article-title: Machine learning decomposition onset temperature of lubricant additives
  publication-title: J Mater Eng Perform
– volume: 16
  start-page: 4423
  issue: 7
  year: 2020
  end-page: 4435
  ident: CR114
  article-title: Transient thermography for flaw detection in friction stir welding: A machine learning approach
  publication-title: IEEE Trans Ind Inform
– volume: 8
  start-page: 044002
  issue: 4
  year: 2020
  ident: CR68
  article-title: Using machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfaces
  publication-title: Surf Topogr: Metrol Prop
– volume: 16
  start-page: 489
  issue: 3
  year: 2009
  end-page: 495
  ident: CR96
  article-title: Network analysis for artificial intelligent micro-bearing systems
  publication-title: Journal of KONES
– volume: 133
  start-page: 101
  year: 2019
  end-page: 110
  ident: CR56
  article-title: Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods
  publication-title: Tribol Int
– volume: 54
  start-page: 179
  issue: 2
  year: 2020
  end-page: 192
  ident: CR84
  article-title: Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach
  publication-title: J Compos Mater
– volume: 9
  start-page: 86
  issue: 9
  year: 2021
  ident: CR142
  article-title: Current trends and applications of machine learning in tribology—A review
  publication-title: Lubricants
– volume: 5
  start-page: 14545
  issue: 6
  year: 2018
  end-page: 14552
  ident: CR85
  article-title: BONN technique: Tribological properties predictor for plasma nitrided 316L stainless steel
  publication-title: Mater Today Proc
– volume: 142
  start-page: 021703
  issue: 2
  year: 2020
  ident: CR67
  article-title: Prediction of friction coefficients during scratch based on an integrated finite element and artificial neural network method
  publication-title: J Tribol
– volume: 27
  start-page: 193
  issue: 2
  year: 2021
  end-page: 219
  ident: CR119
  article-title: Artificial intelligence applications for friction stir welding: A review
  publication-title: Met Mater Int
– volume: 4
  start-page: 218
  issue: 11
  year: 2016
  ident: CR12
  article-title: Introduction to machine learning: -nearest neighbors
  publication-title: Ann Transl Med
– volume: 29
  start-page: 1683
  issue: 8
  year: 2018
  end-page: 1693
  ident: CR102
  article-title: A comparison of machine learning methods for cutting parameters prediction in high speed turning process
  publication-title: J Intell Manuf
– volume: 470
  start-page: 584
  issue: 1–2
  year: 2009
  end-page: 588
  ident: CR54
  article-title: Prediction of tribological behavior of aluminum-copper based composite using artificial neural network
  publication-title: J Alloys Compd
– volume: 235
  start-page: 1575
  issue: 8
  year: 2021
  end-page: 1589
  ident: CR92
  article-title: Artificial neural network and multi-criterion decision making approach of designing a blend of biodegradable lubricants and investigating its tribological properties
  publication-title: Proc Inst Mech Eng Part J J Eng Tribol
– volume: 478–479
  start-page: 203902
  year: 2021
  ident: CR108
  article-title: Research on tool wear prediction based on temperature signals and deep learning
  publication-title: Wear
– volume: 57
  start-page: 298
  year: 2020
  end-page: 310
  ident: CR44
  article-title: Physics guided neural network for machining tool wear prediction
  publication-title: J Manuf Syst
– volume: 32
  start-page: 174
  issue: 2
  year: 2019
  end-page: 182
  ident: CR45
  article-title: Prediction of cutting tool wear during milling process using artificial intelligence techniques
  publication-title: Int J Comput Integr Manuf
– volume: 234
  start-page: 329
  issue: 1
  year: 2020
  end-page: 342
  ident: CR111
  article-title: Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
– volume: 77
  start-page: 501
  year: 2018
  end-page: 504
  ident: CR42
  article-title: In-process tool wear prediction system based on machine learning techniques and force analysis
  publication-title: Procedia CIRP
– volume: 234
  start-page: 1580
  issue: 13
  year: 2020
  end-page: 1597
  ident: CR63
  article-title: An intelligent prediction model of the tool wear based on machine learning in turning high strength steel
  publication-title: Proc Inst Mech Eng B J Eng Manuf
– volume: 37
  start-page: 3766
  issue: 12
  year: 2021
  end-page: 3777
  ident: CR79
  article-title: Predictive analysis of wettability of Al-Si based multiphase alloys and aluminum matrix composites by machine learning and physical modeling
  publication-title: Langmuir
– volume: 20
  start-page: 021001
  issue: 2
  year: 2020
  ident: CR133
  article-title: Ferrograph analysis with improved particle segmentation and classification methods
  publication-title: J Comput Inf Sci Eng
– volume: 50
  start-page: 1
  issue: 1–2
  year: 2005
  end-page: 78
  ident: CR125
  article-title: Friction stir welding and processing
  publication-title: Mater Sci Eng R Rep
– volume: 47
  start-page: 615
  year: 2020
  end-page: 622
  ident: CR35
  article-title: Mechanical performance prediction for friction riveting joints of dissimilar materials via machine learning
  publication-title: Procedia Manuf
– volume: 27
  start-page: 8
  year: 2017
  end-page: 17
  ident: CR127
  article-title: Torque based defect detection and weld quality modelling in friction stir welding process
  publication-title: J Manuf Process
– volume: 4
  start-page: 105
  issue: 2
  year: 2016
  end-page: 115
  ident: CR58
  article-title: Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network
  publication-title: Friction
– ident: CR134
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  end-page: 21
  ident: CR11
  article-title: Support vector machines: A practical consequence of learning theory
  publication-title: IEEE Intelligent Systems and Their Applications
– volume: 8
  start-page: 29
  issue: 3
  year: 2020
  ident: CR28
  article-title: Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning
  publication-title: Lubricants
– volume: 180
  start-page: 23
  issue: 1–3
  year: 2006
  end-page: 29
  ident: CR101
  article-title: Prediction of cutting force for self-propelled rotary tool using artificial neural networks
  publication-title: J Mater Process Technol
– volume: 72–73
  start-page: 346
  year: 2016
  end-page: 358
  ident: CR29
  article-title: Shape classification of wear particles by image boundary analysis using machine learning algorithms
  publication-title: Mech Syst Signal Process
– volume: 207
  start-page: 213
  issue: 2
  year: 2020
  end-page: 230
  ident: CR69
  article-title: Artificial intelligence (AI)-based friction factor models for large piping networks
  publication-title: Chem Eng Commun
– volume: 79
  start-page: 105501
  year: 2021
  ident: CR143
  article-title: Research methods of contact electrification: Theoretical simulation and experiment
  publication-title: Nano Energy
– volume: 103
  start-page: 186
  year: 2017
  end-page: 198
  ident: CR122
  article-title: Design and development of force and torque measurement setup for real time monitoring of friction stir welding process
  publication-title: Measurement
– volume: 219
  start-page: 121312
  year: 2020
  ident: CR33
  article-title: Artificial Intelligence and Fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils
  publication-title: Talanta
– volume: 73
  start-page: 3059
  issue: 12
  year: 2020
  end-page: 3069
  ident: CR83
  article-title: Design of alumina reinforced aluminium alloy composites with improved tribo-mechanical properties: A machine learning approach
  publication-title: Trans Indian Inst Met
– volume: 268
  start-page: 309
  issue: 1–2
  year: 2010
  end-page: 315
  ident: CR50
  article-title: Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction
  publication-title: Wear
– volume: 48
  start-page: 947
  year: 2020
  end-page: 958
  ident: CR113
  article-title: Digital image processing with deep learning for automated cutting tool wear detection
  publication-title: Procedia Manuf
– volume: 140
  start-page: 031610
  issue: 3
  year: 2018
  ident: CR43
  article-title: Optimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniques
  publication-title: J Tribol
– volume: 422–423
  start-page: 9
  year: 2019
  end-page: 26
  ident: CR53
  article-title: WearGP: A computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processes
  publication-title: Wear
– volume: 7
  start-page: 95
  issue: 11
  year: 2019
  ident: CR80
  article-title: Multi-scale surface texturing in tribology—Current knowledge and future perspectives
  publication-title: Lubricants
– volume: 18
  start-page: 823
  issue: 3
  year: 2018
  ident: CR107
  article-title: Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition
  publication-title: Sensors
– volume: 32
  start-page: 445
  issue: 2
  year: 2021
  end-page: 463
  ident: CR55
  article-title: The investigation of the effect of particle size on wear performance of AA7075/Al O composites using statistical analysis and different machine learning methods
  publication-title: Adv Powder Technol
– volume: 354
  start-page: 118
  year: 2015
  end-page: 131
  ident: CR103
  article-title: A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine
  publication-title: J Sound Vib
– volume: 9
  start-page: 2
  issue: 1
  year: 2020
  ident: CR8
  article-title: The use of artificial intelligence in tribology—A perspective
  publication-title: Lubricants
– volume: 109
  start-page: 2491
  issue: 9–12
  year: 2020
  end-page: 2501
  ident: CR49
  article-title: Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes
  publication-title: Int J Adv Manuf Technol
– volume: 88
  start-page: 081007
  issue: 8
  year: 2021
  ident: CR1
  article-title: A data-driven framework for buckling analysis of near-spherical composite shells under external pressure
  publication-title: J Appl Mech
– volume: 5
  start-page: 1048
  year: 2018
  end-page: 1058
  ident: CR115
  article-title: Performance evaluation of friction stir welding using machine learning approaches
  publication-title: MethodsX
– volume: 29
  start-page: 52
  year: 2021
  end-page: 55
  ident: CR117
  article-title: Machine learning classification-based approach for mechanical properties of friction stir welding of copper
  publication-title: Manuf Lett
– volume: 48
  start-page: 66
  year: 2019
  end-page: 76
  ident: CR109
  article-title: Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning
  publication-title: J Manuf Process
– volume: 140
  start-page: 105813
  year: 2019
  ident: CR90
  article-title: Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties
  publication-title: Tribol Int
– volume: 6
  start-page: 108
  issue: 4
  year: 2018
  ident: CR32
  article-title: Lubrication regime classification of hydrodynamic journal bearings by machine learning using torque data
  publication-title: Lubricants
– volume: 101
  start-page: 2861
  issue: 9–12
  year: 2019
  end-page: 2872
  ident: CR22
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: Int J Adv Manuf Technol
– volume: 5
  start-page: 351
  issue: 3
  year: 2017
  end-page: 360
  ident: CR146
  article-title: Design and application of friction pair surface modification coating for remanufacturing
  publication-title: Friction
– volume: 43
  start-page: 218
  issue: 1–2
  year: 2010
  end-page: 227
  ident: CR140
  article-title: Friction materials development by using DOE/RSM and artificial neural network
  publication-title: Tribol Int
– volume: 69
  start-page: 610
  year: 2018
  end-page: 624
  ident: CR52
  article-title: Using robust generalized fuzzy modeling and enhanced symbolic regression to model tribological systems
  publication-title: Appl Soft Comput
– volume: 29
  start-page: 6591
  issue: 10
  year: 2020
  end-page: 6604
  ident: CR97
  article-title: Physical model based on data-driven analysis of chemical composition effects of friction stir welding
  publication-title: J Mater Eng Perform
– volume: 181
  start-page: 109599
  year: 2021
  ident: CR138
  article-title: Running-in real-time wear generation under vary working condition based on Gaussian process regression approximation
  publication-title: Measurement
– volume: 5
  start-page: 30
  year: 2019
  ident: CR9
  article-title: Artificial neural networks (ANNs) as a novel modeling technique in tribology
  publication-title: Front Mech Eng
– volume: 4
  start-page: e00938
  issue: 11
  year: 2018
  ident: CR10
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
– volume: 9
  start-page: 193
  issue: 3
  year: 2016
  end-page: 205
  ident: CR6
  article-title: Applications of artificial intelligence in tribology
  publication-title: Recent Pat Mech Eng
– volume: 144
  start-page: 011701
  issue: 1
  year: 2022
  ident: CR16
  article-title: Triboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methods
  publication-title: J Tribol
– volume: 61
  start-page: 563
  issue: 4
  year: 2013
  end-page: 580
  ident: CR4
  article-title: Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course
  publication-title: Educ Technol Res Dev
– volume: 140
  start-page: 041005
  issue: 4
  year: 2018
  ident: CR15
  article-title: Cloud-based parallel machine learning for tool wear prediction
  publication-title: J Manuf Sci Eng
– volume: 84
  start-page: 1981
  issue: 9–12
  year: 2016
  end-page: 1994
  ident: CR61
  article-title: A comparison of performance of artificial intelligence methods in prediction of dry sliding wear behavior
  publication-title: Int J Adv Manuf Technol
– volume: 476
  start-page: 203616
  year: 2021
  ident: CR26
  article-title: Data-driven wear monitoring for sliding bearings using acoustic emission signals and long short-term memory neural networks
  publication-title: Wear
– volume: 32
  start-page: 1753
  issue: 6
  year: 2021
  end-page: 1766
  ident: CR23
  article-title: Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques
  publication-title: J Intell Manuf
– volume: 7
  start-page: 572
  issue: 6
  year: 2019
  end-page: 586
  ident: CR31
  article-title: Tribological behaviour diagnostic and fault detection of mechanical seals based on acoustic emission measurements
  publication-title: Friction
– volume: 9
  start-page: 922
  issue: 6
  year: 2021
  ident: CR76
  article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas
  publication-title: Processes
– volume: 8
  start-page: 481
  issue: 3
  year: 2020
  end-page: 506
  ident: CR145
  article-title: Triboelectric nano-generators: Fundamental physics and potential applications
  publication-title: Friction
– volume: 94
  start-page: 509
  year: 2016
  end-page: 529
  ident: CR73
  article-title: Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings
  publication-title: Tribol Int
– year: 2021
  ident: CR94
  article-title: Artificial intelligence in predicting the optimized wear behaviour parameters of sintered titanium grade 5 reinforced with nano B4C particles
  publication-title: Artificial Intelligence in Mechanical and Industrial Engineering
– volume: 82
  start-page: 302
  year: 2019
  end-page: 307
  ident: CR34
  article-title: A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear
  publication-title: Procedia CIRP
– volume: 1047
  start-page: 012053
  issue: 1
  year: 2021
  ident: CR95
  article-title: Data-driven system identification and optimal control of an active rotor-bearing system
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 16
  start-page: 2644
  issue: 7
  year: 2019
  end-page: 2659
  ident: CR20
  article-title: Automated classification of tribological faults of alternative systems with the use of unsupervised artificial neural networks
  publication-title: J Comput Theor Nanosci
– volume: 53
  start-page: 215
  year: 2018
  end-page: 227
  ident: CR41
  article-title: Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels
  publication-title: Robotics Comput Integr Manuf
– ident: CR37
– volume: 139
  start-page: 071018
  issue: 7
  year: 2017
  ident: CR14
  article-title: A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests
  publication-title: J Manuf Sci Eng
– volume: 456–457
  start-page: 203355
  year: 2020
  ident: CR39
  article-title: A new physics-based data-driven guideline for wear modelling and prediction of train wheels
  publication-title: Wear
– volume: 9
  start-page: 2788
  issue: 14
  year: 2019
  ident: CR81
  article-title: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks
  publication-title: Appl Sci
– volume: 32
  start-page: 171
  issue: 2
  year: 2020
  end-page: 186
  ident: CR116
  article-title: Applications of machine learning to friction stir welding process optimization
  publication-title: Jurnal Kejuruteraan
– volume: 9
  start-page: 1726
  issue: 6
  year: 2021
  end-page: 1748
  ident: CR60
  article-title: Artificial intelligence-based predictive model of nanoscale friction using experimental data
  publication-title: Friction
– volume: 100
  start-page: 863
  year: 2018
  end-page: 876
  ident: CR131
  article-title: A non-reference evaluation method for edge detection of wear particles in ferrograph images
  publication-title: Mech Syst Signal Process
– volume: 42
  start-page: 1
  issue: 4
  year: 2020
  end-page: 10
  ident: CR136
  article-title: Direct detection of wear conditions by classification of ferrograph images
  publication-title: J Braz Soc Mech Sci Eng
– volume: 24
  start-page: 9
  issue: 1
  year: 2018
  end-page: 15
  ident: CR70
  article-title: Prediction of the friction factor in pipes using model tree
  publication-title: ISH J Hydraul Eng
– volume: 9
  start-page: 57
  issue: 5
  year: 2021
  ident: CR77
  article-title: A digital twin for friction prediction in dynamic rubber applications with surface textures
  publication-title: Lubricants
– volume: 233
  start-page: 1523
  issue: 10
  year: 2019
  end-page: 1540
  ident: CR64
  article-title: Assessing the effectiveness of data-driven time-domain condition indicators in predicting the progression of surface distress under rolling contact
  publication-title: Proc Inst Mech Eng Part J J Eng Tribol
– volume: 5
  start-page: 68
  year: 2019
  ident: CR121
  article-title: Conditions for void formation in friction stir welding from machine learning
  publication-title: npj Comput Mater
– volume: 20
  start-page: 612
  issue: 3
  year: 2020
  ident: CR72
  article-title: Identification of road-surface type using deep neural networks for friction coefficient estimation
  publication-title: Sensors
– volume: 16
  start-page: e0255637
  issue: 8
  year: 2021
  ident: CR141
  article-title: Bandgap prediction of two-dimensional materials using machine learning
  publication-title: PLoS One
– volume: 127
  start-page: 573
  year: 2019
  end-page: 594
  ident: CR112
  article-title: Relevance vector machine for tool wear prediction
  publication-title: Mech Syst Signal Process
– volume: 30
  start-page: 464
  issue: 3
  year: 2011
  end-page: 471
  ident: CR2
  article-title: The benefits of health information technology: A review of the recent literature shows predominantly positive results
  publication-title: Health Aff (Millwood)
– volume: 426–427
  start-page: 1740
  year: 2019
  end-page: 1747
  ident: CR137
  article-title: Restoration of defocused ferrograph images using a large kernel convolutional neural network
  publication-title: Wear
– volume: 192
  start-page: 67
  year: 2020
  end-page: 77
  ident: CR123
  article-title: Machine learning based hierarchy of causative variables for tool failure in friction stir welding
  publication-title: Acta Mater
– volume: 8
  start-page: 107
  issue: 1
  year: 2020
  end-page: 114
  ident: CR47
  article-title: Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms
  publication-title: Friction
– volume: 161
  start-page: 107065
  year: 2021
  ident: CR13
  article-title: Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms
  publication-title: Tribol Int
– volume: 31
  start-page: 7429
  issue: 11
  year: 2019
  end-page: 7445
  ident: CR65
  article-title: Artificial intelligence design charts for predicting friction capacity of driven pile in clay
  publication-title: Neural Comput Appl
– ident: CR48
– volume: 47
  start-page: 211
  issue: 2
  year: 2012
  end-page: 221
  ident: CR88
  article-title: Data-driven model for estimation of friction coefficient via informatics methods
  publication-title: Tribol Lett
– volume: 34
  start-page: 446
  year: 2019
  end-page: 454
  ident: CR46
  article-title: Machine learning classification for tool life modeling using production shop-floor tool wear data
  publication-title: Procedia Manuf
– ident: CR130
– volume: 20
  start-page: 100549
  year: 2020
  ident: CR57
  article-title: Data-driven modeling of wetting angle and corrosion resistance of hypereutectic cast aluminum-silicon alloys based on physical and chemical properties of surface
  publication-title: Surf Interfaces
– volume: 14
  start-page: 397
  issue: 3
  year: 2018
  end-page: 412
  ident: CR18
  article-title: Comparison of conventional method of fault determination with data-driven approach for ball bearings in a wind turbine gearbox
  publication-title: Int J Perform Eng
– volume: 10
  start-page: 2287
  issue: 11
  year: 2020
  ident: CR78
  article-title: Artificial intelligence aided design of microtextured surfaces: Application to controlling wettability
  publication-title: Nanomaterials
– volume: 7
  start-page: 32
  issue: 4
  year: 2019
  ident: CR93
  article-title: Artificial neural network-based analysis of the tribological behavior of vegetable oil-diesel fuel mixtures
  publication-title: Lubricants
– volume: 13
  start-page: 3489
  issue: 16
  year: 2020
  ident: CR74
  article-title: Practice of simulation and life cycle assessment in tribology—A review
  publication-title: Materials
– volume: 9
  start-page: 20277
  year: 2019
  ident: CR91
  article-title: Design and development of lubricating material database and research on performance prediction method of machine learning
  publication-title: Sci Reports
– volume: 10
  start-page: 2000137
  issue: 17
  year: 2020
  ident: CR144
  article-title: Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution
  publication-title: Adv Energy Mater
– volume: 37
  start-page: 533
  issue: 1
  year: 2021
  end-page: 544
  ident: CR38
  article-title: A novel artificial intelligence technique for analyzing slope stability using PSO-CA model
  publication-title: Eng Comput
– volume: 9
  start-page: 250
  issue: 2
  year: 2021
  end-page: 272
  ident: CR59
  article-title: Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites
  publication-title: Friction
– start-page: 119
  year: 2020
  end-page: 185
  ident: CR124
  article-title: Supervised machine learning in friction stir welding (FSW)
  publication-title: Welding and Cutting Case Studies with Supervised Machine Learning
– volume: 48
  start-page: 66
  year: 2019
  ident: 596_CR109
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.10.020
– volume: 232
  start-page: 333
  issue: 4
  year: 2018
  ident: 596_CR120
  publication-title: Proc Inst Mech Eng Part L J Mater Des Appl
– volume: 36
  start-page: 35
  year: 2015
  ident: 596_CR105
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2015.03.005
– volume: 161
  start-page: 107065
  year: 2021
  ident: 596_CR13
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2021.107065
– volume: 180
  start-page: 23
  issue: 1–3
  year: 2006
  ident: 596_CR101
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.04.123
– volume: 32
  start-page: 1753
  issue: 6
  year: 2021
  ident: 596_CR23
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01625-7
– volume: 103
  start-page: 186
  year: 2017
  ident: 596_CR122
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.02.034
– volume: 50
  start-page: 1
  issue: 1–2
  year: 2005
  ident: 596_CR125
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2005.07.001
– volume: 29
  start-page: 52
  year: 2021
  ident: 596_CR117
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2021.05.010
– volume: 20
  start-page: 100549
  year: 2020
  ident: 596_CR57
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2020.100549
– volume: 190
  start-page: 105324
  year: 2020
  ident: 596_CR62
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105324
– volume: 233
  start-page: 1523
  issue: 10
  year: 2019
  ident: 596_CR64
  publication-title: Proc Inst Mech Eng Part J J Eng Tribol
  doi: 10.1177/1350650119838896
– volume: 95
  start-page: 3797
  issue: 9–12
  year: 2018
  ident: 596_CR21
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1460-1
– volume: 219
  start-page: 121312
  year: 2020
  ident: 596_CR33
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121312
– volume: 20
  start-page: 612
  issue: 3
  year: 2020
  ident: 596_CR72
  publication-title: Sensors
  doi: 10.3390/s20030612
– volume: 9
  start-page: 111
  issue: 2–3
  year: 2021
  ident: 596_CR86
  publication-title: Surf Innov
  doi: 10.1680/jsuin.20.00024
– volume: 73
  start-page: 3059
  issue: 12
  year: 2020
  ident: 596_CR83
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-020-02108-2
– volume: 7
  start-page: 5
  issue: 1
  year: 2020
  ident: 596_CR128
  publication-title: Journal of Image Processing & Pattern Recognition Progress
– volume: 9
  start-page: 922
  issue: 6
  year: 2021
  ident: 596_CR76
  publication-title: Processes
  doi: 10.3390/pr9060922
– volume: 48
  start-page: 947
  year: 2020
  ident: 596_CR113
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2020.05.134
– volume: 79
  start-page: 105501
  year: 2021
  ident: 596_CR143
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105501
– volume: 9
  start-page: 193
  issue: 3
  year: 2016
  ident: 596_CR6
  publication-title: Recent Pat Mech Eng
  doi: 10.2174/2212797609666160714145845
– volume: 69
  start-page: 610
  year: 2018
  ident: 596_CR52
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.04.048
– volume: 29
  start-page: 6605
  issue: 10
  year: 2020
  ident: 596_CR75
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-020-05146-5
– volume: 37
  start-page: 533
  issue: 1
  year: 2021
  ident: 596_CR38
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00839-5
– volume: 31
  start-page: 7429
  issue: 11
  year: 2019
  ident: 596_CR65
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3555-5
– volume: 127
  start-page: 573
  year: 2019
  ident: 596_CR112
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.03.023
– volume: 5
  start-page: 68
  year: 2019
  ident: 596_CR121
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-019-0207-y
– volume: 8
  start-page: 481
  issue: 3
  year: 2020
  ident: 596_CR145
  publication-title: Friction
  doi: 10.1007/s40544-020-0390-3
– volume: 268
  start-page: 309
  issue: 1–2
  year: 2010
  ident: 596_CR50
  publication-title: Wear
  doi: 10.1016/j.wear.2009.08.016
– volume: 7
  start-page: 32
  issue: 4
  year: 2019
  ident: 596_CR93
  publication-title: Lubricants
  doi: 10.3390/lubricants7040032
– volume: 5
  start-page: 14545
  issue: 6
  year: 2018
  ident: 596_CR85
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2018.03.044
– volume: 32
  start-page: 174
  issue: 2
  year: 2019
  ident: 596_CR45
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2018.1550681
– volume: 100
  start-page: 863
  year: 2018
  ident: 596_CR131
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.08.014
– volume: 207
  start-page: 213
  issue: 2
  year: 2020
  ident: 596_CR69
  publication-title: Chem Eng Commun
  doi: 10.1080/00986445.2019.1578757
– volume: 101
  start-page: 2861
  issue: 9–12
  year: 2019
  ident: 596_CR22
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3157-5
– volume: 18
  start-page: 823
  issue: 3
  year: 2018
  ident: 596_CR107
  publication-title: Sensors
  doi: 10.3390/s18030823
– volume: 426–427
  start-page: 1740
  year: 2019
  ident: 596_CR137
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.089
– volume: 7
  start-page: 95
  issue: 11
  year: 2019
  ident: 596_CR80
  publication-title: Lubricants
  doi: 10.3390/lubricants7110095
– volume: 4
  start-page: e00938
  issue: 11
  year: 2018
  ident: 596_CR10
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 38
  start-page: 879
  issue: 10
  year: 2005
  ident: 596_CR30
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2005.03.012
– volume: 422–423
  start-page: 9
  year: 2019
  ident: 596_CR53
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.081
– volume: 25
  start-page: 400
  issue: 1
  year: 2011
  ident: 596_CR24
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2010.07.014
– volume: 24
  start-page: 9
  issue: 1
  year: 2018
  ident: 596_CR70
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2017.1333926
– volume: 28
  start-page: 1285
  issue: 6
  year: 2017
  ident: 596_CR110
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1155-0
– volume: 31
  start-page: 1972
  issue: 11
  year: 2018
  ident: 596_CR17
  publication-title: Int J Eng
– volume: 9
  start-page: 1726
  issue: 6
  year: 2021
  ident: 596_CR60
  publication-title: Friction
  doi: 10.1007/s40544-021-0493-5
– volume: 61
  start-page: 1
  year: 2021
  ident: 596_CR100
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.08.001
– volume: 32
  start-page: 445
  issue: 2
  year: 2021
  ident: 596_CR55
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2020.12.024
– volume: 54
  start-page: 179
  issue: 2
  year: 2020
  ident: 596_CR84
  publication-title: J Compos Mater
  doi: 10.1177/0021998319859924
– volume: 140
  start-page: 105813
  year: 2019
  ident: 596_CR90
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.06.006
– volume: 155
  start-page: 106811
  year: 2021
  ident: 596_CR27
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106811
– volume: 4
  start-page: 105
  issue: 2
  year: 2016
  ident: 596_CR58
  publication-title: Friction
  doi: 10.1007/s40544-016-0104-z
– volume: 20
  start-page: 021001
  issue: 2
  year: 2020
  ident: 596_CR133
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4045291
– volume: 53
  start-page: 215
  year: 2018
  ident: 596_CR41
  publication-title: Robotics Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.03.011
– volume: 1063
  start-page: 012135
  year: 2018
  ident: 596_CR66
  publication-title: J Phys: Conf Ser
– volume: 8
  start-page: 107
  issue: 1
  year: 2020
  ident: 596_CR47
  publication-title: Friction
  doi: 10.1007/s40544-018-0249-z
– volume: 76
  start-page: 78
  issue: 6
  year: 2020
  ident: 596_CR89
  publication-title: Tribol Lubr Technol
– volume: 192
  start-page: 67
  year: 2020
  ident: 596_CR123
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.03.047
– volume: 16
  start-page: 2644
  issue: 7
  year: 2019
  ident: 596_CR20
  publication-title: J Comput Theor Nanosci
  doi: 10.1166/jctn.2019.8152
– volume: 140
  start-page: 031610
  issue: 3
  year: 2018
  ident: 596_CR43
  publication-title: J Tribol
  doi: 10.1115/1.4038688
– volume: 29
  start-page: 6591
  issue: 10
  year: 2020
  ident: 596_CR97
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-020-05132-x
– volume: 142
  start-page: 021703
  issue: 2
  year: 2020
  ident: 596_CR67
  publication-title: J Tribol
  doi: 10.1115/1.4045013
– volume: 10
  start-page: 583
  year: 2022
  ident: 596_CR19
  publication-title: Friction
  doi: 10.1007/s40544-021-0518-0
– volume: 47
  start-page: 211
  issue: 2
  year: 2012
  ident: 596_CR88
  publication-title: Tribol Lett
  doi: 10.1007/s11249-012-9975-y
– volume: 133
  start-page: 101
  year: 2019
  ident: 596_CR56
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.01.014
– volume: 6
  start-page: 108
  issue: 4
  year: 2018
  ident: 596_CR32
  publication-title: Lubricants
  doi: 10.3390/lubricants6040108
– volume: 10
  start-page: 4421
  issue: 13
  year: 2020
  ident: 596_CR7
  publication-title: Appl Sci
  doi: 10.3390/app10134421
– volume: 10
  start-page: 6357
  issue: 18
  year: 2020
  ident: 596_CR51
  publication-title: Appl Sci
  doi: 10.3390/app10186357
– volume: 9
  start-page: 86
  issue: 9
  year: 2021
  ident: 596_CR142
  publication-title: Lubricants
  doi: 10.3390/lubricants9090086
– volume: 37
  start-page: 3766
  issue: 12
  year: 2021
  ident: 596_CR79
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00358
– volume: 146
  start-page: 103452
  year: 2019
  ident: 596_CR99
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2019.103452
– volume: 354
  start-page: 118
  year: 2015
  ident: 596_CR103
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2015.06.011
– volume: 34
  start-page: 446
  year: 2019
  ident: 596_CR46
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2019.06.192
– volume: 42
  start-page: 1
  issue: 1
  year: 2022
  ident: 596_CR126
  publication-title: Int J Model Simul
  doi: 10.1080/02286203.2020.1803605
– volume: 43
  start-page: 218
  issue: 1–2
  year: 2010
  ident: 596_CR140
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2009.05.019
– volume: 181
  start-page: 109599
  year: 2021
  ident: 596_CR138
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109599
– volume: 16
  start-page: 489
  issue: 3
  year: 2009
  ident: 596_CR96
  publication-title: Journal of KONES
– volume: 234
  start-page: 329
  issue: 1
  year: 2020
  ident: 596_CR111
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1177/0954406219873932
– volume: 135
  start-page: 514
  issue: 1
  year: 2012
  ident: 596_CR3
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2011.09.001
– volume: 8
  start-page: 044002
  issue: 4
  year: 2020
  ident: 596_CR68
  publication-title: Surf Topogr: Metrol Prop
  doi: 10.1088/2051-672X/abae13
– volume: 144
  start-page: 011701
  issue: 1
  year: 2022
  ident: 596_CR16
  publication-title: J Tribol
  doi: 10.1115/1.4050525
– volume: 48
  start-page: 95
  issue: 1–4
  year: 2010
  ident: 596_CR129
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2266-6
– volume: 104
  start-page: 556
  year: 2018
  ident: 596_CR104
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.021
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 596_CR11
  publication-title: IEEE Intelligent Systems and Their Applications
  doi: 10.1109/5254.708428
– volume: 140
  start-page: 041005
  issue: 4
  year: 2018
  ident: 596_CR15
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4038002
– start-page: 119
  volume-title: Welding and Cutting Case Studies with Supervised Machine Learning
  year: 2020
  ident: 596_CR124
  doi: 10.1007/978-981-13-9382-2_3
– ident: 596_CR134
  doi: 10.1007/978-3-030-20131-9_379
– volume: 476
  start-page: 203616
  year: 2021
  ident: 596_CR26
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203616
– volume: 7
  start-page: 572
  issue: 6
  year: 2019
  ident: 596_CR31
  publication-title: Friction
  doi: 10.1007/s40544-018-0244-4
– volume: 29
  start-page: 1683
  issue: 8
  year: 2018
  ident: 596_CR102
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1206-1
– volume: 13
  start-page: 1541
  issue: 4
  year: 2017
  ident: 596_CR139
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2016.2635082
– volume: 23
  start-page: 4311
  issue: 10
  year: 2019
  ident: 596_CR71
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-2217-1
– volume: 139
  start-page: 071018
  issue: 7
  year: 2017
  ident: 596_CR14
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4036350
– volume: 94
  start-page: 509
  year: 2016
  ident: 596_CR73
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2015.10.009
– volume: 147
  start-page: 106280
  year: 2020
  ident: 596_CR25
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106280
– volume: 151
  start-page: 106379
  year: 2020
  ident: 596_CR135
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106379
– volume: 144
  start-page: 135
  year: 2019
  ident: 596_CR118
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.018
– volume: 57
  start-page: 298
  year: 2020
  ident: 596_CR44
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.09.005
– volume: 84
  start-page: 1981
  issue: 9–12
  year: 2016
  ident: 596_CR61
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7812-9
– volume: 9
  start-page: 2
  issue: 1
  year: 2020
  ident: 596_CR8
  publication-title: Lubricants
  doi: 10.3390/lubricants9010002
– ident: 596_CR130
  doi: 10.48550/arXiv.2109.00570
– volume: 27
  start-page: 220
  issue: 2
  year: 2021
  ident: 596_CR40
  publication-title: Met Mater Int
  doi: 10.1007/s12540-020-00809-3
– volume: 9
  start-page: 2788
  issue: 14
  year: 2019
  ident: 596_CR81
  publication-title: Appl Sci
  doi: 10.3390/app9142788
– volume: 13
  start-page: 3489
  issue: 16
  year: 2020
  ident: 596_CR74
  publication-title: Materials
  doi: 10.3390/ma13163489
– volume: 476
  start-page: 203696
  year: 2021
  ident: 596_CR132
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203696
– volume: 9
  start-page: 20277
  year: 2019
  ident: 596_CR91
  publication-title: Sci Reports
– volume: 234
  start-page: 1580
  issue: 13
  year: 2020
  ident: 596_CR63
  publication-title: Proc Inst Mech Eng B J Eng Manuf
  doi: 10.1177/0954405420935787
– volume: 5
  start-page: 351
  issue: 3
  year: 2017
  ident: 596_CR146
  publication-title: Friction
  doi: 10.1007/s40544-017-0185-3
– volume: 9
  start-page: 642
  issue: 3
  year: 2021
  ident: 596_CR5
  publication-title: Friction
  doi: 10.1007/s40544-020-0457-3
– volume: 9
  start-page: 250
  issue: 2
  year: 2021
  ident: 596_CR59
  publication-title: Friction
  doi: 10.1007/s40544-019-0332-0
– volume: 5
  start-page: 1048
  year: 2018
  ident: 596_CR115
  publication-title: MethodsX
  doi: 10.1016/j.mex.2018.09.002
– volume: 10
  start-page: 2287
  issue: 11
  year: 2020
  ident: 596_CR78
  publication-title: Nanomaterials
  doi: 10.3390/nano10112287
– volume: 10
  start-page: 2000137
  issue: 17
  year: 2020
  ident: 596_CR144
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202000137
– ident: 596_CR36
  doi: 10.1007/s00366-020-01272-9
– volume: 8
  start-page: 29
  issue: 3
  year: 2020
  ident: 596_CR28
  publication-title: Lubricants
  doi: 10.3390/lubricants8030029
– volume: 456–457
  start-page: 203355
  year: 2020
  ident: 596_CR39
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203355
– volume: 29
  start-page: 84
  year: 2021
  ident: 596_CR98
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2021.07.005
– volume: 111
  start-page: 1
  year: 2019
  ident: 596_CR106
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.06.001
– volume: 470
  start-page: 584
  issue: 1–2
  year: 2009
  ident: 596_CR54
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.03.035
– volume: 16
  start-page: e0255637
  issue: 8
  year: 2021
  ident: 596_CR141
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0255637
– volume: 88
  start-page: 081007
  issue: 8
  year: 2021
  ident: 596_CR1
  publication-title: J Appl Mech
  doi: 10.1115/1.4051332
– volume: 1047
  start-page: 012053
  issue: 1
  year: 2021
  ident: 596_CR95
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/1047/1/012053
– volume: 4
  start-page: 218
  issue: 11
  year: 2016
  ident: 596_CR12
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2016.03.37
– volume-title: Artificial Intelligence in Mechanical and Industrial Engineering
  year: 2021
  ident: 596_CR94
– volume: 72–73
  start-page: 346
  year: 2016
  ident: 596_CR29
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.10.013
– volume: 61
  start-page: 563
  issue: 4
  year: 2013
  ident: 596_CR4
  publication-title: Educ Technol Res Dev
  doi: 10.1007/s11423-013-9305-6
– volume: 5
  start-page: 30
  year: 2019
  ident: 596_CR9
  publication-title: Front Mech Eng
  doi: 10.3389/fmech.2019.00030
– volume: 9
  start-page: 57
  issue: 5
  year: 2021
  ident: 596_CR77
  publication-title: Lubricants
  doi: 10.3390/lubricants9050057
– volume: 36
  start-page: 5455
  issue: 11
  year: 2012
  ident: 596_CR82
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.12.059
– volume: 47
  start-page: 615
  year: 2020
  ident: 596_CR35
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2020.04.189
– volume: 77
  start-page: 501
  year: 2018
  ident: 596_CR42
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.253
– ident: 596_CR37
  doi: 10.2118/187974-MS
– volume: 27
  start-page: 8
  year: 2017
  ident: 596_CR127
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2017.03.012
– volume: 30
  start-page: 464
  issue: 3
  year: 2011
  ident: 596_CR2
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2011.0178
– volume: 478–479
  start-page: 203902
  year: 2021
  ident: 596_CR108
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203902
– volume: 27
  start-page: 193
  issue: 2
  year: 2021
  ident: 596_CR119
  publication-title: Met Mater Int
  doi: 10.1007/s12540-020-00854-y
– volume: 42
  start-page: 1
  issue: 4
  year: 2020
  ident: 596_CR136
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-020-2235-4
– volume: 235
  start-page: 1575
  issue: 8
  year: 2021
  ident: 596_CR92
  publication-title: Proc Inst Mech Eng Part J J Eng Tribol
  doi: 10.1177/1350650120965754
– volume: 14
  start-page: 397
  issue: 3
  year: 2018
  ident: 596_CR18
  publication-title: Int J Perform Eng
– volume: 109
  start-page: 2491
  issue: 9–12
  year: 2020
  ident: 596_CR49
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05785-x
– volume: 271
  start-page: 2132
  issue: 9–10
  year: 2011
  ident: 596_CR87
  publication-title: Wear
  doi: 10.1016/j.wear.2010.11.049
– volume: 82
  start-page: 302
  year: 2019
  ident: 596_CR34
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.04.031
– ident: 596_CR48
  doi: 10.1007/978-3-658-32182-6_7
– volume: 16
  start-page: 4423
  issue: 7
  year: 2020
  ident: 596_CR114
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2948023
– volume: 32
  start-page: 171
  issue: 2
  year: 2020
  ident: 596_CR116
  publication-title: Jurnal Kejuruteraan
  doi: 10.17576/jkukm-2020-32(2)-01
SSID ssib034325170
ssib051869655
ssib044737295
ssj0001507040
ssib051367616
ssib042110735
ssib044084447
Score 2.4899797
SecondaryResourceType review_article
Snippet Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. With the continuous increase in the industrialization of...
Tribology research mainly focuses on the friction,wear,and lubrication between interacting surfaces.With the continuous increase in the industrialization of...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Corrosion and Coatings
Empirical analysis
Engineering
Informatics
Mechanical Engineering
Nanotechnology
Physical Chemistry
Review Article
Surfaces and Interfaces
Thin Films
Tribology
SummonAdditionalLinks – databaseName: Career & Technical Education Database
  dbid: 7RQ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-DnrwLa4vcvCkBJtt0rQiiIjiQUREwVvptKkK2lV3Vfz3zqRpq5e9eCskbelMJjOdyXwfY7sA6PQCmwkTBSCUCSzanFYiAdMvrFJag2sUvjRXV_H9fXLtE25Df6yy2RPdRl0McsqRH6CbjdC9KamOX98EsUZRddVTaEyyaXTUEa1zc9OGQ9QzqWW3HpX72enCAyJbVqoLp_GSiljtuHZwZl34pIm-qenjrLuQ0WBczyV5WfzcpC2cUncexkJKCTouTxw3wvx1fV0825ZgXeNQVWbVwy8fd77wX-kssnkf3fKTejkusQlbLbO5X5iHK-yIsEoGwgO2Ekg0b3DN7ZA_VZwouFyun3sgosdDfsLrFptVdnd-dnt6ITyFg8jDRI4ESgsiWYT9AmKIQmMgtqoPICE2gMFCmQQlFDLLchmXkbQ6TCApAQWNuopsP1xjU9WgsuuMZ2BlDLjfQFEqqwvIISg16jQ3BT5P9VjQSDfNPb450Ww8py0ys1NIigpJSSGp6bG99pbXGtxj3OStRvSpt_Nh2sm9x_YbNXbDYx7Gvaa7yS95-v0FRGcfEDDWxvj3bbJZmlpng7bY1Oj9w26zmfxz9DR833F28AMPaAGA
  priority: 102
  providerName: ProQuest
Title Tribo-informatics approaches in tribology research: A review
URI https://link.springer.com/article/10.1007/s40544-022-0596-7
https://www.proquest.com/docview/2736075414
https://d.wanfangdata.com.cn/periodical/mc-ywb202301001
Volume 11
WOSCitedRecordID wos000789744400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044737295
  issn: 2223-7690
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Career & Technical Education Database
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: 7RQ
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/career
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: M2O
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2223-7704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001507040
  issn: 2223-7690
  databaseCode: C24
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V6KEc6BPx6sqHnlq5ihM7ThAXQIuKWrZb2kr0FGUSp0WCgNiFqpf-9s44LypVSOViRYrtJDN-fLH9fQPwCpEmvcDl0sYBSm0DR33OaJmiDUuntTHoicIf7GSSnJyk05bHPetOu3dbkn6k7sluBC20lnz6nEPGSLsAS0YlKZ_j2x8kx5koadTQCLX_wxkwAUdY1nrA0HTJO1f9feM1zAbMZDhmU0febKjH1Es80ZKnVvrGtN8t_ddb_j3fDSC233f1bKG6yuvvtya2g8f3MskTWGlxrNhtGt5TeODqZ7B8S93wOeywKsmFbKVZWQ5adArmbiZOa8HBtvyqvmglh35si13RkGlewNeD8Zf9d7IN1iCLKFVzSSbCWJVRWGKCcWQtJk6HiAoTiwQLqjSosFR5XqikipUzUYpphWRdclDswmgVFuuL2q2ByNGpBGlkwbLSzpRYYFAZcmRhS6pPr0PQmTQrWiVzDqhxlvUazN4wGRkmY8Nkdh1e90UuGxmPuzJvdX7K2h49ywjmxQSvtKLHv-m8Mdy-ozLRunfIfF5kv34iB64PWAJr478q3IRHXLJZBtqCxfnVtXsJD4ub-ensagQL9vjTCJb2xpPp8cj3jJFfZ6D0_d5bSo_Cj5zaz5z-HlPe6eHR9NsfgAX_bg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRL0UN5qSoE9wAW0wuvsem0EQhVQNWoa5VCkcjIee00rFac0gap_it_IjO21yyW3HrhZ8lOebx7r8fcNwAtESnqBy6SNApTaBo58zmiZoA0Lp7UxWBOFJ3Y6jY-Pk9ka_PFcGP6t0sfEOlAX85y_kb-hNBtRetNKfzj_KXlqFHdX_QiNBhYH7uqSlmyL9-NPZN-XYbj3-ejjvmynCsh8lKiljOj2kSpGYYExRiNrMXY6RFQYW6T8VSZBiYXKslzFZaScGSWYlKio9Fcqcix0QCF_XTPYB7A-Gx_OvnoEM0vTqN4DdL286gsSHu-sdV_A0ya3zbr9phZQ6ws2wwOjPHO04T2Ti9YsT87r9IKTrlXLfECqvrSW_IM-T9WR9t9k21fQXdO3pipVZVZ9v5ZV9-7-b_a4B5tt_S52G4e7D2uuegAb11QdH8I7VmOZy1aSlmWwhVdudwtxWgkeMlZ3M0QrtXTyVuyKhkT0CL7cyOM_hkE1r9wWiAydipEiKhaldqbAHIPSEIZyW9D19BACb800bxXceZDIWdppT9cASAkAKQMgtUN41Z1y3siXrDp4x5s6bSPZIu3tPITXHjb97hUXEy2y-oN_5OnVJYa87GXpr-3V93sOt_ePDifpZDw9eAJ3-LTm29cODJYXv9xTuJX_Xp4uLp61Xijg200D7S_aCV-G
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJwKM-KtAX2ABfQql5n7bURCFWUiKglygGkclo89hoqgdM2aav-NX4dM7bXLpfceuAWyY9Ynm8e69nvG4AXiJT0ApdJEwcotQkc-VykZYomLJzWUYQ1UfjQTKfJ0VE6W4M_ngvD2yp9TKwDdTHP-Rv5LqXZmNKbVnq3bLdFzPbH709OJU-Q4k6rH6fRQOTAXV3S8m3xbrJPtn4ZhuOPXz58ku2EAZmPUrWUMT1KrIpRWGCC8cgYTJwOERUmBimXlWlQYqGyLFdJGSsXjVJMS1S0DFAqdix6QOF_nUpyHQ5gfTb5PPvm0cyMzUj13qDrpVZfnPCoZ637Yp5-cgutOx7VYmp98Rbx8CjPIm040OSuNeOTczy97LRr2zI3kCoxrSVv1ucJO9L8m3j7arprANe0parMqh_XMuz43v9sm_uw0db1Yq9xxAew5qqHcPea2uMjeMsqLXPZStWyPLbwiu5uIY4rwcPH6i6HaCWYfr4Re6IhFz2Grzfy-JswqOaVewIiQ6cSpEiLRaldVGCOQRkRnnJT0P30EAJvWZu3yu48YOSX7TSpazBYAoNlMFgzhFfdJSeNrMmqk3e82W0b4Ra2t_kQXnsI9YdX3Ey0KOtP_p3bq0sMeTnMkmBbq__vOdwmdNnDyfRgG-7wVc0nsR0YLM_O3VO4lV8sjxdnz1qHFPD9pnH2FwoFaEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tribo-informatics+approaches+in+tribology+research%3AA+review&rft.jtitle=%E6%91%A9%E6%93%A6%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Nian+YIN&rft.au=Zhiguo+XING&rft.au=Ke+HE&rft.au=Zhinan+ZHANG&rft.date=2023&rft.pub=School+of+Mechanical+Engineering%2CShanghai+Jiao+Tong+University%2CShanghai+200240%2CChina%25National+Key+Laboratory+for+Remanufacturing%2CArmy+Academy+of+Armored+Forces%2CBeijing+100072%2CChina&rft.issn=2223-7690&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs40544-022-0596-7&rft.externalDocID=mc_ywb202301001
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmc-ywb%2Fmc-ywb.jpg