On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries

•Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 380; s. 378 - 399
Hlavní autori: Bayona, Víctor, Flyer, Natasha, Fornberg, Bengt
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge Elsevier Inc 01.03.2019
Elsevier Science Ltd
Predmet:
ISSN:0021-9991, 1090-2716
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-form expression for the RBF+poly cardinal functions.•It explains the role of polynomials and RBFs in RBF+poly approximations. Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D.
AbstractList •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-form expression for the RBF+poly cardinal functions.•It explains the role of polynomials and RBFs in RBF+poly approximations. Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D.
Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D.
Author Bayona, Víctor
Fornberg, Bengt
Flyer, Natasha
Author_xml – sequence: 1
  givenname: Víctor
  surname: Bayona
  fullname: Bayona, Víctor
  email: victor.bayona.revilla@gmail.com
  organization: Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
– sequence: 2
  givenname: Natasha
  surname: Flyer
  fullname: Flyer, Natasha
  email: flyer@ucar.edu
  organization: Analytics and Integrated Machine Learning, National Center for Atmospheric Research, Boulder, CO 80305, USA
– sequence: 3
  givenname: Bengt
  surname: Fornberg
  fullname: Fornberg, Bengt
  email: fornberg@colorado.edu
  organization: Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
BookMark eNp9kLFOwzAQhi0EEi3wAGyWmBN8Dk1imChQqISEhGBgslz7LBy1drDTCt4elzIxMN3yf__dfWOy74NHQk6BlcCgPu_KTvclZ9CWwEsG1R4ZAROs4A3U-2TEGIdCCAGHZJxSxxhrJxftiLw9eTq8I41hiTRY2ofllw8rp5aJOk-fp7NidktV38fw6VZqcMGnSzqfz0s6xXe1cSFSjypSE1YqA4uw9kZFh-mYHNjcgie_84i8zu5ebh6Kx6f7-c31Y6ErAUNRQ62YgcnCWouaWyPspFGNVbw1k5qjFReaVbWxOce5rXRVMYMWed3UC2FNdUTOdr35xI81pkF2YR19Xik5tI2ARvAqp2CX0jGkFNHKPuZ_4pcEJrcGZSezQbk1KIHLbDAzzR9Gu-FHwRCVW_5LXu1IzI9vHEaZtEOv0biIepAmuH_ob_D-jSE
CitedBy_id crossref_primary_10_1137_19M1288747
crossref_primary_10_1088_1742_6596_2766_1_012158
crossref_primary_10_1016_j_enganabound_2025_106154
crossref_primary_10_1007_s10092_024_00570_8
crossref_primary_10_1016_j_enganabound_2022_01_016
crossref_primary_10_3390_math9161845
crossref_primary_10_1007_s10915_019_01065_3
crossref_primary_10_1016_j_compstruc_2025_107841
crossref_primary_10_1155_2022_3718132
crossref_primary_10_1016_j_jcp_2023_112235
crossref_primary_10_1016_j_camwa_2024_09_003
crossref_primary_10_1016_j_ijft_2024_101041
crossref_primary_10_1007_s11004_019_09820_w
crossref_primary_10_1016_j_enganabound_2020_08_017
crossref_primary_10_1016_j_apm_2021_01_032
crossref_primary_10_1088_1742_6596_1599_1_012045
crossref_primary_10_1080_00207160_2025_2533348
crossref_primary_10_1016_j_jocs_2022_101777
crossref_primary_10_1088_1742_6596_2766_1_012162
crossref_primary_10_1016_j_enganabound_2024_105794
crossref_primary_10_1016_j_jcp_2021_110623
crossref_primary_10_1016_j_tafmec_2025_105078
crossref_primary_10_1007_s12190_025_02510_3
crossref_primary_10_1016_j_jcp_2024_112822
crossref_primary_10_1016_j_amc_2023_128208
crossref_primary_10_1016_j_jcp_2022_111496
crossref_primary_10_1007_s10915_020_01176_2
crossref_primary_10_1016_j_enganabound_2024_105919
crossref_primary_10_1016_j_jcp_2022_111214
crossref_primary_10_1016_j_enganabound_2019_09_013
crossref_primary_10_3390_mca29020023
crossref_primary_10_1007_s10915_019_01028_8
crossref_primary_10_1016_j_aml_2020_106618
crossref_primary_10_1088_1742_6596_1868_1_012021
crossref_primary_10_3390_met15091007
crossref_primary_10_1007_s10915_020_01231_y
crossref_primary_10_1007_s10915_023_02123_7
crossref_primary_10_1016_j_jocs_2024_102284
crossref_primary_10_1016_j_enganabound_2023_01_032
crossref_primary_10_1145_3414685_3417794
crossref_primary_10_1016_j_enganabound_2024_105966
crossref_primary_10_1016_j_jcp_2020_109256
crossref_primary_10_1007_s00466_022_02249_9
crossref_primary_10_1007_s10915_023_02260_z
crossref_primary_10_1007_s11770_022_0981_z
crossref_primary_10_1016_j_camwa_2023_07_015
crossref_primary_10_1016_j_jcp_2021_110633
crossref_primary_10_1145_3528223_3530134
crossref_primary_10_1007_s00366_020_01013_y
crossref_primary_10_1007_s11075_024_01835_7
crossref_primary_10_1007_s10915_020_01399_3
crossref_primary_10_1016_j_enganabound_2025_106367
crossref_primary_10_1016_j_enganabound_2024_106027
crossref_primary_10_1016_j_enganabound_2024_106025
crossref_primary_10_1137_20M1337016
crossref_primary_10_1016_j_engfracmech_2025_111207
crossref_primary_10_1016_j_enganabound_2025_106121
crossref_primary_10_3390_e25050804
crossref_primary_10_1137_20M1320079
crossref_primary_10_1007_s00366_019_00877_z
crossref_primary_10_3390_app14156850
crossref_primary_10_1016_j_jcp_2022_111756
crossref_primary_10_1016_j_apnum_2024_03_015
Cites_doi 10.1016/j.jcp.2016.12.008
10.1016/j.camwa.2007.01.028
10.1016/j.proeng.2015.10.143
10.1016/S0898-1221(01)00299-1
10.1016/j.camwa.2018.12.029
10.1016/j.jcp.2017.11.010
10.1016/j.jcp.2016.05.026
10.1017/S0962492914000130
10.1016/j.jcp.2016.02.078
10.1093/imanum/drm014
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier Science Ltd. Mar 1, 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2019
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2018.12.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 399
ExternalDocumentID 10_1016_j_jcp_2018_12_013
S002199911830809X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-616a0d15bfffec2fd9f57a7fa28d562ef94c036df16a22f3c330defe2676b9fd3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458145900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 09 07:16:11 EST 2025
Tue Nov 18 21:39:25 EST 2025
Sat Nov 29 03:10:22 EST 2025
Fri Feb 23 02:17:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis functions
RBF-FD
PHS
Runge's phenomenon
RBF
Cubic polyharmonic splines
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-616a0d15bfffec2fd9f57a7fa28d562ef94c036df16a22f3c330defe2676b9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2187917923
PQPubID 2047462
PageCount 22
ParticipantIDs proquest_journals_2187917923
crossref_primary_10_1016_j_jcp_2018_12_013
crossref_citationtrail_10_1016_j_jcp_2018_12_013
elsevier_sciencedirect_doi_10_1016_j_jcp_2018_12_013
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Flyer, Barnett, Wicker (br0060) 2016; 316
Reeger, Fornberg (br0130) 2018; 355
Fasshauer (br0050) 2007; vol. 6
Fornberg, Flyer (br0100) 2015; 24
Bayona (br0020) 2019
Engwirda (br0040) 2015; 124
Bayona, Flyer, Fornberg, Barnett (br0030) 2017; 332
Barnett (br0010) 2015
Fornberg, Driscoll, Wright, Charles (br0080) 2002; 43
Flyer, Fornberg, Bayona, Barnett (br0070) 2016; 321
Fornberg, Flyer (br0090) 2015
Fornberg, Zuev (br0120) 2007; 54
Fornberg, Flyer, Hovde, Piret (br0110) 2007; 28
Fornberg (10.1016/j.jcp.2018.12.013_br0090) 2015
Reeger (10.1016/j.jcp.2018.12.013_br0130) 2018; 355
Fornberg (10.1016/j.jcp.2018.12.013_br0120) 2007; 54
Bayona (10.1016/j.jcp.2018.12.013_br0020) 2019
Flyer (10.1016/j.jcp.2018.12.013_br0060) 2016; 316
Flyer (10.1016/j.jcp.2018.12.013_br0070) 2016; 321
Fasshauer (10.1016/j.jcp.2018.12.013_br0050) 2007; vol. 6
Fornberg (10.1016/j.jcp.2018.12.013_br0110) 2007; 28
Fornberg (10.1016/j.jcp.2018.12.013_br0100) 2015; 24
Fornberg (10.1016/j.jcp.2018.12.013_br0080) 2002; 43
Barnett (10.1016/j.jcp.2018.12.013_br0010) 2015
Bayona (10.1016/j.jcp.2018.12.013_br0030) 2017; 332
Engwirda (10.1016/j.jcp.2018.12.013_br0040) 2015; 124
References_xml – volume: 316
  start-page: 39
  year: 2016
  end-page: 62
  ident: br0060
  article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 321
  start-page: 21
  year: 2016
  end-page: 38
  ident: br0070
  article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy
  publication-title: J. Comput. Phys.
– year: 2015
  ident: br0090
  article-title: A Primer on Radial Basis Functions with Applications to the Geosciences
– volume: 54
  start-page: 379
  year: 2007
  end-page: 398
  ident: br0120
  article-title: The Runge phenomenon and spatially variable shape parameters in RBF interpolation
  publication-title: Comput. Math. Appl.
– volume: vol. 6
  year: 2007
  ident: br0050
  article-title: Meshfree Approximation Methods with MATLAB
  publication-title: Interdisciplinary Mathematical Sciences
– volume: 28
  start-page: 121
  year: 2007
  end-page: 142
  ident: br0110
  article-title: Locality properties of radial basis function expansion coefficients for equispaced interpolation
  publication-title: IMA J. Numer. Anal.
– volume: 355
  start-page: 176
  year: 2018
  end-page: 190
  ident: br0130
  article-title: Numerical quadrature over smooth surfaces with boundaries
  publication-title: J. Comput. Phys.
– year: 2015
  ident: br0010
  article-title: A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials
– volume: 43
  start-page: 473
  year: 2002
  end-page: 490
  ident: br0080
  article-title: Observations on the behavior of radial basis function approximations near boundaries
  publication-title: Comput. Math. Appl.
– volume: 332
  start-page: 257
  year: 2017
  end-page: 273
  ident: br0030
  article-title: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs
  publication-title: J. Comput. Phys.
– year: 2019
  ident: br0020
  article-title: An insight into RBF-FD approximations augmented with polynomials
  publication-title: Comput. Math. Appl.
– volume: 124
  start-page: 330
  year: 2015
  end-page: 342
  ident: br0040
  article-title: Voronoi-based point-placement for three-dimensional Delaunay-refinement
  publication-title: Proc. Eng.
– volume: 24
  start-page: 215
  year: 2015
  end-page: 258
  ident: br0100
  article-title: Solving PDEs with radial basis functions
  publication-title: Acta Numer.
– volume: 332
  start-page: 257
  year: 2017
  ident: 10.1016/j.jcp.2018.12.013_br0030
  article-title: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.008
– volume: 54
  start-page: 379
  year: 2007
  ident: 10.1016/j.jcp.2018.12.013_br0120
  article-title: The Runge phenomenon and spatially variable shape parameters in RBF interpolation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.01.028
– volume: 124
  start-page: 330
  year: 2015
  ident: 10.1016/j.jcp.2018.12.013_br0040
  article-title: Voronoi-based point-placement for three-dimensional Delaunay-refinement
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2015.10.143
– volume: 43
  start-page: 473
  issue: 3–5
  year: 2002
  ident: 10.1016/j.jcp.2018.12.013_br0080
  article-title: Observations on the behavior of radial basis function approximations near boundaries
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00299-1
– year: 2019
  ident: 10.1016/j.jcp.2018.12.013_br0020
  article-title: An insight into RBF-FD approximations augmented with polynomials
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.12.029
– volume: vol. 6
  year: 2007
  ident: 10.1016/j.jcp.2018.12.013_br0050
  article-title: Meshfree Approximation Methods with MATLAB
– volume: 355
  start-page: 176
  year: 2018
  ident: 10.1016/j.jcp.2018.12.013_br0130
  article-title: Numerical quadrature over smooth surfaces with boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.010
– volume: 321
  start-page: 21
  year: 2016
  ident: 10.1016/j.jcp.2018.12.013_br0070
  article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.026
– year: 2015
  ident: 10.1016/j.jcp.2018.12.013_br0010
– volume: 24
  start-page: 215
  year: 2015
  ident: 10.1016/j.jcp.2018.12.013_br0100
  article-title: Solving PDEs with radial basis functions
  publication-title: Acta Numer.
  doi: 10.1017/S0962492914000130
– volume: 316
  start-page: 39
  year: 2016
  ident: 10.1016/j.jcp.2018.12.013_br0060
  article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.078
– year: 2015
  ident: 10.1016/j.jcp.2018.12.013_br0090
– volume: 28
  start-page: 121
  issue: 1
  year: 2007
  ident: 10.1016/j.jcp.2018.12.013_br0110
  article-title: Locality properties of radial basis function expansion coefficients for equispaced interpolation
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drm014
SSID ssj0008548
Score 2.5791986
Snippet •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near...
Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 378
SubjectTerms Basis functions
Boundaries
Computational physics
Cubic polyharmonic splines
Finite difference method
Ill-conditioned problems (mathematics)
PHS
Polynomials
Radial basis function
Radial basis functions
RBF
RBF-FD
Runge's phenomenon
Splines
Title On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries
URI https://dx.doi.org/10.1016/j.jcp.2018.12.013
https://www.proquest.com/docview/2187917923
Volume 380
WOSCitedRecordID wos000458145900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxoELvxEbA_mAODBlym_b3DbWiqKpRahD5WQlTgytOre0YWr_A_5snmM7bTdRwYFLVKVxU_l9ef7y_N73EHpdFgAbGer4V5B6Mc2Flxck9vLEj0qSAemNsrrZBOn16HDIPrVav1wtzPWEKEWXSzb7r6aGc2BsXTr7D-ZufhROwGcwOhzB7HD8K8P31Vba4Gw6WenSYy2TPFLHn886XufcSIkvR6Zusc6K63a7J04tcX6stL5PMb3KYEhed16au2zD20xW1J0hXFTRxErW0fdsNTV1Z1_qTflzYfSNLWpWBjK9rMoW35slosk6OyvVt2ozMqGLoaLNyERTMuO81DpPyZQRBJ5mp2YhMt7XZ74XElN86dxzZDo9WQcbmYY_txy_iUGMT8ZCi5AGtI7xmirXbZHtXp93Li8u-KA9HLyZ_fB0_zG9T2-bsdxB-yFJGPjH_dNue_ixWdVpEptV3f5tt0Ne5wreuOufOM6N1b6mMIOH6L61GD41mHmEWqV6jB7Y9xBs52_xBH3tKwwQwhpCeCrxBoTwSGEDIbwNoXdYAwg7AGENIGwAhNcAeoouO-3B-w-ebcHhiYgFlZcGaeYXQZJLnV0UyoLJhGREZiEtgDmXksUCOFAh4bowlJGIIr8oZRmmJM2ZLKJnaE9NVfkcYcoEESxOJZW-VgWkuS8ElfD-T6kmvQfId5PGhdWn121SJtwlIo45zDPX88yDkMM8H6C3zZCZEWfZdXHsLMEtuzSskQOGdg07clbj9ilfcODFhAVaevNw99cv0L31k3GE9qr5z_Iluiuuq9Fi_spi7DdFmaED
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+polynomials+in+RBF-FD+approximations%3A+III.+Behavior+near+domain+boundaries&rft.jtitle=Journal+of+computational+physics&rft.au=Bayona%2C+V%C3%ADctor&rft.au=Flyer%2C+Natasha&rft.au=nberg%2C+Bengt&rft.date=2019-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=380&rft.spage=378&rft_id=info:doi/10.1016%2Fj.jcp.2018.12.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon