On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries
•Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-f...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 380; S. 378 - 399 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Elsevier Inc
01.03.2019
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-form expression for the RBF+poly cardinal functions.•It explains the role of polynomials and RBFs in RBF+poly approximations.
Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D. |
|---|---|
| AbstractList | Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D. •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near boundaries with an absence of Runge-phenomenon-type boundary errors.•Numerical explanations to this behavior are provided based on a closed-form expression for the RBF+poly cardinal functions.•It explains the role of polynomials and RBFs in RBF+poly approximations. Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become particularly effective when they are based on polyharmonic splines (PHS) augmented with multi-variate polynomials (PHS+poly). One key feature is that high orders of accuracy can be achieved without having to choose an optimal shape parameter and without having to deal with issues related to numerical ill-conditioning. The strengths of this approach were previously shown to be especially striking for approximations near domain boundaries, where the stencils become highly one-sided. Due to the polynomial Runge phenomenon, regular FD approximations of high accuracy will in such cases have very large weights well into the domain. The inclusion of PHS-type RBFs in the process of generating weights makes it possible to avoid this adverse effect. With that as motivation, this study aims at gaining a better understanding of the behavior of PHS+poly generated RBF-FD approximations near boundaries, illustrating it in 1-D, 2-D and 3-D. |
| Author | Bayona, Víctor Fornberg, Bengt Flyer, Natasha |
| Author_xml | – sequence: 1 givenname: Víctor surname: Bayona fullname: Bayona, Víctor email: victor.bayona.revilla@gmail.com organization: Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain – sequence: 2 givenname: Natasha surname: Flyer fullname: Flyer, Natasha email: flyer@ucar.edu organization: Analytics and Integrated Machine Learning, National Center for Atmospheric Research, Boulder, CO 80305, USA – sequence: 3 givenname: Bengt surname: Fornberg fullname: Fornberg, Bengt email: fornberg@colorado.edu organization: Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA |
| BookMark | eNp9kLFOwzAQhi0EEi3wAGyWmBN8Dk1imChQqISEhGBgslz7LBy1drDTCt4elzIxMN3yf__dfWOy74NHQk6BlcCgPu_KTvclZ9CWwEsG1R4ZAROs4A3U-2TEGIdCCAGHZJxSxxhrJxftiLw9eTq8I41hiTRY2ofllw8rp5aJOk-fp7NidktV38fw6VZqcMGnSzqfz0s6xXe1cSFSjypSE1YqA4uw9kZFh-mYHNjcgie_84i8zu5ebh6Kx6f7-c31Y6ErAUNRQ62YgcnCWouaWyPspFGNVbw1k5qjFReaVbWxOce5rXRVMYMWed3UC2FNdUTOdr35xI81pkF2YR19Xik5tI2ARvAqp2CX0jGkFNHKPuZ_4pcEJrcGZSezQbk1KIHLbDAzzR9Gu-FHwRCVW_5LXu1IzI9vHEaZtEOv0biIepAmuH_ob_D-jSE |
| CitedBy_id | crossref_primary_10_1137_19M1288747 crossref_primary_10_1088_1742_6596_2766_1_012158 crossref_primary_10_1016_j_enganabound_2025_106154 crossref_primary_10_1007_s10092_024_00570_8 crossref_primary_10_1016_j_enganabound_2022_01_016 crossref_primary_10_3390_math9161845 crossref_primary_10_1007_s10915_019_01065_3 crossref_primary_10_1016_j_compstruc_2025_107841 crossref_primary_10_1155_2022_3718132 crossref_primary_10_1016_j_jcp_2023_112235 crossref_primary_10_1016_j_camwa_2024_09_003 crossref_primary_10_1016_j_ijft_2024_101041 crossref_primary_10_1007_s11004_019_09820_w crossref_primary_10_1016_j_enganabound_2020_08_017 crossref_primary_10_1016_j_apm_2021_01_032 crossref_primary_10_1088_1742_6596_1599_1_012045 crossref_primary_10_1080_00207160_2025_2533348 crossref_primary_10_1016_j_jocs_2022_101777 crossref_primary_10_1088_1742_6596_2766_1_012162 crossref_primary_10_1016_j_enganabound_2024_105794 crossref_primary_10_1016_j_jcp_2021_110623 crossref_primary_10_1016_j_tafmec_2025_105078 crossref_primary_10_1007_s12190_025_02510_3 crossref_primary_10_1016_j_jcp_2024_112822 crossref_primary_10_1016_j_amc_2023_128208 crossref_primary_10_1016_j_jcp_2022_111496 crossref_primary_10_1007_s10915_020_01176_2 crossref_primary_10_1016_j_enganabound_2024_105919 crossref_primary_10_1016_j_jcp_2022_111214 crossref_primary_10_1016_j_enganabound_2019_09_013 crossref_primary_10_3390_mca29020023 crossref_primary_10_1007_s10915_019_01028_8 crossref_primary_10_1016_j_aml_2020_106618 crossref_primary_10_1088_1742_6596_1868_1_012021 crossref_primary_10_3390_met15091007 crossref_primary_10_1007_s10915_020_01231_y crossref_primary_10_1007_s10915_023_02123_7 crossref_primary_10_1016_j_jocs_2024_102284 crossref_primary_10_1016_j_enganabound_2023_01_032 crossref_primary_10_1145_3414685_3417794 crossref_primary_10_1016_j_enganabound_2024_105966 crossref_primary_10_1016_j_jcp_2020_109256 crossref_primary_10_1007_s00466_022_02249_9 crossref_primary_10_1007_s10915_023_02260_z crossref_primary_10_1007_s11770_022_0981_z crossref_primary_10_1016_j_camwa_2023_07_015 crossref_primary_10_1016_j_jcp_2021_110633 crossref_primary_10_1145_3528223_3530134 crossref_primary_10_1007_s00366_020_01013_y crossref_primary_10_1007_s11075_024_01835_7 crossref_primary_10_1007_s10915_020_01399_3 crossref_primary_10_1016_j_enganabound_2025_106367 crossref_primary_10_1016_j_enganabound_2024_106027 crossref_primary_10_1016_j_enganabound_2024_106025 crossref_primary_10_1137_20M1337016 crossref_primary_10_1016_j_engfracmech_2025_111207 crossref_primary_10_1016_j_enganabound_2025_106121 crossref_primary_10_3390_e25050804 crossref_primary_10_1137_20M1320079 crossref_primary_10_1007_s00366_019_00877_z crossref_primary_10_3390_app14156850 crossref_primary_10_1016_j_jcp_2022_111756 crossref_primary_10_1016_j_apnum_2024_03_015 |
| Cites_doi | 10.1016/j.jcp.2016.12.008 10.1016/j.camwa.2007.01.028 10.1016/j.proeng.2015.10.143 10.1016/S0898-1221(01)00299-1 10.1016/j.camwa.2018.12.029 10.1016/j.jcp.2017.11.010 10.1016/j.jcp.2016.05.026 10.1017/S0962492914000130 10.1016/j.jcp.2016.02.078 10.1093/imanum/drm014 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright Elsevier Science Ltd. Mar 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Mar 1, 2019 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2018.12.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 399 |
| ExternalDocumentID | 10_1016_j_jcp_2018_12_013 S002199911830809X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c391t-616a0d15bfffec2fd9f57a7fa28d562ef94c036df16a22f3c330defe2676b9fd3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458145900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sun Nov 09 07:16:11 EST 2025 Tue Nov 18 21:39:25 EST 2025 Sat Nov 29 03:10:22 EST 2025 Fri Feb 23 02:17:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Radial basis functions RBF-FD PHS Runge's phenomenon RBF Cubic polyharmonic splines |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-616a0d15bfffec2fd9f57a7fa28d562ef94c036df16a22f3c330defe2676b9fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2187917923 |
| PQPubID | 2047462 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2187917923 crossref_primary_10_1016_j_jcp_2018_12_013 crossref_citationtrail_10_1016_j_jcp_2018_12_013 elsevier_sciencedirect_doi_10_1016_j_jcp_2018_12_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 2019-03-00 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Flyer, Barnett, Wicker (br0060) 2016; 316 Reeger, Fornberg (br0130) 2018; 355 Fasshauer (br0050) 2007; vol. 6 Fornberg, Flyer (br0100) 2015; 24 Bayona (br0020) 2019 Engwirda (br0040) 2015; 124 Bayona, Flyer, Fornberg, Barnett (br0030) 2017; 332 Barnett (br0010) 2015 Fornberg, Driscoll, Wright, Charles (br0080) 2002; 43 Flyer, Fornberg, Bayona, Barnett (br0070) 2016; 321 Fornberg, Flyer (br0090) 2015 Fornberg, Zuev (br0120) 2007; 54 Fornberg, Flyer, Hovde, Piret (br0110) 2007; 28 Fornberg (10.1016/j.jcp.2018.12.013_br0090) 2015 Reeger (10.1016/j.jcp.2018.12.013_br0130) 2018; 355 Fornberg (10.1016/j.jcp.2018.12.013_br0120) 2007; 54 Bayona (10.1016/j.jcp.2018.12.013_br0020) 2019 Flyer (10.1016/j.jcp.2018.12.013_br0060) 2016; 316 Flyer (10.1016/j.jcp.2018.12.013_br0070) 2016; 321 Fasshauer (10.1016/j.jcp.2018.12.013_br0050) 2007; vol. 6 Fornberg (10.1016/j.jcp.2018.12.013_br0110) 2007; 28 Fornberg (10.1016/j.jcp.2018.12.013_br0100) 2015; 24 Fornberg (10.1016/j.jcp.2018.12.013_br0080) 2002; 43 Barnett (10.1016/j.jcp.2018.12.013_br0010) 2015 Bayona (10.1016/j.jcp.2018.12.013_br0030) 2017; 332 Engwirda (10.1016/j.jcp.2018.12.013_br0040) 2015; 124 |
| References_xml | – volume: 316 start-page: 39 year: 2016 end-page: 62 ident: br0060 article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 321 start-page: 21 year: 2016 end-page: 38 ident: br0070 article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy publication-title: J. Comput. Phys. – year: 2015 ident: br0090 article-title: A Primer on Radial Basis Functions with Applications to the Geosciences – volume: 54 start-page: 379 year: 2007 end-page: 398 ident: br0120 article-title: The Runge phenomenon and spatially variable shape parameters in RBF interpolation publication-title: Comput. Math. Appl. – volume: vol. 6 year: 2007 ident: br0050 article-title: Meshfree Approximation Methods with MATLAB publication-title: Interdisciplinary Mathematical Sciences – volume: 28 start-page: 121 year: 2007 end-page: 142 ident: br0110 article-title: Locality properties of radial basis function expansion coefficients for equispaced interpolation publication-title: IMA J. Numer. Anal. – volume: 355 start-page: 176 year: 2018 end-page: 190 ident: br0130 article-title: Numerical quadrature over smooth surfaces with boundaries publication-title: J. Comput. Phys. – year: 2015 ident: br0010 article-title: A Robust RBF-FD Formulation Based on Polyharmonic Splines and Polynomials – volume: 43 start-page: 473 year: 2002 end-page: 490 ident: br0080 article-title: Observations on the behavior of radial basis function approximations near boundaries publication-title: Comput. Math. Appl. – volume: 332 start-page: 257 year: 2017 end-page: 273 ident: br0030 article-title: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs publication-title: J. Comput. Phys. – year: 2019 ident: br0020 article-title: An insight into RBF-FD approximations augmented with polynomials publication-title: Comput. Math. Appl. – volume: 124 start-page: 330 year: 2015 end-page: 342 ident: br0040 article-title: Voronoi-based point-placement for three-dimensional Delaunay-refinement publication-title: Proc. Eng. – volume: 24 start-page: 215 year: 2015 end-page: 258 ident: br0100 article-title: Solving PDEs with radial basis functions publication-title: Acta Numer. – volume: 332 start-page: 257 year: 2017 ident: 10.1016/j.jcp.2018.12.013_br0030 article-title: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.008 – volume: 54 start-page: 379 year: 2007 ident: 10.1016/j.jcp.2018.12.013_br0120 article-title: The Runge phenomenon and spatially variable shape parameters in RBF interpolation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.01.028 – volume: 124 start-page: 330 year: 2015 ident: 10.1016/j.jcp.2018.12.013_br0040 article-title: Voronoi-based point-placement for three-dimensional Delaunay-refinement publication-title: Proc. Eng. doi: 10.1016/j.proeng.2015.10.143 – volume: 43 start-page: 473 issue: 3–5 year: 2002 ident: 10.1016/j.jcp.2018.12.013_br0080 article-title: Observations on the behavior of radial basis function approximations near boundaries publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00299-1 – year: 2019 ident: 10.1016/j.jcp.2018.12.013_br0020 article-title: An insight into RBF-FD approximations augmented with polynomials publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.12.029 – volume: vol. 6 year: 2007 ident: 10.1016/j.jcp.2018.12.013_br0050 article-title: Meshfree Approximation Methods with MATLAB – volume: 355 start-page: 176 year: 2018 ident: 10.1016/j.jcp.2018.12.013_br0130 article-title: Numerical quadrature over smooth surfaces with boundaries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.010 – volume: 321 start-page: 21 year: 2016 ident: 10.1016/j.jcp.2018.12.013_br0070 article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.05.026 – year: 2015 ident: 10.1016/j.jcp.2018.12.013_br0010 – volume: 24 start-page: 215 year: 2015 ident: 10.1016/j.jcp.2018.12.013_br0100 article-title: Solving PDEs with radial basis functions publication-title: Acta Numer. doi: 10.1017/S0962492914000130 – volume: 316 start-page: 39 year: 2016 ident: 10.1016/j.jcp.2018.12.013_br0060 article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.078 – year: 2015 ident: 10.1016/j.jcp.2018.12.013_br0090 – volume: 28 start-page: 121 issue: 1 year: 2007 ident: 10.1016/j.jcp.2018.12.013_br0110 article-title: Locality properties of radial basis function expansion coefficients for equispaced interpolation publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drm014 |
| SSID | ssj0008548 |
| Score | 2.5790486 |
| Snippet | •Large PHS+poly based RBF-FD stencils can lead to high orders of accuracy without numerical ill-conditioning.•It can also combine high orders of accuracy near... Radial basis function generated finite difference (RBF-FD) approximations generalize grid-based regular finite differences to scattered node sets. These become... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 378 |
| SubjectTerms | Basis functions Boundaries Computational physics Cubic polyharmonic splines Finite difference method Ill-conditioned problems (mathematics) PHS Polynomials Radial basis function Radial basis functions RBF RBF-FD Runge's phenomenon Splines |
| Title | On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries |
| URI | https://dx.doi.org/10.1016/j.jcp.2018.12.013 https://www.proquest.com/docview/2187917923 |
| Volume | 380 |
| WOSCitedRecordID | wos000458145900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBELC_IBcWCVVd5OuO2yrSiqWoS6qJws146hVXFKG1btP-BnM47ttN0VFRy4RFUaN9XM5_F4PPMNQq9gt6VJV7jH9GyKJWMeI0nspb7gOWFgAXnNrt8j_X42GuUfW61frhbmakaUylarfP5fVQ33QNm6dPYf1N38KNyAz6B0uILa4fpXih-onbTBeTlb69JjTZM8USefzjte58JQia8mpm6xzorrdrunji1xcaI0v48ovzMYMq47Ly1ctuFNT5bXnSFcVNHESjbRd7YuTd3Z5_pQ_oIbfmOLmrWBTJ9VbPmtWSKarLPzQn2ttiMTuhgq2o5MNCUzzkpt8pRMGUHgae_ULETG-vq574XEFF868xyZTk_WwEam4c8Nw29iENPTKdckpEFWx3hNlesuyXZ_QDuXvR4dtkfD1_Mfnu4_ps_pbTOWW-gwJEkO9vHwrNsefWhW9SyJzapu_7Y7Ia9zBa-99U8-zrXVvnZhhvfRXasxfGYw8wC1CvUQ3bP7EGzlt3yEvgwUBghhDSFcSrwFITxR2EAI70LoLdYAwg5AWAMIGwDhDYAeo8tOe_juvWdbcHg8yoPKS4OU-SJIxlJnF4VS5DIhjEgWZgI850LmMQcfSEh4LgxlxKPIF4UswpSk41yK6Ak6UKUqniJcCD-SnGRxJNMYNs5ZIvyEEx6IYKyPm4-Q74RGueWn121SZtQlIk4pyJlqOdMgpCDnI_SmGTI35Cz7Ho6dJqj1Lo3XSAFD-4YdO61RO8uXFPxikgeaevPZ_q-fozubmXGMDqrFz-IFus2vqsly8dJi7Dc2CqE0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+polynomials+in+RBF-FD+approximations%3A+III.+Behavior+near+domain+boundaries&rft.jtitle=Journal+of+computational+physics&rft.au=Bayona%2C+V%C3%ADctor&rft.au=Flyer%2C+Natasha&rft.au=nberg%2C+Bengt&rft.date=2019-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=380&rft.spage=378&rft_id=info:doi/10.1016%2Fj.jcp.2018.12.013&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |