Recommender systems: from algorithms to user experience
Since their introduction in the early 1990’s, automated recommender systems have revolutionized the marketing and delivery of commerce and content by providing personalized recommendations and predictions over a variety of large and complex product offerings. In this article, we review the key advan...
Uloženo v:
| Vydáno v: | User modeling and user-adapted interaction Ročník 22; číslo 1-2; s. 101 - 123 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.04.2012
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-1868, 1573-1391 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Since their introduction in the early 1990’s, automated recommender systems have revolutionized the marketing and delivery of commerce and content by providing personalized recommendations and predictions over a variety of large and complex product offerings. In this article, we review the key advances in collaborative filtering recommender systems, focusing on the evolution from research concentrated purely on algorithms to research concentrated on the rich set of questions around the user experience with the recommender. We show through examples that the embedding of the algorithm in the user experience dramatically affects the value to the user of the recommender. We argue that evaluating the user experience of a recommender requires a broader set of measures than have been commonly used, and suggest additional measures that have proven effective. Based on our analysis of the state of the field, we identify the most important open research problems, and outline key challenges slowing the advance of the state of the art, and in some cases limiting the relevance of research to real-world applications. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0924-1868 1573-1391 |
| DOI: | 10.1007/s11257-011-9112-x |