Minimum Rényi entropy portfolios
Accounting for the non-normality of asset returns remains one of the main challenges in portfolio optimization. In this paper, we tackle this problem by assessing the risk of the portfolio through the “amount of randomness” conveyed by its returns. We achieve this using an objective function that re...
Gespeichert in:
| Veröffentlicht in: | Annals of operations research Jg. 299; H. 1-2; S. 23 - 46 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Accounting for the non-normality of asset returns remains one of the main challenges in portfolio optimization. In this paper, we tackle this problem by assessing the risk of the portfolio through the “amount of randomness” conveyed by its returns. We achieve this using an objective function that relies on the exponential of
Rényi entropy
, an information-theoretic criterion that precisely quantifies the uncertainty embedded in a distribution, accounting for higher-order moments. Compared to Shannon entropy, Rényi entropy features a parameter that can be tuned to play around the notion of uncertainty. A Gram–Charlier expansion shows that it controls the relative contributions of the central (variance) and tail (kurtosis) parts of the distribution in the measure. We further rely on a non-parametric estimator of the exponential Rényi entropy that extends a robust sample-spacings estimator initially designed for Shannon entropy. A portfolio-selection application illustrates that minimizing Rényi entropy yields portfolios that outperform state-of-the-art minimum-variance portfolios in terms of risk-return-turnover trade-off. We also show how Rényi entropy can be used in risk-parity strategies. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-019-03364-2 |