On convergence of iterative thresholding algorithms to approximate sparse solution for composite nonconvex optimization

This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative thresholding algorithms with the continuation technique and the truncation technique respectively. We introduce a notion of limited shrinkage threshold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 211; H. 1-2; S. 181 - 206
Hauptverfasser: Hu, Yaohua, Hu, Xinlin, Yang, Xiaoqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.05.2025
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative thresholding algorithms with the continuation technique and the truncation technique respectively. We introduce a notion of limited shrinkage thresholding operator and apply it, together with the restricted isometry property, to show that the proposed algorithms converge to an approximate true sparse solution within a tolerance relevant to the noise level and the limited shrinkage magnitude. Applying the obtained results to nonconvex regularization problems with SCAD, MCP and $$\ell _p$$ ℓ p penalty ( $$0\le p \le 1$$ 0 ≤ p ≤ 1 ) and utilizing the recovery bound theory, we establish the convergence of their proximal gradient algorithms to an approximate global solution of nonconvex regularization problems. The established results include the existing convergence theory for $$\ell _1$$ ℓ 1 or $$\ell _0$$ ℓ 0 regularization problems for finding a true sparse solution as special cases. Preliminary numerical results show that our proposed algorithms can find approximate true sparse solutions that are much better than stationary solutions that are found by using the standard proximal gradient algorithm.
AbstractList This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative thresholding algorithms with the continuation technique and the truncation technique respectively. We introduce a notion of limited shrinkage thresholding operator and apply it, together with the restricted isometry property, to show that the proposed algorithms converge to an approximate true sparse solution within a tolerance relevant to the noise level and the limited shrinkage magnitude. Applying the obtained results to nonconvex regularization problems with SCAD, MCP and $$\ell _p$$ ℓ p penalty ( $$0\le p \le 1$$ 0 ≤ p ≤ 1 ) and utilizing the recovery bound theory, we establish the convergence of their proximal gradient algorithms to an approximate global solution of nonconvex regularization problems. The established results include the existing convergence theory for $$\ell _1$$ ℓ 1 or $$\ell _0$$ ℓ 0 regularization problems for finding a true sparse solution as special cases. Preliminary numerical results show that our proposed algorithms can find approximate true sparse solutions that are much better than stationary solutions that are found by using the standard proximal gradient algorithm.
This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative thresholding algorithms with the continuation technique and the truncation technique respectively. We introduce a notion of limited shrinkage thresholding operator and apply it, together with the restricted isometry property, to show that the proposed algorithms converge to an approximate true sparse solution within a tolerance relevant to the noise level and the limited shrinkage magnitude. Applying the obtained results to nonconvex regularization problems with SCAD, MCP and ℓp penalty (0≤p≤1) and utilizing the recovery bound theory, we establish the convergence of their proximal gradient algorithms to an approximate global solution of nonconvex regularization problems. The established results include the existing convergence theory for ℓ1 or ℓ0 regularization problems for finding a true sparse solution as special cases. Preliminary numerical results show that our proposed algorithms can find approximate true sparse solutions that are much better than stationary solutions that are found by using the standard proximal gradient algorithm.
Author Yang, Xiaoqi
Hu, Yaohua
Hu, Xinlin
Author_xml – sequence: 1
  givenname: Yaohua
  surname: Hu
  fullname: Hu, Yaohua
– sequence: 2
  givenname: Xinlin
  surname: Hu
  fullname: Hu, Xinlin
– sequence: 3
  givenname: Xiaoqi
  orcidid: 0000-0002-5583-4032
  surname: Yang
  fullname: Yang, Xiaoqi
BookMark eNp9kE9PAjEUxBuDiYB-AU9NPK--15bucjTEf4kJFz03ZduFkmW7tgXRT28BTx48vMxlZt7kNyKDzneWkGuEWwQo7yICQlkAE_lAVgWekSEKLgshhRyQIQCbFBOJcEFGMa4BAHlVDcnnvKO173Y2LG1XW-ob6pINOrmdpWkVbFz51rhuSXW79MGl1SbS5Knu--D3bqOTpbHXIWbx7TY539HGh9y56X3MVTQvPT7YU98nt3Hf-mC6JOeNbqO9-tUxeX98eJs9F6_zp5fZ_WtR8ymmQkwNsgUXHEw9QVMLXmEjjTAWF9JKbIRgJTRiKhksSjRGTqVhLIcby4Su-ZjcnHrz3I-tjUmt_TZ0-aXibCJ5KbmU2VWdXHXwMQbbqNql484UtGsVgjpgVifMKmNWR8wKc5T9ifYhYwlf_4V-AMD8hQQ
CitedBy_id crossref_primary_10_1007_s10915_024_02682_3
crossref_primary_10_1007_s10898_024_01441_w
crossref_primary_10_1109_TCSVT_2024_3524668
Cites_doi 10.1109/TNNLS.2012.2197412
10.1007/s10107-017-1114-y
10.1080/10556788.2021.1977809
10.1109/TIT.2005.858979
10.1109/LSP.2017.2693406
10.1137/18M1219187
10.1109/TSP.2012.2212015
10.1137/1.9781611972672
10.1007/s10957-010-9666-5
10.1002/cpa.20042
10.1016/j.acha.2009.04.002
10.1007/s10107-011-0484-9
10.1007/978-0-8176-4948-7
10.1137/090761471
10.1137/080716542
10.1007/BF01580087
10.1016/j.acha.2008.07.002
10.1137/090747695
10.1017/9781108627771
10.1137/090748160
10.1137/070698920
10.1137/18M1190689
10.1109/JSTSP.2010.2042411
10.1109/TIT.2009.2021377
10.1137/120869997
10.1214/12-STS399
10.1198/016214501753382273
10.1214/09-AOS729
10.1007/s10898-022-01220-5
10.1214/08-AOS620
10.1088/0266-5611/24/3/035020
10.1007/s10107-013-0722-4
ContentType Journal Article
Copyright The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-024-02068-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 206
ExternalDocumentID 10_1007_s10107_024_02068_1
GroupedDBID --K
--Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
7SC
8FD
AAYZH
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-49d12b3430dc51dc4381f6d4de1b6e61f44270f49620b71dd696d22c39fe24ac3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001176048100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Fri Oct 03 06:00:13 EDT 2025
Sat Nov 29 07:57:38 EST 2025
Tue Nov 18 22:24:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-49d12b3430dc51dc4381f6d4de1b6e61f44270f49620b71dd696d22c39fe24ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5583-4032
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10107-024-02068-1.pdf
PQID 3256376366
PQPubID 25307
PageCount 26
ParticipantIDs proquest_journals_3256376366
crossref_citationtrail_10_1007_s10107_024_02068_1
crossref_primary_10_1007_s10107_024_02068_1
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematical programming
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References RI Boţ (2068_CR24) 2019; 29
Y Jiao (2068_CR26) 2017; 24
Y-B Zhao (2068_CR28) 2020; 30
C-H Zhang (2068_CR12) 2010; 38
L Xiao (2068_CR7) 2013; 23
TT Cai (2068_CR2) 2009; 55
S Foucart (2068_CR21) 2013
A Beck (2068_CR4) 2009; 2
JD Blanchard (2068_CR31) 2011; 53
I Daubechies (2068_CR5) 2004; 57
RB Mhenni (2068_CR29) 2022; 37
M Locatelli (2068_CR14) 2013
Z Lu (2068_CR22) 2014; 147
Z Xu (2068_CR11) 2012; 23
PJ Bickel (2068_CR1) 2009; 37
Martin J Wainwright (2068_CR32) 2019
T Blumensath (2068_CR20) 2009; 27
J Fan (2068_CR9) 2001; 96
E Candès (2068_CR3) 2005; 51
Y Hu (2068_CR10) 2017; 18
D Needell (2068_CR30) 2009; 26
ET Hale (2068_CR6) 2008; 19
X Li (2068_CR15) 2022; 85
X Yang (2068_CR18) 1998; 81
C-H Zhang (2068_CR17) 2012; 27
X Yang (2068_CR19) 2010; 146
Z Wen (2068_CR25) 2010; 32
T Blumensath (2068_CR27) 2010; 4
R Chartrand (2068_CR8) 2008; 24
G Marjanovic (2068_CR33) 2012; 60
H Attouch (2068_CR23) 2013; 137
H Liu (2068_CR16) 2017; 166
X Chen (2068_CR13) 2010; 32
References_xml – volume: 23
  start-page: 1013
  year: 2012
  ident: 2068_CR11
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 166
  start-page: 207
  year: 2017
  ident: 2068_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1114-y
– volume: 37
  start-page: 1740
  issue: 5
  year: 2022
  ident: 2068_CR29
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2021.1977809
– volume: 51
  start-page: 4203
  year: 2005
  ident: 2068_CR3
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858979
– volume: 24
  start-page: 784
  issue: 6
  year: 2017
  ident: 2068_CR26
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2693406
– volume: 30
  start-page: 31
  issue: 1
  year: 2020
  ident: 2068_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1219187
– volume: 60
  start-page: 5714
  issue: 11
  year: 2012
  ident: 2068_CR33
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2212015
– volume-title: Global Optimization: Theory, Algorithms, and Applications
  year: 2013
  ident: 2068_CR14
  doi: 10.1137/1.9781611972672
– volume: 146
  start-page: 445
  issue: 2
  year: 2010
  ident: 2068_CR19
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9666-5
– volume: 57
  start-page: 1413
  year: 2004
  ident: 2068_CR5
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  ident: 2068_CR20
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 137
  start-page: 91
  year: 2013
  ident: 2068_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume-title: A Mathematical Introduction to Compressive Sensing
  year: 2013
  ident: 2068_CR21
  doi: 10.1007/978-0-8176-4948-7
– volume: 32
  start-page: 2832
  issue: 5
  year: 2010
  ident: 2068_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090761471
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 2068_CR4
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 81
  start-page: 327
  year: 1998
  ident: 2068_CR18
  publication-title: Math. Program.
  doi: 10.1007/BF01580087
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  ident: 2068_CR30
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 32
  start-page: 1832
  issue: 4
  year: 2010
  ident: 2068_CR25
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090747695
– volume-title: High-dimensional statistics: A non-asymptotic viewpoint
  year: 2019
  ident: 2068_CR32
  doi: 10.1017/9781108627771
– volume: 53
  start-page: 105
  issue: 1
  year: 2011
  ident: 2068_CR31
  publication-title: SIAM Rev.
  doi: 10.1137/090748160
– volume: 19
  start-page: 1107
  issue: 3
  year: 2008
  ident: 2068_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/070698920
– volume: 29
  start-page: 1300
  issue: 2
  year: 2019
  ident: 2068_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1190689
– volume: 4
  start-page: 298
  issue: 2
  year: 2010
  ident: 2068_CR27
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2010.2042411
– volume: 55
  start-page: 3388
  issue: 7
  year: 2009
  ident: 2068_CR2
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2021377
– volume: 23
  start-page: 1062
  issue: 2
  year: 2013
  ident: 2068_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/120869997
– volume: 27
  start-page: 576
  issue: 4
  year: 2012
  ident: 2068_CR17
  publication-title: Stat. Sci.
  doi: 10.1214/12-STS399
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 2068_CR9
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 2068_CR12
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 85
  start-page: 315
  year: 2022
  ident: 2068_CR15
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-022-01220-5
– volume: 37
  start-page: 1705
  year: 2009
  ident: 2068_CR1
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– volume: 18
  start-page: 1
  issue: 30
  year: 2017
  ident: 2068_CR10
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1
  year: 2008
  ident: 2068_CR8
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/24/3/035020
– volume: 147
  start-page: 277
  issue: 1
  year: 2014
  ident: 2068_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0722-4
SSID ssj0001388
Score 2.469289
Snippet This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 181
SubjectTerms Algorithms
Approximation
Convergence
Fines & penalties
Linear systems
Noise levels
Noise tolerance
Optimization algorithms
Regularization
Regularization methods
Sparsity
Title On convergence of iterative thresholding algorithms to approximate sparse solution for composite nonconvex optimization
URI https://www.proquest.com/docview/3256376366
Volume 211
WOSCitedRecordID wos001176048100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jeNCD3-J0Sg7etNCkWdoeRRwedArq2K00XzrYWmmr7s_3Je2mAxV2KKXQJOW99Pde8t77BaEzMCEptxFGG3TzGJPCi6VJPbC0oRAkSKmL4A9vw8EgGo3ihxa6-DOCb4vciN1Oowwun8OaBwCX8LpY63G4gF0SRNH8fFbrFDQVMr93sWyFlkHYWZb-1mrftI02Gw8SX9Yq30Etne2ijR-8gvB0tyBjLffQ532GXXK5q7PUODe45lIGoMMV6LJsQlA4nbzkxbh6nZa4yrGjG5-NoRuNAXeKEm7NRMXg6mKbjW5TvjTO8swNMMM5INC0Ke3cR8_966erG685b8GTQUwqj8WKUBGwwFeyR5S07F-GK6Y0EVxzYhijoW9YzKkvQqIUj7miFBobTVkqgwPUhgH1IcJccp3ykMieghVbT6RCG6ECHqfEmIjIDiJz-SeyISO3Z2JMkm8aZSviBEScOBEnpIPOF23eaiqOf9_uztWaNL9lmQTg4FlE5fxopc6O0Tq188olOnZRuyre9Qlakx_VuCxO3Tz8Am-H1eE
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+convergence+of+iterative+thresholding+algorithms+to+approximate+sparse+solution+for+composite+nonconvex+optimization&rft.jtitle=Mathematical+programming&rft.au=Hu%2C+Yaohua&rft.au=Hu%2C+Xinlin&rft.au=Yang%2C+Xiaoqi&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=211&rft.issue=1&rft.spage=181&rft.epage=206&rft_id=info:doi/10.1007%2Fs10107-024-02068-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon