Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review

Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introduc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:British journal of pharmacology Ročník 180; číslo 21; s. 2697 - 2720
Hlavní autori: Ranasinghe, Priyanga, Addison, Melisande L., Dear, James W., Webb, David J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Blackwell Publishing Ltd 01.11.2023
Predmet:
ISSN:0007-1188, 1476-5381, 1476-5381
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N ‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.
AbstractList Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N ‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.
Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.
Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well-defined short double-stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA-induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off-target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin-mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N-acetylgalactosamine (GalNAc) linkage for effective liver-directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non-communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well-defined short double-stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA-induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off-target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin-mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N-acetylgalactosamine (GalNAc) linkage for effective liver-directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non-communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.
Author Addison, Melisande L.
Webb, David J.
Ranasinghe, Priyanga
Dear, James W.
Author_xml – sequence: 1
  givenname: Priyanga
  orcidid: 0000-0002-1522-9276
  surname: Ranasinghe
  fullname: Ranasinghe, Priyanga
  organization: Department of Pharmacology, Faculty of Medicine University of Colombo Colombo Sri Lanka, University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK
– sequence: 2
  givenname: Melisande L.
  orcidid: 0000-0002-9577-576X
  surname: Addison
  fullname: Addison, Melisande L.
  organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK
– sequence: 3
  givenname: James W.
  orcidid: 0000-0002-8630-8625
  surname: Dear
  fullname: Dear, James W.
  organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK
– sequence: 4
  givenname: David J.
  orcidid: 0000-0003-0755-1756
  surname: Webb
  fullname: Webb, David J.
  organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK
BookMark eNptkMtOwzAQRS1UJNrCgj-IxAYk0tp52WVXladUgcRjHQZn0rpy7OCkRd3xEXwhX4JLWVXMZka6Z65mbo90jDVIyDGjA-Zr-FbPBywd8WiPdFnCszCNBeuQLqWUh4wJcUB6TbOg1Is87ZLXpwq0DpRp0ZXolJkFj_fji-BSNdKu0K3Pg3oOrgJptZ2tAzBFILUySoIOClyhtnWFpv3-_BqbjY2zxVK21q0DhyuFH4dkvwTd4NFf75OX66vnyW04fbi5m4ynoYxHrA0TlmE2QlEi5zJDEJmfJQgqilREhQCelbGMIIYswlFJM0EBZCTBaxhTiPvkdOtbO_u-xKbNK_8Cag0G7bLJIx6lSUITyjx6soMu7NIZf10eCR5TzuIk9dTZlpLONo3DMq-dqsCtc0bzTda5zzr_zdqzwx1WqhZaZX0eoPQ_Gz-53oWO
CitedBy_id crossref_primary_10_1021_acsabm_5c00489
crossref_primary_10_1097_HJH_0000000000003767
crossref_primary_10_1002_tcr_202400010
crossref_primary_10_2174_0113816128347223241021111914
crossref_primary_10_3390_ijms25010328
crossref_primary_10_3389_fimmu_2024_1382689
crossref_primary_10_7759_cureus_62981
crossref_primary_10_3389_fcvm_2024_1375040
crossref_primary_10_1016_j_pharmthera_2024_108730
crossref_primary_10_3390_ijms252212284
crossref_primary_10_3390_ijms26178703
crossref_primary_10_1093_cvr_cvae140
crossref_primary_10_1038_s41569_025_01131_4
crossref_primary_10_3390_ijms24076858
crossref_primary_10_2147_IJN_S487598
crossref_primary_10_3390_ijms25147612
crossref_primary_10_1002_cnr2_2153
crossref_primary_10_3390_pharmaceutics15071983
crossref_primary_10_1038_s41392_024_02035_4
crossref_primary_10_1161_HYPERTENSIONAHA_122_19430
crossref_primary_10_3390_pharmaceutics15071819
crossref_primary_10_3390_ijms26146945
crossref_primary_10_1016_j_pharmr_2025_100079
crossref_primary_10_1097_CRD_0000000000001017
crossref_primary_10_1007_s12032_024_02534_y
crossref_primary_10_1007_s40119_024_00353_w
crossref_primary_10_1016_j_ijbiomac_2025_145461
crossref_primary_10_1016_j_phrs_2024_107102
crossref_primary_10_1016_j_omtn_2025_102516
crossref_primary_10_1093_nar_gkaf635
crossref_primary_10_1093_cvr_cvae136
crossref_primary_10_3390_v16081196
crossref_primary_10_3390_vaccines11091481
crossref_primary_10_3390_pharmaceutics16081037
crossref_primary_10_1007_s40262_023_01314_7
crossref_primary_10_1002_cpz1_784
crossref_primary_10_1016_j_mex_2025_103177
crossref_primary_10_3389_fmicb_2023_1270018
crossref_primary_10_1039_D5NH00344J
crossref_primary_10_3389_fnins_2024_1272786
crossref_primary_10_1016_j_clnesp_2025_03_049
crossref_primary_10_1007_s11906_025_01325_8
crossref_primary_10_1007_s43032_024_01728_z
crossref_primary_10_1016_j_critrevonc_2025_104829
crossref_primary_10_1021_acs_jmedchem_4c02275
crossref_primary_10_3390_ijms26083456
crossref_primary_10_1007_s42764_024_00135_7
crossref_primary_10_1016_j_tca_2024_179789
crossref_primary_10_1016_j_nxnano_2025_100135
crossref_primary_10_1080_15257770_2024_2347499
crossref_primary_10_1016_j_bbcan_2025_189270
crossref_primary_10_1080_17425247_2023_2206646
crossref_primary_10_1016_j_ijbiomac_2024_131048
crossref_primary_10_1007_s11883_023_01156_5
crossref_primary_10_3390_ijms24032218
crossref_primary_10_1016_j_ejphar_2024_176467
crossref_primary_10_1080_17512433_2023_2277330
crossref_primary_10_3390_pharmaceutics15010178
crossref_primary_10_3390_ijms242316735
crossref_primary_10_1016_j_heliyon_2024_e31924
crossref_primary_10_3390_pharmaceutics16010047
crossref_primary_10_1016_j_ijpharm_2024_124573
crossref_primary_10_1097_MNH_0000000000001065
crossref_primary_10_1016_j_jbc_2024_107318
crossref_primary_10_1096_fj_202301808R
crossref_primary_10_1136_dtb_2023_000004
crossref_primary_10_1002_adfm_202314088
Cites_doi 10.3389/fmolb.2021.824776
10.1093/annonc/mdx393.041
10.1136/bmj.m1159
10.1186/s12951-021-00781-z
10.1364/OE.470513
10.18632/oncotarget.20869
10.3389/fmicb.2018.02151
10.1056/NEJMoa2021712
10.1038/mt.2013.217
10.3389/fendo.2018.00402
10.1073/pnas.1411393111
10.1093/nar/gkl339
10.1038/s41569-018-0107-8
10.1016/j.molcel.2004.09.028
10.1111/bph.15541
10.1089/hum.2006.17.751
10.2217/nmt-2018-0033
10.1016/j.ophtha.2012.03.043
10.1016/j.ajps.2018.12.005
10.1016/j.cell.2018.03.006
10.1056/NEJMoa1615758
10.1016/j.jmb.2017.07.018
10.1152/jn.00385.2022
10.1038/nbt1339
10.1111/bcp.14925
10.1038/s41398-022-02096-5
10.1089/nat.2018.0736
10.1056/NEJMoa1913805
10.1200/JCO.2013.55.0376
10.1093/nar/gkm548
10.1016/j.semnephrol.2013.08.001
10.1038/mt.2010.266
10.1038/nature03315
10.1038/nature04263
10.1002/jgm.3097
10.1080/13543784.2017.1274730
10.4068/cmj.2020.56.2.87
10.1055/s-0036-1579760
10.1634/theoncologist.2018-0838
10.3390/molecules27196659
10.1016/j.molcel.2021.11.026
10.1155/2017/6971297
10.1016/j.jaad.2015.02.1092
10.1016/j.ydbio.2004.11.028
10.1007/s12603-022-1847-z
10.1161/CIRCULATIONAHA.120.053029
10.1038/nrg2936
10.1242/jcs.066399
10.3389/fphar.2019.00444
10.1016/j.omtn.2017.12.021
10.1093/nar/gkaa715
10.1093/nar/gkg147
10.1172/JCI24282
10.1016/S0140-6736(16)31679-8
10.1089/oli.2008.0162
10.1038/190576a0
10.1167/iovs.17-23475
10.4137/OED.S4878
10.1038/35078107
10.1111/j.1365-2958.1992.tb02202.x
10.1007/s40265-021-01511-3
10.1038/nrd3010
10.1038/nbt1081
10.1111/jth.15270
10.1038/s41569-021-00541-4
10.1038/mtna.2015.23
10.1194/jlr.R067314
10.1038/nm828
10.1126/science.286.5441.950
10.1016/j.jare.2020.04.017
10.1056/NEJMoa1912387
10.1038/s41587-019-0351-4
10.1016/j.cmet.2018.03.004
10.1007/s40256-021-00477-7
10.1038/ncomms4459
10.11406/rinketsu.57.1913
10.1002/cpt.1974
10.1002/jgm.507
10.1093/nar/gkaa670
10.7759/cureus.28998
10.1038/nbt.4136
10.2106/JBJS.22.00561
10.1016/j.cell.2022.03.010
10.3390/molecules22101724
10.1111/cbdd.12993
10.1161/circ.142.suppl_3.14387
10.1007/s40262-020-00940-9
10.1183/23120541.00733-2020
10.1038/mt.2013.216
10.1002/jcph.1553
10.1007/s40120-020-00208-1
10.1111/bph.15539
10.1002/path.2993
10.1124/dmd.106.009555
10.1016/j.addr.2015.12.004
10.2307/3869076
10.3389/fpls.2020.01237
10.1016/j.addr.2018.04.006
10.1080/13543784.2018.1457647
10.1111/bph.15537
10.1038/mt.2009.91
10.1016/j.biomaterials.2013.04.060
10.1167/iovs.12-9961
10.1093/nar/gku831
10.1016/j.bcp.2021.114432
10.1038/s41591-021-01634-w
10.1089/nat.2014.0489
10.1038/171737a0
10.1016/j.ekir.2021.04.004
10.1093/nar/gky1239
10.1146/annurev.med.53.082901.103929
10.1038/nmat1645
10.1186/s41038-015-0026-4
10.1016/j.nano.2020.102239
10.1097/01.hjh.0000744440.87593.16
10.1111/bph.15538
10.1080/10611860903057674
10.1038/s41392-020-0207-x
10.1089/hum.2019.143
10.3390/jcm7080201
10.3390/ph13100294
10.1021/mp2002522
10.1111/bph.15542
10.1161/CIRCRESAHA.118.313220
10.1007/978-3-030-41333-0
10.3390/molecules22081356
10.1016/j.addr.2007.03.004
10.1001/jama.2016.19043
10.1126/scitranslmed.aag1166
10.1038/35053110
10.1056/NEJMoa1609243
10.1038/nrd4503
10.1038/nbt.2612
10.1002/adhm.202001650
10.1038/s41587-020-0741-7
10.3389/fmed.2021.607962
10.1021/ja505986a
10.1016/j.pathol.2018.10.012
10.1042/BST20140068
10.1093/nar/gku531
10.1056/NEJMoa1716153
10.1038/35888
10.2147/JEP.S281187
10.3390/nano7040077
10.3390/ijms17122068
10.1056/NEJMoa1913147
10.1016/j.micinf.2019.06.007
10.1093/nar/gkq347
ContentType Journal Article
Copyright 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
DBID AAYXX
CITATION
7QP
7TK
K9.
NAPCQ
7X8
DOI 10.1111/bph.15972
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 2720
ExternalDocumentID 10_1111_bph_15972
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OB
1OC
23N
2WC
31~
33P
36B
3O-
3SF
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
CITATION
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O8X
O9-
OIG
OK1
OVD
P2P
P2W
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
ROL
RPM
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
7QP
7TK
K9.
7X8
ID FETCH-LOGICAL-c391t-416e69e8fe77c6ea86e8fca808d582d8a76f3c2a3a62e9f0680aac2ca2d8e30a3
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1188
1476-5381
IngestDate Fri Sep 05 07:22:06 EDT 2025
Mon Oct 06 18:31:30 EDT 2025
Sat Nov 29 04:21:24 EST 2025
Tue Nov 18 21:58:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-416e69e8fe77c6ea86e8fca808d582d8a76f3c2a3a62e9f0680aac2ca2d8e30a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0755-1756
0000-0002-9577-576X
0000-0002-8630-8625
0000-0002-1522-9276
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15972
PQID 2873071345
PQPubID 42104
PageCount 24
ParticipantIDs proquest_miscellaneous_2725440401
proquest_journals_2873071345
crossref_primary_10_1111_bph_15972
crossref_citationtrail_10_1111_bph_15972
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle British journal of pharmacology
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_14_114_1
e_1_2_14_137_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_140_1
e_1_2_14_121_1
e_1_2_14_163_1
e_1_2_14_107_1
e_1_2_14_144_1
e_1_2_14_125_1
e_1_2_14_167_1
e_1_2_14_103_1
e_1_2_14_148_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_170_1
e_1_2_14_151_1
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_155_1
e_1_2_14_115_1
e_1_2_14_136_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_159_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_120_1
e_1_2_14_143_1
e_1_2_14_162_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_124_1
e_1_2_14_147_1
e_1_2_14_166_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
Bryson T. E. (e_1_2_14_32_1) 2017; 90
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
Makris K. (e_1_2_14_92_1) 2016; 37
e_1_2_14_69_1
e_1_2_14_150_1
e_1_2_14_131_1
e_1_2_14_154_1
e_1_2_14_116_1
e_1_2_14_135_1
e_1_2_14_158_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_139_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_161_1
e_1_2_14_165_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_142_1
e_1_2_14_123_1
e_1_2_14_169_1
e_1_2_14_105_1
e_1_2_14_146_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_130_1
e_1_2_14_153_1
e_1_2_14_117_1
Sekijima Y. (e_1_2_14_134_1) 2001
e_1_2_14_157_1
e_1_2_14_113_1
e_1_2_14_138_1
e_1_2_14_74_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_160_1
Meseeha M. (e_1_2_14_97_1) 2022
e_1_2_14_141_1
e_1_2_14_164_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_145_1
e_1_2_14_168_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_126_1
e_1_2_14_149_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_171_1
e_1_2_14_152_1
e_1_2_14_118_1
e_1_2_14_133_1
e_1_2_14_156_1
References_xml – ident: e_1_2_14_165_1
  doi: 10.3389/fmolb.2021.824776
– ident: e_1_2_14_152_1
  doi: 10.1093/annonc/mdx393.041
– ident: e_1_2_14_21_1
  doi: 10.1136/bmj.m1159
– ident: e_1_2_14_110_1
  doi: 10.1186/s12951-021-00781-z
– ident: e_1_2_14_54_1
  doi: 10.1364/OE.470513
– ident: e_1_2_14_168_1
  doi: 10.18632/oncotarget.20869
– ident: e_1_2_14_87_1
  doi: 10.3389/fmicb.2018.02151
– ident: e_1_2_14_59_1
  doi: 10.1056/NEJMoa2021712
– ident: e_1_2_14_99_1
  doi: 10.1038/mt.2013.217
– ident: e_1_2_14_108_1
  doi: 10.3389/fendo.2018.00402
– ident: e_1_2_14_171_1
  doi: 10.1073/pnas.1411393111
– ident: e_1_2_14_43_1
– ident: e_1_2_14_64_1
  doi: 10.1093/nar/gkl339
– ident: e_1_2_14_139_1
– ident: e_1_2_14_129_1
  doi: 10.1038/s41569-018-0107-8
– ident: e_1_2_14_157_1
  doi: 10.1016/j.molcel.2004.09.028
– ident: e_1_2_14_142_1
– ident: e_1_2_14_5_1
  doi: 10.1111/bph.15541
– ident: e_1_2_14_62_1
  doi: 10.1089/hum.2006.17.751
– ident: e_1_2_14_82_1
  doi: 10.2217/nmt-2018-0033
– ident: e_1_2_14_105_1
  doi: 10.1016/j.ophtha.2012.03.043
– ident: e_1_2_14_122_1
  doi: 10.1016/j.ajps.2018.12.005
– ident: e_1_2_14_23_1
  doi: 10.1016/j.cell.2018.03.006
– ident: e_1_2_14_124_1
  doi: 10.1056/NEJMoa1615758
– ident: e_1_2_14_137_1
  doi: 10.1016/j.jmb.2017.07.018
– ident: e_1_2_14_78_1
  doi: 10.1152/jn.00385.2022
– ident: e_1_2_14_162_1
  doi: 10.1038/nbt1339
– ident: e_1_2_14_12_1
– ident: e_1_2_14_51_1
  doi: 10.1111/bcp.14925
– ident: e_1_2_14_132_1
  doi: 10.1038/s41398-022-02096-5
– ident: e_1_2_14_141_1
– ident: e_1_2_14_109_1
– ident: e_1_2_14_145_1
  doi: 10.1089/nat.2018.0736
– ident: e_1_2_14_121_1
  doi: 10.1056/NEJMoa1913805
– ident: e_1_2_14_133_1
  doi: 10.1200/JCO.2013.55.0376
– ident: e_1_2_14_28_1
  doi: 10.1093/nar/gkm548
– ident: e_1_2_14_107_1
  doi: 10.1016/j.semnephrol.2013.08.001
– ident: e_1_2_14_71_1
  doi: 10.1038/mt.2010.266
– ident: e_1_2_14_89_1
  doi: 10.1038/nature03315
– ident: e_1_2_14_111_1
  doi: 10.1038/nature04263
– ident: e_1_2_14_67_1
  doi: 10.1002/jgm.3097
– ident: e_1_2_14_55_1
  doi: 10.1080/13543784.2017.1274730
– ident: e_1_2_14_80_1
  doi: 10.4068/cmj.2020.56.2.87
– ident: e_1_2_14_159_1
  doi: 10.1055/s-0036-1579760
– ident: e_1_2_14_45_1
  doi: 10.1634/theoncologist.2018-0838
– ident: e_1_2_14_37_1
  doi: 10.3390/molecules27196659
– ident: e_1_2_14_74_1
  doi: 10.1016/j.molcel.2021.11.026
– ident: e_1_2_14_86_1
  doi: 10.1155/2017/6971297
– ident: e_1_2_14_114_1
  doi: 10.1016/j.jaad.2015.02.1092
– ident: e_1_2_14_41_1
  doi: 10.1016/j.ydbio.2004.11.028
– ident: e_1_2_14_10_1
– ident: e_1_2_14_96_1
  doi: 10.1007/s12603-022-1847-z
– ident: e_1_2_14_151_1
  doi: 10.1161/CIRCULATIONAHA.120.053029
– ident: e_1_2_14_73_1
  doi: 10.1038/nrg2936
– ident: e_1_2_14_44_1
  doi: 10.1242/jcs.066399
– ident: e_1_2_14_39_1
  doi: 10.3389/fphar.2019.00444
– ident: e_1_2_14_47_1
  doi: 10.1016/j.omtn.2017.12.021
– ident: e_1_2_14_88_1
  doi: 10.1093/nar/gkaa715
– ident: e_1_2_14_13_1
  doi: 10.1093/nar/gkg147
– ident: e_1_2_14_24_1
  doi: 10.1172/JCI24282
– ident: e_1_2_14_52_1
  doi: 10.1016/S0140-6736(16)31679-8
– ident: e_1_2_14_158_1
  doi: 10.1089/oli.2008.0162
– ident: e_1_2_14_29_1
  doi: 10.1038/190576a0
– ident: e_1_2_14_138_1
  doi: 10.1167/iovs.17-23475
– ident: e_1_2_14_58_1
  doi: 10.4137/OED.S4878
– ident: e_1_2_14_46_1
  doi: 10.1038/35078107
– ident: e_1_2_14_127_1
  doi: 10.1111/j.1365-2958.1992.tb02202.x
– ident: e_1_2_14_149_1
  doi: 10.1007/s40265-021-01511-3
– ident: e_1_2_14_75_1
  doi: 10.1038/nrd3010
– ident: e_1_2_14_9_1
– ident: e_1_2_14_17_1
– ident: e_1_2_14_77_1
  doi: 10.1038/nbt1081
– ident: e_1_2_14_11_1
– ident: e_1_2_14_113_1
  doi: 10.1111/jth.15270
– ident: e_1_2_14_116_1
  doi: 10.1038/s41569-021-00541-4
– ident: e_1_2_14_83_1
  doi: 10.1038/mtna.2015.23
– ident: e_1_2_14_131_1
  doi: 10.1194/jlr.R067314
– ident: e_1_2_14_30_1
– volume: 90
  start-page: 553
  issue: 4
  year: 2017
  ident: e_1_2_14_32_1
  article-title: Nuclease‐mediated gene therapies for inherited metabolic diseases of the liver
  publication-title: The Yale Journal of Biology and Medicine
– ident: e_1_2_14_144_1
  doi: 10.1038/nm828
– ident: e_1_2_14_65_1
  doi: 10.1126/science.286.5441.950
– ident: e_1_2_14_163_1
  doi: 10.1016/j.jare.2020.04.017
– ident: e_1_2_14_125_1
  doi: 10.1056/NEJMoa1912387
– ident: e_1_2_14_136_1
  doi: 10.1038/s41587-019-0351-4
– ident: e_1_2_14_40_1
  doi: 10.1016/j.cmet.2018.03.004
– ident: e_1_2_14_66_1
  doi: 10.1007/s40256-021-00477-7
– ident: e_1_2_14_164_1
  doi: 10.1038/ncomms4459
– ident: e_1_2_14_56_1
  doi: 10.11406/rinketsu.57.1913
– ident: e_1_2_14_63_1
  doi: 10.1002/cpt.1974
– ident: e_1_2_14_79_1
  doi: 10.1002/jgm.507
– ident: e_1_2_14_31_1
  doi: 10.1093/nar/gkaa670
– ident: e_1_2_14_156_1
  doi: 10.7759/cureus.28998
– ident: e_1_2_14_170_1
  doi: 10.1038/nbt.4136
– ident: e_1_2_14_117_1
  doi: 10.2106/JBJS.22.00561
– ident: e_1_2_14_33_1
  doi: 10.1016/j.cell.2022.03.010
– ident: e_1_2_14_147_1
  doi: 10.3390/molecules22101724
– ident: e_1_2_14_135_1
  doi: 10.1111/cbdd.12993
– ident: e_1_2_14_70_1
  doi: 10.1161/circ.142.suppl_3.14387
– ident: e_1_2_14_19_1
  doi: 10.1007/s40262-020-00940-9
– ident: e_1_2_14_91_1
  doi: 10.1183/23120541.00733-2020
– ident: e_1_2_14_93_1
  doi: 10.1038/mt.2013.216
– volume: 37
  start-page: 85
  issue: 2
  year: 2016
  ident: e_1_2_14_92_1
  article-title: Acute kidney injury: Definition, pathophysiology and clinical phenotypes
  publication-title: Clinical Biochemist Reviews
– ident: e_1_2_14_167_1
  doi: 10.1002/jcph.1553
– ident: e_1_2_14_18_1
– ident: e_1_2_14_154_1
  doi: 10.1007/s40120-020-00208-1
– ident: e_1_2_14_8_1
  doi: 10.1111/bph.15539
– ident: e_1_2_14_161_1
  doi: 10.1002/path.2993
– ident: e_1_2_14_155_1
  doi: 10.1124/dmd.106.009555
– ident: e_1_2_14_112_1
  doi: 10.1016/j.addr.2015.12.004
– ident: e_1_2_14_101_1
  doi: 10.2307/3869076
– ident: e_1_2_14_148_1
  doi: 10.3389/fpls.2020.01237
– ident: e_1_2_14_35_1
  doi: 10.1016/j.addr.2018.04.006
– ident: e_1_2_14_98_1
  doi: 10.1080/13543784.2018.1457647
– ident: e_1_2_14_7_1
  doi: 10.1111/bph.15537
– ident: e_1_2_14_57_1
  doi: 10.1038/mt.2009.91
– volume-title: GeneReviews®
  year: 2001
  ident: e_1_2_14_134_1
– ident: e_1_2_14_126_1
  doi: 10.1016/j.biomaterials.2013.04.060
– ident: e_1_2_14_104_1
  doi: 10.1167/iovs.12-9961
– ident: e_1_2_14_120_1
– ident: e_1_2_14_90_1
  doi: 10.1093/nar/gku831
– ident: e_1_2_14_166_1
  doi: 10.1016/j.bcp.2021.114432
– ident: e_1_2_14_81_1
  doi: 10.1038/s41591-021-01634-w
– ident: e_1_2_14_143_1
  doi: 10.1089/nat.2014.0489
– ident: e_1_2_14_160_1
  doi: 10.1038/171737a0
– ident: e_1_2_14_85_1
  doi: 10.1016/j.ekir.2021.04.004
– ident: e_1_2_14_26_1
  doi: 10.1093/nar/gky1239
– ident: e_1_2_14_153_1
– ident: e_1_2_14_61_1
  doi: 10.1146/annurev.med.53.082901.103929
– ident: e_1_2_14_119_1
  doi: 10.1038/nmat1645
– ident: e_1_2_14_169_1
  doi: 10.1186/s41038-015-0026-4
– ident: e_1_2_14_146_1
  doi: 10.1016/j.nano.2020.102239
– ident: e_1_2_14_69_1
  doi: 10.1097/01.hjh.0000744440.87593.16
– ident: e_1_2_14_4_1
  doi: 10.1111/bph.15538
– ident: e_1_2_14_3_1
  doi: 10.1080/10611860903057674
– ident: e_1_2_14_68_1
  doi: 10.1038/s41392-020-0207-x
– ident: e_1_2_14_16_1
  doi: 10.1089/hum.2019.143
– ident: e_1_2_14_72_1
– ident: e_1_2_14_15_1
– ident: e_1_2_14_22_1
  doi: 10.3390/jcm7080201
– ident: e_1_2_14_130_1
  doi: 10.3390/ph13100294
– ident: e_1_2_14_84_1
  doi: 10.1021/mp2002522
– ident: e_1_2_14_6_1
  doi: 10.1111/bph.15542
– ident: e_1_2_14_34_1
  doi: 10.1161/CIRCRESAHA.118.313220
– ident: e_1_2_14_106_1
  doi: 10.1007/978-3-030-41333-0
– ident: e_1_2_14_36_1
  doi: 10.3390/molecules22081356
– ident: e_1_2_14_94_1
  doi: 10.1016/j.addr.2007.03.004
– ident: e_1_2_14_53_1
  doi: 10.1001/jama.2016.19043
– ident: e_1_2_14_48_1
  doi: 10.1126/scitranslmed.aag1166
– ident: e_1_2_14_25_1
  doi: 10.1038/35053110
– ident: e_1_2_14_50_1
  doi: 10.1056/NEJMoa1609243
– ident: e_1_2_14_38_1
  doi: 10.1038/nrd4503
– ident: e_1_2_14_60_1
  doi: 10.1038/nbt.2612
– ident: e_1_2_14_95_1
  doi: 10.1002/adhm.202001650
– volume-title: StatPearls
  year: 2022
  ident: e_1_2_14_97_1
– ident: e_1_2_14_103_1
  doi: 10.1038/s41587-020-0741-7
– ident: e_1_2_14_128_1
  doi: 10.3389/fmed.2021.607962
– ident: e_1_2_14_100_1
  doi: 10.1021/ja505986a
– ident: e_1_2_14_27_1
  doi: 10.1016/j.pathol.2018.10.012
– ident: e_1_2_14_115_1
  doi: 10.1042/BST20140068
– ident: e_1_2_14_102_1
– ident: e_1_2_14_118_1
  doi: 10.1093/nar/gku531
– ident: e_1_2_14_2_1
  doi: 10.1056/NEJMoa1716153
– ident: e_1_2_14_49_1
  doi: 10.1038/35888
– ident: e_1_2_14_76_1
  doi: 10.2147/JEP.S281187
– ident: e_1_2_14_150_1
  doi: 10.3390/nano7040077
– ident: e_1_2_14_123_1
  doi: 10.3390/ijms17122068
– ident: e_1_2_14_140_1
– ident: e_1_2_14_20_1
  doi: 10.1056/NEJMoa1913147
– ident: e_1_2_14_42_1
  doi: 10.1016/j.micinf.2019.06.007
– ident: e_1_2_14_14_1
  doi: 10.1093/nar/gkq347
SSID ssj0014775
Score 2.653417
SecondaryResourceType review_article
Snippet Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using...
Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2697
SubjectTerms Amyloidosis
Bioavailability
Chemical modification
Gene expression
Gene silencing
Genetic disorders
Hypercholesterolemia
Hyperoxaluria
Immune response
Liver
Nuclease
Patient compliance
Pharmacodynamics
Pharmacokinetics
Porphyria
Primary hyperoxaluria
RNA-mediated interference
siRNA
Transthyretin
Title Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review
URI https://www.proquest.com/docview/2873071345
https://www.proquest.com/docview/2725440401
Volume 180
WOSCitedRecordID wos000882720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1476-5381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014775
  issn: 0007-1188
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1476-5381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014775
  issn: 0007-1188
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELa2LQcuiF9RKJVBaIXUTZU4WdvhtmJbcaiWFaTS3oLXcehKSxqy26q98RA8Fw_BkzCOHSeLoIIDlyhKnFjxjMfOzDffIPSSzSNBolx4VErpRQFh3jznOo1rmGeMKtiB-3WxCTaZ8NksnvZ635tcmMslKwp-dRWX_1XUcA2ErVNn_0Hc7qVwAc5B6HAEscPxrwT_4bOONmsaiCpXBl03qb3o48VKasBmPaxlS1ltGJhcimTWwogaJEQ00njItSGH1UH5qo0o_EKO1GGi6HbRhpMKob0TZya3rFpci-KTWxlGBtxUO2nVcrHSDu4D550eKwMGr4G9B8431MSUanS-jXJZNwYJbT7fH9yVxv3WApuM7WbwkCkCeKiMuY4Y9cBkB5v23O8orsm_bswzNWBgu9TrGPQNy8i8PDuE3Z4pLbRJ1T15lx6fnpykydEs6ZdfPF3FTEf7bUmXLbRD2DAGK7szfg8NXVwrYszU1LDfYrmuNLbM9ba5Q9rcINS7nuQuumN_V_DIqNk91FPFfdSfGsleD3DSpu-tBriPpx2ZP0Afa13EHV3EoIuvsdPEAe4qCQZ540YPcUcPf3z9NipwVwOx0cCH6PT4KHnz1rMlPTwZxsEajAFVNFY8V4xJqgSncC4F93k25CTjgtE8lESEghIV57owjBCSSAH3VOiL8BHaLs4L9RhhHvJMBJngIgsjFcdzzVyZCRESf65JHHfRq2YYU2n57nXZlWXa_PfCiKf1iO-iF65paUheftdor5FFaufSKiUcVkidjg3dPXe3wULrsJso1PkFtGGaBhAWy-DJza94im63M2MPba-rC_UM3ZKXMH-rfbTFZnzfKtRPvzC5Aw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+interfering+RNA%3A+Discovery%2C+pharmacology+and+clinical+development%E2%80%94An+introductory+review&rft.jtitle=British+journal+of+pharmacology&rft.au=Ranasinghe%2C+Priyanga&rft.au=Addison%2C+Melisande+L&rft.au=Dear%2C+James+W&rft.au=Webb%2C+David+J&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=180&rft.issue=21&rft.spage=2697&rft.epage=2720&rft_id=info:doi/10.1111%2Fbph.15972&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon