Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review
Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introduc...
Uložené v:
| Vydané v: | British journal of pharmacology Ročník 180; číslo 21; s. 2697 - 2720 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Blackwell Publishing Ltd
01.11.2023
|
| Predmet: | |
| ISSN: | 0007-1188, 1476-5381, 1476-5381 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use
N
‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact. |
|---|---|
| AbstractList | Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use
N
‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact. Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well‐defined short double‐stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA‐induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off‐target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin‐mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N‐acetylgalactosamine (GalNAc) linkage for effective liver‐directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non‐communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact. Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well-defined short double-stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA-induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off-target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin-mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N-acetylgalactosamine (GalNAc) linkage for effective liver-directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non-communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact.Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using synthetic structurally well-defined short double-stranded RNA (small interfering RNA [siRNA]), has advanced rapidly in recent years. This introductory review describes the utility of siRNA, by exploring the underpinning biology, pharmacology, recent advances and clinical developments, alongside potential limitations and ongoing challenges. Mediated by the RNA-induced silencing complex, siRNAs bind to specific complementary mRNAs, which are subsequently degraded. siRNA therapy offers advantages over other therapeutic approaches, including ability of specifically designed siRNAs to potentially target any mRNA and improved patient adherence through infrequent administration associated with a very long duration of action. Key pharmacokinetic and pharmacodynamic challenges include targeted administration, poor tissue penetration, nuclease inactivation, rapid renal elimination, immune activation and off-target effects. These have been overcome by chemical modification of siRNA and/or by utilising a range of delivery systems, increasing bioavailability and stability to allow successful clinical translation. Patisiran (hereditary transthyretin-mediated amyloidosis) was the first licensed siRNA, followed by givosiran (acute hepatic porphyria), lumasiran (primary hyperoxaluria type 1) and inclisiran (familial hypercholesterolaemia), which all use N-acetylgalactosamine (GalNAc) linkage for effective liver-directed delivery. Others are currently under development for indications varying from rare genetic diseases to common chronic non-communicable diseases (hypertension, cancer). Technological advances are paving the way for broader clinical use. Ongoing challenges remain in targeting organs beyond the liver and reaching special sites (e.g., brain). By overcoming these barriers, siRNA therapy has the potential to substantially widen its therapeutic impact. |
| Author | Addison, Melisande L. Webb, David J. Ranasinghe, Priyanga Dear, James W. |
| Author_xml | – sequence: 1 givenname: Priyanga orcidid: 0000-0002-1522-9276 surname: Ranasinghe fullname: Ranasinghe, Priyanga organization: Department of Pharmacology, Faculty of Medicine University of Colombo Colombo Sri Lanka, University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK – sequence: 2 givenname: Melisande L. orcidid: 0000-0002-9577-576X surname: Addison fullname: Addison, Melisande L. organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK – sequence: 3 givenname: James W. orcidid: 0000-0002-8630-8625 surname: Dear fullname: Dear, James W. organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK – sequence: 4 givenname: David J. orcidid: 0000-0003-0755-1756 surname: Webb fullname: Webb, David J. organization: University/British Heart Foundation Centre for Cardiovascular Science The University of Edinburgh Edinburgh UK |
| BookMark | eNptkMtOwzAQRS1UJNrCgj-IxAYk0tp52WVXladUgcRjHQZn0rpy7OCkRd3xEXwhX4JLWVXMZka6Z65mbo90jDVIyDGjA-Zr-FbPBywd8WiPdFnCszCNBeuQLqWUh4wJcUB6TbOg1Is87ZLXpwq0DpRp0ZXolJkFj_fji-BSNdKu0K3Pg3oOrgJptZ2tAzBFILUySoIOClyhtnWFpv3-_BqbjY2zxVK21q0DhyuFH4dkvwTd4NFf75OX66vnyW04fbi5m4ynoYxHrA0TlmE2QlEi5zJDEJmfJQgqilREhQCelbGMIIYswlFJM0EBZCTBaxhTiPvkdOtbO_u-xKbNK_8Cag0G7bLJIx6lSUITyjx6soMu7NIZf10eCR5TzuIk9dTZlpLONo3DMq-dqsCtc0bzTda5zzr_zdqzwx1WqhZaZX0eoPQ_Gz-53oWO |
| CitedBy_id | crossref_primary_10_1021_acsabm_5c00489 crossref_primary_10_1097_HJH_0000000000003767 crossref_primary_10_1002_tcr_202400010 crossref_primary_10_2174_0113816128347223241021111914 crossref_primary_10_3390_ijms25010328 crossref_primary_10_3389_fimmu_2024_1382689 crossref_primary_10_7759_cureus_62981 crossref_primary_10_3389_fcvm_2024_1375040 crossref_primary_10_1016_j_pharmthera_2024_108730 crossref_primary_10_3390_ijms252212284 crossref_primary_10_3390_ijms26178703 crossref_primary_10_1093_cvr_cvae140 crossref_primary_10_1038_s41569_025_01131_4 crossref_primary_10_3390_ijms24076858 crossref_primary_10_2147_IJN_S487598 crossref_primary_10_3390_ijms25147612 crossref_primary_10_1002_cnr2_2153 crossref_primary_10_3390_pharmaceutics15071983 crossref_primary_10_1038_s41392_024_02035_4 crossref_primary_10_1161_HYPERTENSIONAHA_122_19430 crossref_primary_10_3390_pharmaceutics15071819 crossref_primary_10_3390_ijms26146945 crossref_primary_10_1016_j_pharmr_2025_100079 crossref_primary_10_1097_CRD_0000000000001017 crossref_primary_10_1007_s12032_024_02534_y crossref_primary_10_1007_s40119_024_00353_w crossref_primary_10_1016_j_ijbiomac_2025_145461 crossref_primary_10_1016_j_phrs_2024_107102 crossref_primary_10_1016_j_omtn_2025_102516 crossref_primary_10_1093_nar_gkaf635 crossref_primary_10_1093_cvr_cvae136 crossref_primary_10_3390_v16081196 crossref_primary_10_3390_vaccines11091481 crossref_primary_10_3390_pharmaceutics16081037 crossref_primary_10_1007_s40262_023_01314_7 crossref_primary_10_1002_cpz1_784 crossref_primary_10_1016_j_mex_2025_103177 crossref_primary_10_3389_fmicb_2023_1270018 crossref_primary_10_1039_D5NH00344J crossref_primary_10_3389_fnins_2024_1272786 crossref_primary_10_1016_j_clnesp_2025_03_049 crossref_primary_10_1007_s11906_025_01325_8 crossref_primary_10_1007_s43032_024_01728_z crossref_primary_10_1016_j_critrevonc_2025_104829 crossref_primary_10_1021_acs_jmedchem_4c02275 crossref_primary_10_3390_ijms26083456 crossref_primary_10_1007_s42764_024_00135_7 crossref_primary_10_1016_j_tca_2024_179789 crossref_primary_10_1016_j_nxnano_2025_100135 crossref_primary_10_1080_15257770_2024_2347499 crossref_primary_10_1016_j_bbcan_2025_189270 crossref_primary_10_1080_17425247_2023_2206646 crossref_primary_10_1016_j_ijbiomac_2024_131048 crossref_primary_10_1007_s11883_023_01156_5 crossref_primary_10_3390_ijms24032218 crossref_primary_10_1016_j_ejphar_2024_176467 crossref_primary_10_1080_17512433_2023_2277330 crossref_primary_10_3390_pharmaceutics15010178 crossref_primary_10_3390_ijms242316735 crossref_primary_10_1016_j_heliyon_2024_e31924 crossref_primary_10_3390_pharmaceutics16010047 crossref_primary_10_1016_j_ijpharm_2024_124573 crossref_primary_10_1097_MNH_0000000000001065 crossref_primary_10_1016_j_jbc_2024_107318 crossref_primary_10_1096_fj_202301808R crossref_primary_10_1136_dtb_2023_000004 crossref_primary_10_1002_adfm_202314088 |
| Cites_doi | 10.3389/fmolb.2021.824776 10.1093/annonc/mdx393.041 10.1136/bmj.m1159 10.1186/s12951-021-00781-z 10.1364/OE.470513 10.18632/oncotarget.20869 10.3389/fmicb.2018.02151 10.1056/NEJMoa2021712 10.1038/mt.2013.217 10.3389/fendo.2018.00402 10.1073/pnas.1411393111 10.1093/nar/gkl339 10.1038/s41569-018-0107-8 10.1016/j.molcel.2004.09.028 10.1111/bph.15541 10.1089/hum.2006.17.751 10.2217/nmt-2018-0033 10.1016/j.ophtha.2012.03.043 10.1016/j.ajps.2018.12.005 10.1016/j.cell.2018.03.006 10.1056/NEJMoa1615758 10.1016/j.jmb.2017.07.018 10.1152/jn.00385.2022 10.1038/nbt1339 10.1111/bcp.14925 10.1038/s41398-022-02096-5 10.1089/nat.2018.0736 10.1056/NEJMoa1913805 10.1200/JCO.2013.55.0376 10.1093/nar/gkm548 10.1016/j.semnephrol.2013.08.001 10.1038/mt.2010.266 10.1038/nature03315 10.1038/nature04263 10.1002/jgm.3097 10.1080/13543784.2017.1274730 10.4068/cmj.2020.56.2.87 10.1055/s-0036-1579760 10.1634/theoncologist.2018-0838 10.3390/molecules27196659 10.1016/j.molcel.2021.11.026 10.1155/2017/6971297 10.1016/j.jaad.2015.02.1092 10.1016/j.ydbio.2004.11.028 10.1007/s12603-022-1847-z 10.1161/CIRCULATIONAHA.120.053029 10.1038/nrg2936 10.1242/jcs.066399 10.3389/fphar.2019.00444 10.1016/j.omtn.2017.12.021 10.1093/nar/gkaa715 10.1093/nar/gkg147 10.1172/JCI24282 10.1016/S0140-6736(16)31679-8 10.1089/oli.2008.0162 10.1038/190576a0 10.1167/iovs.17-23475 10.4137/OED.S4878 10.1038/35078107 10.1111/j.1365-2958.1992.tb02202.x 10.1007/s40265-021-01511-3 10.1038/nrd3010 10.1038/nbt1081 10.1111/jth.15270 10.1038/s41569-021-00541-4 10.1038/mtna.2015.23 10.1194/jlr.R067314 10.1038/nm828 10.1126/science.286.5441.950 10.1016/j.jare.2020.04.017 10.1056/NEJMoa1912387 10.1038/s41587-019-0351-4 10.1016/j.cmet.2018.03.004 10.1007/s40256-021-00477-7 10.1038/ncomms4459 10.11406/rinketsu.57.1913 10.1002/cpt.1974 10.1002/jgm.507 10.1093/nar/gkaa670 10.7759/cureus.28998 10.1038/nbt.4136 10.2106/JBJS.22.00561 10.1016/j.cell.2022.03.010 10.3390/molecules22101724 10.1111/cbdd.12993 10.1161/circ.142.suppl_3.14387 10.1007/s40262-020-00940-9 10.1183/23120541.00733-2020 10.1038/mt.2013.216 10.1002/jcph.1553 10.1007/s40120-020-00208-1 10.1111/bph.15539 10.1002/path.2993 10.1124/dmd.106.009555 10.1016/j.addr.2015.12.004 10.2307/3869076 10.3389/fpls.2020.01237 10.1016/j.addr.2018.04.006 10.1080/13543784.2018.1457647 10.1111/bph.15537 10.1038/mt.2009.91 10.1016/j.biomaterials.2013.04.060 10.1167/iovs.12-9961 10.1093/nar/gku831 10.1016/j.bcp.2021.114432 10.1038/s41591-021-01634-w 10.1089/nat.2014.0489 10.1038/171737a0 10.1016/j.ekir.2021.04.004 10.1093/nar/gky1239 10.1146/annurev.med.53.082901.103929 10.1038/nmat1645 10.1186/s41038-015-0026-4 10.1016/j.nano.2020.102239 10.1097/01.hjh.0000744440.87593.16 10.1111/bph.15538 10.1080/10611860903057674 10.1038/s41392-020-0207-x 10.1089/hum.2019.143 10.3390/jcm7080201 10.3390/ph13100294 10.1021/mp2002522 10.1111/bph.15542 10.1161/CIRCRESAHA.118.313220 10.1007/978-3-030-41333-0 10.3390/molecules22081356 10.1016/j.addr.2007.03.004 10.1001/jama.2016.19043 10.1126/scitranslmed.aag1166 10.1038/35053110 10.1056/NEJMoa1609243 10.1038/nrd4503 10.1038/nbt.2612 10.1002/adhm.202001650 10.1038/s41587-020-0741-7 10.3389/fmed.2021.607962 10.1021/ja505986a 10.1016/j.pathol.2018.10.012 10.1042/BST20140068 10.1093/nar/gku531 10.1056/NEJMoa1716153 10.1038/35888 10.2147/JEP.S281187 10.3390/nano7040077 10.3390/ijms17122068 10.1056/NEJMoa1913147 10.1016/j.micinf.2019.06.007 10.1093/nar/gkq347 |
| ContentType | Journal Article |
| Copyright | 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. |
| Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. |
| DBID | AAYXX CITATION 7QP 7TK K9. NAPCQ 7X8 |
| DOI | 10.1111/bph.15972 |
| DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1476-5381 |
| EndPage | 2720 |
| ExternalDocumentID | 10_1111_bph_15972 |
| GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OB 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM AAESR AAEVG AAFWJ AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU CITATION COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O8X O9- OIG OK1 OVD P2P P2W PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q.N Q2X QB0 ROL RPM SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- 7QP 7TK K9. 7X8 |
| ID | FETCH-LOGICAL-c391t-416e69e8fe77c6ea86e8fca808d582d8a76f3c2a3a62e9f0680aac2ca2d8e30a3 |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-1188 1476-5381 |
| IngestDate | Fri Sep 05 07:22:06 EDT 2025 Mon Oct 06 18:31:30 EDT 2025 Sat Nov 29 04:21:24 EST 2025 Tue Nov 18 21:58:03 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-416e69e8fe77c6ea86e8fca808d582d8a76f3c2a3a62e9f0680aac2ca2d8e30a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0755-1756 0000-0002-9577-576X 0000-0002-8630-8625 0000-0002-1522-9276 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15972 |
| PQID | 2873071345 |
| PQPubID | 42104 |
| PageCount | 24 |
| ParticipantIDs | proquest_miscellaneous_2725440401 proquest_journals_2873071345 crossref_primary_10_1111_bph_15972 crossref_citationtrail_10_1111_bph_15972 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | British journal of pharmacology |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | e_1_2_14_114_1 e_1_2_14_137_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_140_1 e_1_2_14_121_1 e_1_2_14_163_1 e_1_2_14_107_1 e_1_2_14_144_1 e_1_2_14_125_1 e_1_2_14_167_1 e_1_2_14_103_1 e_1_2_14_148_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_170_1 e_1_2_14_151_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_155_1 e_1_2_14_115_1 e_1_2_14_136_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_159_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_120_1 e_1_2_14_143_1 e_1_2_14_162_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_124_1 e_1_2_14_147_1 e_1_2_14_166_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 Bryson T. E. (e_1_2_14_32_1) 2017; 90 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 Makris K. (e_1_2_14_92_1) 2016; 37 e_1_2_14_69_1 e_1_2_14_150_1 e_1_2_14_131_1 e_1_2_14_154_1 e_1_2_14_116_1 e_1_2_14_135_1 e_1_2_14_158_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_139_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_161_1 e_1_2_14_165_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_142_1 e_1_2_14_123_1 e_1_2_14_169_1 e_1_2_14_105_1 e_1_2_14_146_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_130_1 e_1_2_14_153_1 e_1_2_14_117_1 Sekijima Y. (e_1_2_14_134_1) 2001 e_1_2_14_157_1 e_1_2_14_113_1 e_1_2_14_138_1 e_1_2_14_74_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_160_1 Meseeha M. (e_1_2_14_97_1) 2022 e_1_2_14_141_1 e_1_2_14_164_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_145_1 e_1_2_14_168_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_126_1 e_1_2_14_149_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_171_1 e_1_2_14_152_1 e_1_2_14_118_1 e_1_2_14_133_1 e_1_2_14_156_1 |
| References_xml | – ident: e_1_2_14_165_1 doi: 10.3389/fmolb.2021.824776 – ident: e_1_2_14_152_1 doi: 10.1093/annonc/mdx393.041 – ident: e_1_2_14_21_1 doi: 10.1136/bmj.m1159 – ident: e_1_2_14_110_1 doi: 10.1186/s12951-021-00781-z – ident: e_1_2_14_54_1 doi: 10.1364/OE.470513 – ident: e_1_2_14_168_1 doi: 10.18632/oncotarget.20869 – ident: e_1_2_14_87_1 doi: 10.3389/fmicb.2018.02151 – ident: e_1_2_14_59_1 doi: 10.1056/NEJMoa2021712 – ident: e_1_2_14_99_1 doi: 10.1038/mt.2013.217 – ident: e_1_2_14_108_1 doi: 10.3389/fendo.2018.00402 – ident: e_1_2_14_171_1 doi: 10.1073/pnas.1411393111 – ident: e_1_2_14_43_1 – ident: e_1_2_14_64_1 doi: 10.1093/nar/gkl339 – ident: e_1_2_14_139_1 – ident: e_1_2_14_129_1 doi: 10.1038/s41569-018-0107-8 – ident: e_1_2_14_157_1 doi: 10.1016/j.molcel.2004.09.028 – ident: e_1_2_14_142_1 – ident: e_1_2_14_5_1 doi: 10.1111/bph.15541 – ident: e_1_2_14_62_1 doi: 10.1089/hum.2006.17.751 – ident: e_1_2_14_82_1 doi: 10.2217/nmt-2018-0033 – ident: e_1_2_14_105_1 doi: 10.1016/j.ophtha.2012.03.043 – ident: e_1_2_14_122_1 doi: 10.1016/j.ajps.2018.12.005 – ident: e_1_2_14_23_1 doi: 10.1016/j.cell.2018.03.006 – ident: e_1_2_14_124_1 doi: 10.1056/NEJMoa1615758 – ident: e_1_2_14_137_1 doi: 10.1016/j.jmb.2017.07.018 – ident: e_1_2_14_78_1 doi: 10.1152/jn.00385.2022 – ident: e_1_2_14_162_1 doi: 10.1038/nbt1339 – ident: e_1_2_14_12_1 – ident: e_1_2_14_51_1 doi: 10.1111/bcp.14925 – ident: e_1_2_14_132_1 doi: 10.1038/s41398-022-02096-5 – ident: e_1_2_14_141_1 – ident: e_1_2_14_109_1 – ident: e_1_2_14_145_1 doi: 10.1089/nat.2018.0736 – ident: e_1_2_14_121_1 doi: 10.1056/NEJMoa1913805 – ident: e_1_2_14_133_1 doi: 10.1200/JCO.2013.55.0376 – ident: e_1_2_14_28_1 doi: 10.1093/nar/gkm548 – ident: e_1_2_14_107_1 doi: 10.1016/j.semnephrol.2013.08.001 – ident: e_1_2_14_71_1 doi: 10.1038/mt.2010.266 – ident: e_1_2_14_89_1 doi: 10.1038/nature03315 – ident: e_1_2_14_111_1 doi: 10.1038/nature04263 – ident: e_1_2_14_67_1 doi: 10.1002/jgm.3097 – ident: e_1_2_14_55_1 doi: 10.1080/13543784.2017.1274730 – ident: e_1_2_14_80_1 doi: 10.4068/cmj.2020.56.2.87 – ident: e_1_2_14_159_1 doi: 10.1055/s-0036-1579760 – ident: e_1_2_14_45_1 doi: 10.1634/theoncologist.2018-0838 – ident: e_1_2_14_37_1 doi: 10.3390/molecules27196659 – ident: e_1_2_14_74_1 doi: 10.1016/j.molcel.2021.11.026 – ident: e_1_2_14_86_1 doi: 10.1155/2017/6971297 – ident: e_1_2_14_114_1 doi: 10.1016/j.jaad.2015.02.1092 – ident: e_1_2_14_41_1 doi: 10.1016/j.ydbio.2004.11.028 – ident: e_1_2_14_10_1 – ident: e_1_2_14_96_1 doi: 10.1007/s12603-022-1847-z – ident: e_1_2_14_151_1 doi: 10.1161/CIRCULATIONAHA.120.053029 – ident: e_1_2_14_73_1 doi: 10.1038/nrg2936 – ident: e_1_2_14_44_1 doi: 10.1242/jcs.066399 – ident: e_1_2_14_39_1 doi: 10.3389/fphar.2019.00444 – ident: e_1_2_14_47_1 doi: 10.1016/j.omtn.2017.12.021 – ident: e_1_2_14_88_1 doi: 10.1093/nar/gkaa715 – ident: e_1_2_14_13_1 doi: 10.1093/nar/gkg147 – ident: e_1_2_14_24_1 doi: 10.1172/JCI24282 – ident: e_1_2_14_52_1 doi: 10.1016/S0140-6736(16)31679-8 – ident: e_1_2_14_158_1 doi: 10.1089/oli.2008.0162 – ident: e_1_2_14_29_1 doi: 10.1038/190576a0 – ident: e_1_2_14_138_1 doi: 10.1167/iovs.17-23475 – ident: e_1_2_14_58_1 doi: 10.4137/OED.S4878 – ident: e_1_2_14_46_1 doi: 10.1038/35078107 – ident: e_1_2_14_127_1 doi: 10.1111/j.1365-2958.1992.tb02202.x – ident: e_1_2_14_149_1 doi: 10.1007/s40265-021-01511-3 – ident: e_1_2_14_75_1 doi: 10.1038/nrd3010 – ident: e_1_2_14_9_1 – ident: e_1_2_14_17_1 – ident: e_1_2_14_77_1 doi: 10.1038/nbt1081 – ident: e_1_2_14_11_1 – ident: e_1_2_14_113_1 doi: 10.1111/jth.15270 – ident: e_1_2_14_116_1 doi: 10.1038/s41569-021-00541-4 – ident: e_1_2_14_83_1 doi: 10.1038/mtna.2015.23 – ident: e_1_2_14_131_1 doi: 10.1194/jlr.R067314 – ident: e_1_2_14_30_1 – volume: 90 start-page: 553 issue: 4 year: 2017 ident: e_1_2_14_32_1 article-title: Nuclease‐mediated gene therapies for inherited metabolic diseases of the liver publication-title: The Yale Journal of Biology and Medicine – ident: e_1_2_14_144_1 doi: 10.1038/nm828 – ident: e_1_2_14_65_1 doi: 10.1126/science.286.5441.950 – ident: e_1_2_14_163_1 doi: 10.1016/j.jare.2020.04.017 – ident: e_1_2_14_125_1 doi: 10.1056/NEJMoa1912387 – ident: e_1_2_14_136_1 doi: 10.1038/s41587-019-0351-4 – ident: e_1_2_14_40_1 doi: 10.1016/j.cmet.2018.03.004 – ident: e_1_2_14_66_1 doi: 10.1007/s40256-021-00477-7 – ident: e_1_2_14_164_1 doi: 10.1038/ncomms4459 – ident: e_1_2_14_56_1 doi: 10.11406/rinketsu.57.1913 – ident: e_1_2_14_63_1 doi: 10.1002/cpt.1974 – ident: e_1_2_14_79_1 doi: 10.1002/jgm.507 – ident: e_1_2_14_31_1 doi: 10.1093/nar/gkaa670 – ident: e_1_2_14_156_1 doi: 10.7759/cureus.28998 – ident: e_1_2_14_170_1 doi: 10.1038/nbt.4136 – ident: e_1_2_14_117_1 doi: 10.2106/JBJS.22.00561 – ident: e_1_2_14_33_1 doi: 10.1016/j.cell.2022.03.010 – ident: e_1_2_14_147_1 doi: 10.3390/molecules22101724 – ident: e_1_2_14_135_1 doi: 10.1111/cbdd.12993 – ident: e_1_2_14_70_1 doi: 10.1161/circ.142.suppl_3.14387 – ident: e_1_2_14_19_1 doi: 10.1007/s40262-020-00940-9 – ident: e_1_2_14_91_1 doi: 10.1183/23120541.00733-2020 – ident: e_1_2_14_93_1 doi: 10.1038/mt.2013.216 – volume: 37 start-page: 85 issue: 2 year: 2016 ident: e_1_2_14_92_1 article-title: Acute kidney injury: Definition, pathophysiology and clinical phenotypes publication-title: Clinical Biochemist Reviews – ident: e_1_2_14_167_1 doi: 10.1002/jcph.1553 – ident: e_1_2_14_18_1 – ident: e_1_2_14_154_1 doi: 10.1007/s40120-020-00208-1 – ident: e_1_2_14_8_1 doi: 10.1111/bph.15539 – ident: e_1_2_14_161_1 doi: 10.1002/path.2993 – ident: e_1_2_14_155_1 doi: 10.1124/dmd.106.009555 – ident: e_1_2_14_112_1 doi: 10.1016/j.addr.2015.12.004 – ident: e_1_2_14_101_1 doi: 10.2307/3869076 – ident: e_1_2_14_148_1 doi: 10.3389/fpls.2020.01237 – ident: e_1_2_14_35_1 doi: 10.1016/j.addr.2018.04.006 – ident: e_1_2_14_98_1 doi: 10.1080/13543784.2018.1457647 – ident: e_1_2_14_7_1 doi: 10.1111/bph.15537 – ident: e_1_2_14_57_1 doi: 10.1038/mt.2009.91 – volume-title: GeneReviews® year: 2001 ident: e_1_2_14_134_1 – ident: e_1_2_14_126_1 doi: 10.1016/j.biomaterials.2013.04.060 – ident: e_1_2_14_104_1 doi: 10.1167/iovs.12-9961 – ident: e_1_2_14_120_1 – ident: e_1_2_14_90_1 doi: 10.1093/nar/gku831 – ident: e_1_2_14_166_1 doi: 10.1016/j.bcp.2021.114432 – ident: e_1_2_14_81_1 doi: 10.1038/s41591-021-01634-w – ident: e_1_2_14_143_1 doi: 10.1089/nat.2014.0489 – ident: e_1_2_14_160_1 doi: 10.1038/171737a0 – ident: e_1_2_14_85_1 doi: 10.1016/j.ekir.2021.04.004 – ident: e_1_2_14_26_1 doi: 10.1093/nar/gky1239 – ident: e_1_2_14_153_1 – ident: e_1_2_14_61_1 doi: 10.1146/annurev.med.53.082901.103929 – ident: e_1_2_14_119_1 doi: 10.1038/nmat1645 – ident: e_1_2_14_169_1 doi: 10.1186/s41038-015-0026-4 – ident: e_1_2_14_146_1 doi: 10.1016/j.nano.2020.102239 – ident: e_1_2_14_69_1 doi: 10.1097/01.hjh.0000744440.87593.16 – ident: e_1_2_14_4_1 doi: 10.1111/bph.15538 – ident: e_1_2_14_3_1 doi: 10.1080/10611860903057674 – ident: e_1_2_14_68_1 doi: 10.1038/s41392-020-0207-x – ident: e_1_2_14_16_1 doi: 10.1089/hum.2019.143 – ident: e_1_2_14_72_1 – ident: e_1_2_14_15_1 – ident: e_1_2_14_22_1 doi: 10.3390/jcm7080201 – ident: e_1_2_14_130_1 doi: 10.3390/ph13100294 – ident: e_1_2_14_84_1 doi: 10.1021/mp2002522 – ident: e_1_2_14_6_1 doi: 10.1111/bph.15542 – ident: e_1_2_14_34_1 doi: 10.1161/CIRCRESAHA.118.313220 – ident: e_1_2_14_106_1 doi: 10.1007/978-3-030-41333-0 – ident: e_1_2_14_36_1 doi: 10.3390/molecules22081356 – ident: e_1_2_14_94_1 doi: 10.1016/j.addr.2007.03.004 – ident: e_1_2_14_53_1 doi: 10.1001/jama.2016.19043 – ident: e_1_2_14_48_1 doi: 10.1126/scitranslmed.aag1166 – ident: e_1_2_14_25_1 doi: 10.1038/35053110 – ident: e_1_2_14_50_1 doi: 10.1056/NEJMoa1609243 – ident: e_1_2_14_38_1 doi: 10.1038/nrd4503 – ident: e_1_2_14_60_1 doi: 10.1038/nbt.2612 – ident: e_1_2_14_95_1 doi: 10.1002/adhm.202001650 – volume-title: StatPearls year: 2022 ident: e_1_2_14_97_1 – ident: e_1_2_14_103_1 doi: 10.1038/s41587-020-0741-7 – ident: e_1_2_14_128_1 doi: 10.3389/fmed.2021.607962 – ident: e_1_2_14_100_1 doi: 10.1021/ja505986a – ident: e_1_2_14_27_1 doi: 10.1016/j.pathol.2018.10.012 – ident: e_1_2_14_115_1 doi: 10.1042/BST20140068 – ident: e_1_2_14_102_1 – ident: e_1_2_14_118_1 doi: 10.1093/nar/gku531 – ident: e_1_2_14_2_1 doi: 10.1056/NEJMoa1716153 – ident: e_1_2_14_49_1 doi: 10.1038/35888 – ident: e_1_2_14_76_1 doi: 10.2147/JEP.S281187 – ident: e_1_2_14_150_1 doi: 10.3390/nano7040077 – ident: e_1_2_14_123_1 doi: 10.3390/ijms17122068 – ident: e_1_2_14_140_1 – ident: e_1_2_14_20_1 doi: 10.1056/NEJMoa1913147 – ident: e_1_2_14_42_1 doi: 10.1016/j.micinf.2019.06.007 – ident: e_1_2_14_14_1 doi: 10.1093/nar/gkq347 |
| SSID | ssj0014775 |
| Score | 2.653417 |
| SecondaryResourceType | review_article |
| Snippet | Post‐transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using... Post-transcriptional gene silencing targets and degrades mRNA transcripts, silencing the expression of specific genes. RNA interference technology, using... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2697 |
| SubjectTerms | Amyloidosis Bioavailability Chemical modification Gene expression Gene silencing Genetic disorders Hypercholesterolemia Hyperoxaluria Immune response Liver Nuclease Patient compliance Pharmacodynamics Pharmacokinetics Porphyria Primary hyperoxaluria RNA-mediated interference siRNA Transthyretin |
| Title | Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review |
| URI | https://www.proquest.com/docview/2873071345 https://www.proquest.com/docview/2725440401 |
| Volume | 180 |
| WOSCitedRecordID | wos000882720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1476-5381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014775 issn: 0007-1188 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1476-5381 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014775 issn: 0007-1188 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELa2LQcuiF9RKJVBaIXUTZU4WdvhtmJbcaiWFaTS3oLXcehKSxqy26q98RA8Fw_BkzCOHSeLoIIDlyhKnFjxjMfOzDffIPSSzSNBolx4VErpRQFh3jznOo1rmGeMKtiB-3WxCTaZ8NksnvZ635tcmMslKwp-dRWX_1XUcA2ErVNn_0Hc7qVwAc5B6HAEscPxrwT_4bOONmsaiCpXBl03qb3o48VKasBmPaxlS1ltGJhcimTWwogaJEQ00njItSGH1UH5qo0o_EKO1GGi6HbRhpMKob0TZya3rFpci-KTWxlGBtxUO2nVcrHSDu4D550eKwMGr4G9B8431MSUanS-jXJZNwYJbT7fH9yVxv3WApuM7WbwkCkCeKiMuY4Y9cBkB5v23O8orsm_bswzNWBgu9TrGPQNy8i8PDuE3Z4pLbRJ1T15lx6fnpykydEs6ZdfPF3FTEf7bUmXLbRD2DAGK7szfg8NXVwrYszU1LDfYrmuNLbM9ba5Q9rcINS7nuQuumN_V_DIqNk91FPFfdSfGsleD3DSpu-tBriPpx2ZP0Afa13EHV3EoIuvsdPEAe4qCQZ540YPcUcPf3z9NipwVwOx0cCH6PT4KHnz1rMlPTwZxsEajAFVNFY8V4xJqgSncC4F93k25CTjgtE8lESEghIV57owjBCSSAH3VOiL8BHaLs4L9RhhHvJMBJngIgsjFcdzzVyZCRESf65JHHfRq2YYU2n57nXZlWXa_PfCiKf1iO-iF65paUheftdor5FFaufSKiUcVkidjg3dPXe3wULrsJso1PkFtGGaBhAWy-DJza94im63M2MPba-rC_UM3ZKXMH-rfbTFZnzfKtRPvzC5Aw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+interfering+RNA%3A+Discovery%2C+pharmacology+and+clinical+development%E2%80%94An+introductory+review&rft.jtitle=British+journal+of+pharmacology&rft.au=Ranasinghe%2C+Priyanga&rft.au=Addison%2C+Melisande+L&rft.au=Dear%2C+James+W&rft.au=Webb%2C+David+J&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=180&rft.issue=21&rft.spage=2697&rft.epage=2720&rft_id=info:doi/10.1111%2Fbph.15972&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |