Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker

The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 14; no. 5; pp. 671 - 687
Main Authors: Battiti, Roberto, Passerini, Andrea
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of "learning while optimizing," through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.
AbstractList The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of "learning while optimizing," through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k -fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.
The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of "learning while optimizing," through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a [Formula Omitted]-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.
Author Battiti, Roberto
Passerini, Andrea
Author_xml – sequence: 1
  givenname: Roberto
  surname: Battiti
  fullname: Battiti, Roberto
  email: battiti@disi.unitn.it
  organization: Dipt. di Ing. e Scienza dell'Inf., Univ. di Trento, Trento, Italy
– sequence: 2
  givenname: Andrea
  surname: Passerini
  fullname: Passerini, Andrea
  email: passerini@disi.unitn.it
  organization: Dipt. di Ing. e Scienza dell'Inf., Univ. di Trento, Trento, Italy
BookMark eNp9kEFP2zAYhi0E0grjB0xcLO2wUzp_TpzYu3VdKZNAXABxixznC7gkcWc7SNuvn0urHTjs9L2f_Ly29ZyS49GNSMgnYHMApr7erR6Wc87SypmQAPKIzEAVkDHGy-OUmVRZVcnHD-Q0hA1jUAhQM_Ly3Ws7Zks3bKeInq5eXT9F60btf9ObqU-x2aCJ9hXp7Tbawf7Ru-NvdEHXOGK0hi76J-dtfB7ootWJGZ9odDQ-I_2BxoZE0xv9gv4jOel0H_D8MM_I_eXqbnmVXd-ufy4X15nJFcSMN6oqmjIHqRrVmqblgqlWyFbnupNVYVjDBa-wYkUJSnUi70CVCELypuBtm5-RL_t7t979mjDEerDBYN_rEd0UapkDiILJIpGf35EbN_kxfa4GlrOkUXGVKNhTxrsQPHb11tshCUpQvbNf7-zXO_v1wX7qVO86xsY3czEJ7__bvNg3LSL-e0mIklVS5X8BcJiUIw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s13042_019_01036_y
crossref_primary_10_18359_rcin_4131
crossref_primary_10_1109_TCYB_2015_2415732
crossref_primary_10_1109_TCYB_2018_2859363
crossref_primary_10_1109_TSMCB_2012_2231860
crossref_primary_10_1016_j_ejor_2015_10_027
crossref_primary_10_1109_TII_2017_2677939
crossref_primary_10_1109_TFUZZ_2018_2880700
crossref_primary_10_1109_TEVC_2014_2303783
crossref_primary_10_1145_3450517
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_1109_TEVC_2019_2915767
crossref_primary_10_1109_TITS_2016_2565643
crossref_primary_10_9766_KIMST_2013_16_1_005
crossref_primary_10_4018_jaec_2013040101
crossref_primary_10_1016_j_asoc_2022_109613
crossref_primary_10_1016_j_cie_2023_109491
crossref_primary_10_1109_ACCESS_2016_2605759
crossref_primary_10_1016_j_swevo_2019_100602
crossref_primary_10_1007_s10726_016_9506_6
crossref_primary_10_1016_j_procs_2020_08_030
crossref_primary_10_1145_3448301
crossref_primary_10_1016_j_patcog_2014_03_011
crossref_primary_10_1080_01605682_2022_2141145
crossref_primary_10_1016_j_ins_2018_09_069
crossref_primary_10_1109_TEVC_2014_2301794
crossref_primary_10_1109_ACCESS_2018_2873401
crossref_primary_10_3233_JIFS_179734
crossref_primary_10_1016_j_future_2013_09_029
crossref_primary_10_1016_j_ejor_2025_06_012
crossref_primary_10_1016_j_asoc_2016_11_007
crossref_primary_10_1016_j_cor_2019_04_008
crossref_primary_10_1109_ACCESS_2018_2856832
crossref_primary_10_1016_j_asoc_2024_111950
crossref_primary_10_1016_j_neucom_2016_01_124
crossref_primary_10_1002_mcda_1534
crossref_primary_10_1016_j_trb_2025_103162
crossref_primary_10_9766_KIMST_2012_15_3_272
crossref_primary_10_1016_j_ress_2019_106520
crossref_primary_10_1109_TEVC_2023_3289872
crossref_primary_10_1016_j_asoc_2015_01_012
crossref_primary_10_1007_s10994_013_5350_y
crossref_primary_10_1007_s40747_024_01668_w
crossref_primary_10_1109_TNNLS_2013_2275918
crossref_primary_10_1109_TCYB_2013_2295886
crossref_primary_10_1007_s40747_017_0053_9
crossref_primary_10_1016_j_ins_2023_119860
crossref_primary_10_1016_j_ins_2013_01_020
crossref_primary_10_1007_s13042_024_02331_z
crossref_primary_10_1109_TEVC_2020_3027620
crossref_primary_10_1016_j_asoc_2018_08_029
crossref_primary_10_1177_03611981211049148
crossref_primary_10_3390_math9202621
crossref_primary_10_1109_TEVC_2023_3234269
crossref_primary_10_1109_TEVC_2023_3269348
Cites_doi 10.1287/mnsc.42.6.835
10.1006/jcom.1994.1007
10.1007/BF00116828
10.1007/978-3-540-88908-3_4
10.1016/S0305-0548(99)00108-2
10.1613/jair.2861
10.1007/BF01210689
10.2307/3003600
10.1109/4235.996017
10.1109/5.949485
10.1109/TEVC.2006.876362
10.1007/BF02591870
10.1017/CBO9780511809682
10.1023/B:AURC.0000038735.71311.36
10.1023/A:1007379606734
10.1023/A:1012771025575
10.1287/mnsc.49.12.1726.25117
10.1109/TEVC.2007.892759
10.1613/jair.587
10.1109/4235.797969
10.1007/BF00994018
10.1007/978-3-642-13800-3_35
10.1007/978-3-540-88908-3_7
10.1007/978-3-540-88908-3_6
10.1109/TEVC.2003.810761
10.1109/TSMC.1984.6313266
10.1145/1553374.1553380
10.1109/TSMC.1984.6313205
10.1080/07408170500232040
10.1016/j.ejor.2005.12.015
10.1109/CEC.2000.870272
10.1002/1520-6750(199004)37:2<263::AID-NAV3220370206>3.0.CO;2-6
10.1145/1553374.1553386
10.1007/978-3-540-88908-3_2
10.1109/TNSRE.2007.913184
10.1023/A:1009715923555
10.1162/evco.1994.2.3.221
10.1002/(SICI)1099-1360(199606)5:2<145::AID-MCDA99>3.0.CO;2-5
10.1109/CEC.2002.1007032
10.1287/mnsc.32.7.841
10.1016/0377-2217(91)90240-V
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7TK
FR3
P64
RC3
DOI 10.1109/TEVC.2010.2058118
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Genetics Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 687
ExternalDocumentID 2723831451
10_1109_TEVC_2010_2058118
5560789
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7TK
FR3
P64
RC3
ID FETCH-LOGICAL-c391t-2b974b63189b9dcbd2509d58da3af874c0b2527e7046199f53f196e1582b42dd3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283371400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Wed Oct 01 14:04:37 EDT 2025
Sun Sep 07 03:44:39 EDT 2025
Sat Nov 29 03:13:46 EST 2025
Tue Nov 18 21:32:53 EST 2025
Tue Aug 26 17:07:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2b974b63189b9dcbd2509d58da3af874c0b2527e7046199f53f196e1582b42dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1030118929
PQPubID 85418
PageCount 17
ParticipantIDs crossref_primary_10_1109_TEVC_2010_2058118
ieee_primary_5560789
proquest_miscellaneous_831154084
proquest_journals_1030118929
crossref_citationtrail_10_1109_TEVC_2010_2058118
PublicationCentury 2000
PublicationDate 2010-Oct.
2010-10-00
20101001
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref15) 2008
ref12
ref14
ref52
hutter (ref34) 2009; 36
ref54
ref17
ref16
ref19
jaszkiewicz (ref36) 2008
branke (ref6) 2008
steuer (ref18) 1986
ref50
collins (ref26) 2001
ref46
ref45
ref48
schaffer (ref1) 1985
campigotto (ref56) 2010; 6073
ref47
ref42
figueira (ref43) 2008
ref41
ref44
battiti (ref11) 2008
menchetti (ref24) 2005
bengio (ref49) 2007
braziunas (ref51) 2007
ref8
ref7
grtner (ref53) 2005
ref3
ref5
ref40
settles (ref33) 2009
ref35
ref37
ref31
collins (ref27) 2002
ref32
ref2
miettinen (ref10) 2008
ref39
ref38
micchelli (ref28) 2006; 7
cohen (ref25) 1999; 10
ref23
ref20
evgeniou (ref55) 2005; 6
ref22
ref21
ref29
deb (ref4) 2001
march (ref9) 1978; 9
martello (ref30) 1990
References_xml – year: 2009
  ident: ref33
  publication-title: Active Learning Literature Survey
– ident: ref37
  doi: 10.1287/mnsc.42.6.835
– ident: ref50
  doi: 10.1006/jcom.1994.1007
– ident: ref47
  doi: 10.1007/BF00116828
– start-page: 97
  year: 2008
  ident: ref43
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-88908-3_4
– start-page: 518
  year: 2001
  ident: ref4
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref38
  doi: 10.1016/S0305-0548(99)00108-2
– volume: 36
  start-page: 267
  year: 2009
  ident: ref34
  article-title: ParamILS: An automatic algorithm configuration framework
  publication-title: J Artificial Intell Res
  doi: 10.1613/jair.2861
– ident: ref8
  doi: 10.1007/BF01210689
– volume: 9
  start-page: 587
  year: 1978
  ident: ref9
  article-title: bounded rationality, ambiguity, and the engineering of choice
  publication-title: Bell J Econ
  doi: 10.2307/3003600
– start-page: 263
  year: 2002
  ident: ref27
  article-title: new ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron
  publication-title: Proc ACL
– ident: ref31
  doi: 10.1109/4235.996017
– ident: ref16
  doi: 10.1109/5.949485
– ident: ref7
  doi: 10.1109/TEVC.2006.876362
– start-page: 93
  year: 1985
  ident: ref1
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proc 4th Int Conf Genetic Algorithms
– ident: ref21
  doi: 10.1007/BF02591870
– ident: ref29
  doi: 10.1017/CBO9780511809682
– ident: ref20
  doi: 10.1023/B:AURC.0000038735.71311.36
– ident: ref54
  doi: 10.1023/A:1007379606734
– year: 2005
  ident: ref24
  publication-title: Learning preference and structured data Theory and applications
– volume: 6
  start-page: 615
  year: 2005
  ident: ref55
  article-title: learning multiple tasks with kernel methods
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1023/A:1012771025575
– volume: 7
  start-page: 2651
  year: 2006
  ident: ref28
  article-title: universal kernels
  publication-title: J Mach Learn Res
– year: 2008
  ident: ref15
  publication-title: Multiobjective Optimization Interactive and Evolutionary Approaches
– ident: ref44
  doi: 10.1287/mnsc.49.12.1726.25117
– ident: ref14
  doi: 10.1109/TEVC.2007.892759
– volume: 10
  start-page: 243
  year: 1999
  ident: ref25
  article-title: learning to order things
  publication-title: J Artificial Intell Res
  doi: 10.1613/jair.587
– ident: ref3
  doi: 10.1109/4235.797969
– year: 2007
  ident: ref49
  publication-title: Large-Scale Kernel Machines
– year: 2008
  ident: ref11
  publication-title: Operations Research/Computer Science Interfaces Series
– year: 1986
  ident: ref18
  publication-title: Multiple Criteria Optimization Theory Computation and Application
– ident: ref23
  doi: 10.1007/BF00994018
– volume: 6073
  start-page: 338
  year: 2010
  ident: ref56
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-13800-3_35
– year: 2005
  ident: ref53
  publication-title: Kernels for structured data
– start-page: 179
  year: 2008
  ident: ref36
  publication-title: Multiobjective Optimization Interactive and Evolutionary Approaches
  doi: 10.1007/978-3-540-88908-3_7
– start-page: 157
  year: 2008
  ident: ref6
  publication-title: Multiobjective Optimization Interactive and Evolutionary Approaches
  doi: 10.1007/978-3-540-88908-3_6
– ident: ref5
  doi: 10.1109/TEVC.2003.810761
– ident: ref45
  doi: 10.1109/TSMC.1984.6313266
– start-page: 625
  year: 2001
  ident: ref26
  publication-title: Advances in Neural Information Processing Systems 14
– ident: ref48
  doi: 10.1145/1553374.1553380
– ident: ref42
  doi: 10.1109/TSMC.1984.6313205
– ident: ref39
  doi: 10.1080/07408170500232040
– ident: ref41
  doi: 10.1016/j.ejor.2005.12.015
– ident: ref35
  doi: 10.1109/CEC.2000.870272
– ident: ref22
  doi: 10.1002/1520-6750(199004)37:2<263::AID-NAV3220370206>3.0.CO;2-6
– ident: ref52
  doi: 10.1145/1553374.1553386
– start-page: 27
  year: 2008
  ident: ref10
  publication-title: Multiobjective Optimization Interactive and Evolutionary Approaches
  doi: 10.1007/978-3-540-88908-3_2
– ident: ref12
  doi: 10.1109/TNSRE.2007.913184
– ident: ref32
  doi: 10.1023/A:1009715923555
– ident: ref2
  doi: 10.1162/evco.1994.2.3.221
– ident: ref17
  doi: 10.1002/(SICI)1099-1360(199606)5:2<145::AID-MCDA99>3.0.CO;2-5
– ident: ref46
  doi: 10.1109/CEC.2002.1007032
– ident: ref40
  doi: 10.1287/mnsc.32.7.841
– start-page: 25
  year: 2007
  ident: ref51
  article-title: minimax regret based elicitation of generalized additive utilities
  publication-title: Proc 20th Conf UAI
– year: 1990
  ident: ref30
  publication-title: Knapsack Problems Algorithms and Computer Implementations
– ident: ref19
  doi: 10.1016/0377-2217(91)90240-V
SSID ssj0014519
Score 2.3265707
Snippet The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 671
SubjectTerms Delta modulation
Humans
Interactive decision making
Kernel
Machine learning
Operations research
Optimization
reactive search optimization
Studies
Support vector machines
support vector ranking
Training
Title Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker
URI https://ieeexplore.ieee.org/document/5560789
https://www.proquest.com/docview/1030118929
https://www.proquest.com/docview/831154084
Volume 14
WOSCitedRecordID wos000283371400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH4C1AMcSsuiTksrH3qqSEk88dbblA7qpbQHQHOL7Dy7UGCCMhkk_j2244mQiir1FimOE-XzW-y3fAAfuXDacaEzZ6nLSosiUxZ5hugMr02JCnuyCXF6Kmcz9WsNDodaGGttTD6zn8NljOVjUy_DUdkR8-ZZSLUO60LwvlZriBiENil9Mr3yHqOcpQhmkaujs-nFcZ_ERXMmi8Dv8cQGRVKVvzRxNC8n2__3Ya_gZXIjyaTH_TWs2fkObK8oGkiS2B3YetJvcBeuvwZCiGwYNr1PC0-3DySW4jbmT68ByU-vS25TkeYXMiGhP7V_GZnc_G7aq-7ylkxQ34WkadI1xLuR5Fui6yE_9LVt9-D8ZHp2_D1LbAtZPVZFl1HjtxaGexlXRmFt0DtHCplEPdZOirLODWVUWBFatCvl2Nh56bUFk9SUFHG8DxvzZm7fALGc5o4jy6k2pWZUolcVyLifiXnjqEeQr_5_VadW5IER46aKW5JcVQGyKkBWJchG8Gl45K7vw_GvwbsBo2FggmcEByuQqySpi6qIe0LpvcQRkOG2l7EQONFz2ywXlQwticpclm-fn_gdbMakgpjjdwAbXbu07-FFfd9dLdoPcZ0-Avj35r4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8aAwl2YLANrdsAHzghwhI3Tuzdyug0xFY4FNSbZefZsK9mStNJ_PfYjhtNAiFxixTHifLz-7Dfxw_gTVFaZYtSJdZQm-QGy0QYLBJEq4tK5yiwI5soJxM-m4mva_Cur4UxxoTkM_PeX4ZYPtbV0h-VHTJnnksuHsBDz5wVq7X6mIFvlNKl0wvnM_JZjGFmqTicjr8fd2lcNGU88wwf96xQoFX5QxcHA3Oy-X-f9gyeRkeSjDrkn8OamW_B5oqkgUSZ3YKNex0Ht-Hqg6eESPph47u49FTzi4Ri3FpfdjqQfHHa5CaWaR6REfEdqt3LyOj6R91ctD9vyAjVrU-bJm1NnCNJPkbCHnKurkyzA99OxtPj0yTyLSTVUGRtQrXbXOjCSbnQAiuNzj0SyDiqobK8zKtUU0ZLU_om7UJYNrROfk3GONU5RRy-gPV5PTe7QExBU1sgS6nSuWKUo1MWyAo3E3PmUQ0gXf1_WcVm5J4T41qGTUkqpIdMeshkhGwAb_tHbrtOHP8avO0x6gdGeAZwsAJZRlldyCzsCrnzEwdA-ttOynzoRM1NvVxI7psS5SnP9_4-8Wt4fDo9P5Nnnyaf9-FJSDEIGX8HsN42S_MSHlV37cWieRXW7G8kneoH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain%E2%80%93Computer+Evolutionary+Multiobjective+Optimization%3A+A+Genetic+Algorithm+Adapting+to+the+Decision+Maker&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Battiti%2C+Roberto&rft.au=Passerini%2C+Andrea&rft.date=2010-10-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=14&rft.issue=5&rft.spage=671&rft.epage=687&rft_id=info:doi/10.1109%2FTEVC.2010.2058118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2010_2058118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon