An institution theory of formal meta-modelling in graphically extended BNF

Meta-modelling plays an important role in model driven software development. In this paper, a graphic exten- sion of BNF (GEBNF) is proposed to define the abstract syn- tax of graphic modelling languages. From a GEBNF syntax definition, a formal predicate logic language can be induced so that meta-m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers of Computer Science Ročník 6; číslo 1; s. 40 - 56
Hlavní autor: ZHU, Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Higher Education Press 01.02.2012
SP Higher Education Press
Springer Nature B.V
Témata:
ISSN:1673-7350, 2095-2228, 1673-7466, 2095-2236
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Meta-modelling plays an important role in model driven software development. In this paper, a graphic exten- sion of BNF (GEBNF) is proposed to define the abstract syn- tax of graphic modelling languages. From a GEBNF syntax definition, a formal predicate logic language can be induced so that meta-modelling can be performed formally by spec- ifying a predicate on the domain of syntactically valid mod- els. In this paper, we investigate the theoretical foundation of this meta-modelling approach. We formally define the se- mantics of GEBNF and its induced predicate logic languages, then apply Goguen and Burstall's institution theory to prove that they form a sound and valid formal specification lan- guage for meta-modelling.
Bibliografie:11-5731/TP
meta-modelling, modelling languages, abstractsyntax, semantics, graphic extension of BNF (GEBNF), for-mal logic, institution
Meta-modelling plays an important role in model driven software development. In this paper, a graphic exten- sion of BNF (GEBNF) is proposed to define the abstract syn- tax of graphic modelling languages. From a GEBNF syntax definition, a formal predicate logic language can be induced so that meta-modelling can be performed formally by spec- ifying a predicate on the domain of syntactically valid mod- els. In this paper, we investigate the theoretical foundation of this meta-modelling approach. We formally define the se- mantics of GEBNF and its induced predicate logic languages, then apply Goguen and Burstall's institution theory to prove that they form a sound and valid formal specification lan- guage for meta-modelling.
modelling languages
abstract syntax
formal logic
institution
Document accepted on :2011-09-30
meta-modelling
Document received on :2011-07-20
semantics
graphic extension of BNF (GEBNF)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1673-7350
2095-2228
1673-7466
2095-2236
DOI:10.1007/s11704-012-2902-4