How do ML practitioners perceive explainability? an interview study of practices and challenges
Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems...
Gespeichert in:
| Veröffentlicht in: | Empirical software engineering : an international journal Jg. 30; H. 1; S. 18 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-3256, 1573-7616 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems that use machine learning (ML) techniques. However, there is a notable absence of studies investigating how ML practitioners perceive the concept of explainability, the challenges they encounter, and the potential trade-offs with other quality attributes. In this study, we want to discover how practitioners define explainability for AI-based systems and what challenges they encounter in making them explainable. Furthermore, we explore how explainability interacts with other quality attributes. To this end, we conducted semi-structured interviews with 14 ML practitioners from 11 companies. Our study reveals diverse viewpoints on explainability and applied practices. Results suggest that the importance of explainability lies in enhancing transparency, refining models, and mitigating bias. Methods like SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanation (LIME) are frequently used by ML practitioners to understand how models work, while tailored approaches are typically adopted to meet the specific requirements of stakeholders. Moreover, we have discerned emerging challenges in eight categories. Issues such as effective communication with non-technical stakeholders and the absence of standardized approaches are frequently stated as recurring hurdles. We contextualize these findings in terms of requirements engineering and conclude that industry currently lacks a standardized framework to address arising explainability needs. |
|---|---|
| AbstractList | Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems that use machine learning (ML) techniques. However, there is a notable absence of studies investigating how ML practitioners perceive the concept of explainability, the challenges they encounter, and the potential trade-offs with other quality attributes. In this study, we want to discover how practitioners define explainability for AI-based systems and what challenges they encounter in making them explainable. Furthermore, we explore how explainability interacts with other quality attributes. To this end, we conducted semi-structured interviews with 14 ML practitioners from 11 companies. Our study reveals diverse viewpoints on explainability and applied practices. Results suggest that the importance of explainability lies in enhancing transparency, refining models, and mitigating bias. Methods like SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanation (LIME) are frequently used by ML practitioners to understand how models work, while tailored approaches are typically adopted to meet the specific requirements of stakeholders. Moreover, we have discerned emerging challenges in eight categories. Issues such as effective communication with non-technical stakeholders and the absence of standardized approaches are frequently stated as recurring hurdles. We contextualize these findings in terms of requirements engineering and conclude that industry currently lacks a standardized framework to address arising explainability needs. |
| ArticleNumber | 18 |
| Author | Habib, Mohammad Kasra Bogner, Justus Habiba, Umm-e- Wagner, Stefan Fritzsch, Jonas |
| Author_xml | – sequence: 1 givenname: Umm-e- orcidid: 0000-0001-8953-9624 surname: Habiba fullname: Habiba, Umm-e- email: umm-e-habiba@iste.uni-stuttgart.de organization: Institute of Software Engineering, University of Stuttgart, Department of Software Engineering, University of Kotli Azad Jammu Kashmir – sequence: 2 givenname: Mohammad Kasra orcidid: 0000-0002-1272-9873 surname: Habib fullname: Habib, Mohammad Kasra organization: TUM School of Communication, Information and Technology, Technical University of Munich – sequence: 3 givenname: Justus orcidid: 0000-0001-5788-0991 surname: Bogner fullname: Bogner, Justus organization: Department of Computer Science, Vrije Universiteit Amsterdam – sequence: 4 givenname: Jonas orcidid: 0000-0002-6121-2731 surname: Fritzsch fullname: Fritzsch, Jonas organization: Institute of Software Engineering, University of Stuttgart – sequence: 5 givenname: Stefan orcidid: 0000-0002-5256-8429 surname: Wagner fullname: Wagner, Stefan organization: Institute of Software Engineering, University of Stuttgart, TUM School of Communication, Information and Technology, Technical University of Munich |
| BookMark | eNp9kE1LAzEURYNUsK3-AVcB19F8TDIzK5GiVqi40XXI5ENTxpkxSVv7701tQXDR1Qu8e-4LZwJGXd9ZAC4JviYYlzeRYCEKhGmBCOaCI3oCxoSXDJWCiFF-s4oiRrk4A5MYlxjjuiz4GMh5v4Gmh88LOASlk08-N4cIBxu09WsL7ffQKt-pxrc-bW-h6qDvkg1rbzcwppXZwt4dYG1j3huoP1Tb2u7dxnNw6lQb7cVhTsHbw_3rbI4WL49Ps7sF0qwmCRFlG1pzTZRxTtWitKbguBFlSR2tTNO4wghnCuWIYELVRd5qJmqliHC8ImwKrva9Q-i_VjYmuexXocsnJSOcMpw7q-MpykiJCWc5Ve1TOvQxBuuk9kntxKSgfCsJljvpci9dZunyV7qkGaX_0CH4TxW2xyG2h2IOZ2nh71dHqB_7lJaw |
| CitedBy_id | crossref_primary_10_1186_s12911_025_02990_0 crossref_primary_10_1057_s41270_025_00436_0 crossref_primary_10_1080_19386389_2025_2515766 |
| Cites_doi | 10.3389/fcomp.2023.1117848 10.1109/REW53955.2021.00031 10.1109/RE.2019.00046 10.1109/DSAA.2018.00018 10.1109/ISSREW.2019.00035 10.1109/RE48521.2020.00046 10.1016/j.jbi.2020.103655 10.1016/j.dsp.2017.10.011 10.1109/ISR50024.2021.9419498 10.1145/3561048 10.1109/REW53955.2021.00033 10.1007/978-3-030-68796-0_1 10.21203/rs.3.rs-2963888/v1 10.3390/electronics8080832 10.1007/s10664-008-9102-8 10.1109/RE51729.2021.00025 10.1145/3236386.3241340 10.1007/978-1-84800-044-5_2 10.1016/j.artint.2018.07.007 10.1007/s10664-021-10072-8 10.1145/3334480.3383047 10.1088/1741-2552/ab8131 10.1016/j.eswa.2019.113100 10.1109/REW53955.2021.00032 10.1109/REW.2019.00050 10.1145/2783258.2788613 10.1007/s00766-020-00333-1 10.1145/2939672.2939778 10.1145/3411764.3445088 10.1109/REW56159.2022.00038 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright Springer Nature B.V. Jan 2025 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright Springer Nature B.V. Jan 2025 |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10664-024-10565-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7616 |
| ExternalDocumentID | 10_1007_s10664_024_10565_2 |
| GrantInformation_xml | – fundername: Universität Stuttgart (1023) – fundername: German Federal Ministry of Education and Research funderid: 21IV005E |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c391t-1aeb295c1adffa967ed450b6772f28dbbf4d6fd4af1636a94450c369aa16f5813 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345929200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-3256 |
| IngestDate | Tue Dec 02 16:50:22 EST 2025 Tue Dec 02 16:28:06 EST 2025 Sat Nov 29 05:37:48 EST 2025 Tue Nov 18 21:37:32 EST 2025 Fri Feb 21 02:34:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Requirements engineering Interviews Explainable AI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-1aeb295c1adffa967ed450b6772f28dbbf4d6fd4af1636a94450c369aa16f5813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1272-9873 0000-0002-6121-2731 0000-0001-5788-0991 0000-0001-8953-9624 0000-0002-5256-8429 |
| OpenAccessLink | https://link.springer.com/10.1007/s10664-024-10565-2 |
| PQID | 3123170153 |
| PQPubID | 326341 |
| ParticipantIDs | proquest_journals_3152309678 proquest_journals_3123170153 crossref_citationtrail_10_1007_s10664_024_10565_2 crossref_primary_10_1007_s10664_024_10565_2 springer_journals_10_1007_s10664_024_10565_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Empirical software engineering : an international journal |
| PublicationTitleAbbrev | Empir Software Eng |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 10565_CR15 10565_CR14 W Jin (10565_CR19) 2020; 17 10565_CR17 10565_CR39 10565_CR38 S Dhanorkar (10565_CR9) 2021; 2021 10565_CR10 10565_CR13 10565_CR35 10565_CR12 10565_CR34 10565_CR31 10565_CR30 L Chazette (10565_CR7) 2020; 25 ZC Lipton (10565_CR29) 2018; 16 DV Carvalho (10565_CR6) 2019; 8 AF Markus (10565_CR32) 2021; 113 10565_CR1 10565_CR26 RR Hoffman (10565_CR16) 2023; 5 10565_CR25 10565_CR3 10565_CR4 10565_CR27 S Sachan (10565_CR37) 2020; 144 10565_CR5 10565_CR22 S Baltes (10565_CR2) 2022; 27 10565_CR21 10565_CR24 10565_CR8 10565_CR23 10565_CR40 10565_CR20 10565_CR42 10565_CR41 T Miller (10565_CR33) 2019; 267 P Runeson (10565_CR36) 2009; 14 10565_CR18 R Dwivedi (10565_CR11) 2023; 55 ZC Lipton (10565_CR28) 2018; 16 |
| References_xml | – ident: 10565_CR18 – volume: 5 start-page: 1117848 year: 2023 ident: 10565_CR16 publication-title: Front Comput Sci doi: 10.3389/fcomp.2023.1117848 – ident: 10565_CR21 doi: 10.1109/REW53955.2021.00031 – ident: 10565_CR22 doi: 10.1109/RE.2019.00046 – ident: 10565_CR13 doi: 10.1109/DSAA.2018.00018 – ident: 10565_CR25 doi: 10.1109/ISSREW.2019.00035 – ident: 10565_CR26 – ident: 10565_CR17 doi: 10.1109/RE48521.2020.00046 – ident: 10565_CR20 – volume: 113 start-page: 103655 year: 2021 ident: 10565_CR32 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2020.103655 – ident: 10565_CR31 – ident: 10565_CR34 doi: 10.1016/j.dsp.2017.10.011 – ident: 10565_CR23 doi: 10.1109/RE.2019.00046 – ident: 10565_CR1 – ident: 10565_CR40 doi: 10.1109/ISR50024.2021.9419498 – volume: 55 start-page: 1 issue: 9 year: 2023 ident: 10565_CR11 publication-title: ACM Comput Surv doi: 10.1145/3561048 – ident: 10565_CR38 doi: 10.1109/REW53955.2021.00033 – ident: 10565_CR12 – ident: 10565_CR15 doi: 10.1007/978-3-030-68796-0_1 – ident: 10565_CR24 doi: 10.21203/rs.3.rs-2963888/v1 – volume: 8 start-page: 832 issue: 8 year: 2019 ident: 10565_CR6 publication-title: Electron doi: 10.3390/electronics8080832 – ident: 10565_CR10 – volume: 14 start-page: 131 year: 2009 ident: 10565_CR36 publication-title: Empir Softw Eng doi: 10.1007/s10664-008-9102-8 – ident: 10565_CR8 doi: 10.1109/RE51729.2021.00025 – volume: 2021 start-page: 1591 year: 2021 ident: 10565_CR9 publication-title: Designing Interactive Systems Conference – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10565_CR28 publication-title: Queue doi: 10.1145/3236386.3241340 – ident: 10565_CR39 doi: 10.1007/978-1-84800-044-5_2 – volume: 267 start-page: 1 year: 2019 ident: 10565_CR33 publication-title: Artif Intell doi: 10.1016/j.artint.2018.07.007 – volume: 27 start-page: 94 issue: 4 year: 2022 ident: 10565_CR2 publication-title: Empir Softw Eng doi: 10.1007/s10664-021-10072-8 – ident: 10565_CR3 doi: 10.1145/3334480.3383047 – volume: 17 start-page: 021002 issue: 2 year: 2020 ident: 10565_CR19 publication-title: J Neural Eng doi: 10.1088/1741-2552/ab8131 – volume: 144 year: 2020 ident: 10565_CR37 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113100 – ident: 10565_CR4 doi: 10.1109/REW53955.2021.00032 – ident: 10565_CR30 – ident: 10565_CR27 – ident: 10565_CR42 doi: 10.1109/REW.2019.00050 – ident: 10565_CR5 doi: 10.1145/2783258.2788613 – volume: 25 start-page: 493 issue: 4 year: 2020 ident: 10565_CR7 publication-title: Requir Eng doi: 10.1007/s00766-020-00333-1 – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10565_CR29 publication-title: Queue doi: 10.1145/3236386.3241340 – ident: 10565_CR35 doi: 10.1145/2939672.2939778 – ident: 10565_CR41 doi: 10.1145/3411764.3445088 – ident: 10565_CR14 doi: 10.1109/REW56159.2022.00038 |
| SSID | ssj0009745 |
| Score | 2.413057 |
| Snippet | Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18 |
| SubjectTerms | Artificial intelligence Compilers Computer Science Decision making Explainable artificial intelligence Interpreters Interviews Machine learning Professional ethics Programming Languages Quality management Requirements analysis Software engineering Software Engineering/Programming and Operating Systems Software quality Stakeholders Subject specialists |
| Title | How do ML practitioners perceive explainability? an interview study of practices and challenges |
| URI | https://link.springer.com/article/10.1007/s10664-024-10565-2 https://www.proquest.com/docview/3123170153 https://www.proquest.com/docview/3152309678 |
| Volume | 30 |
| WOSCitedRecordID | wos001345929200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1573-7616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009745 issn: 1382-3256 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGliaNG1OIuLYQYf4xW4lzQcMxlbW6fS_N8kaO8UJen5pm74k770k7_1-AJxGBidEiTay0bFGVGGB8lgS5HbO2HB3djYnm0h6vbTf53dVUVgZst3DlaS31AvFboxRZH0KcmzxMbKGd826u9QRNtw_PNdQu4mnJnbgeohYj16Vyvz8jq_uqI4xv12Lem_Tafyvn1tgs4ou4eV8OmyDFT3aAY3A3ACrhbwLsu54BtUY3t7AYgGwqISFy3OxBhDqt2LoC6tc7uz7BRQjOPDpkQM9gx6TFo4NDDVWpZUrKAMxS7kHnjrXj1ddVFEtIEk4niIs7A6bxxILZYzgLNGKxu2c2djbRKnKXTofM4oKY-M3Jji1UkkYFwIzE6eY7IPVke3oAYA0zylOJU6E4lTFVBDFIp1qzWRu94akCXDQeCYrHHJHhzHMagRlp8HMajDzGsyiJjj7fKaYo3D82roVBjKrVmSZEeuiHfZ8TJaI3fG4_fG0Cc7DuNbi5R87_FvzI7AROQZhn_fdAqvTyYs-BuvydTooJyd-In8AkBjrzw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBb1Yn1itmoM3DTSbbHb3JCKWim0RrdJbyOYBhdKWbrX6703SXVvFCnqebJKdPGaSzHwfAGeBwRFRooasd6wRVVigNJQEuZMzNom7O5uRTUTtdtztJvd5UlhWRLsXT5J-p15IdmOMImtTkGOLD5HdeFdthaFDzH94fJ5D7UaemtiB6yFiLXqeKvNzHV_N0dzH_PYs6q1Nvfy_fm6Bzdy7hFez6bANVvRgB5QL5gaYL-RdwBvDKVRD2GrC0QJgUQZHLs7FboBQv436PrHKxc6-X0IxgD0fHtnTU-gxaeHQwCLHKrNyBWVBzJLtgaf6Tee6gXKqBSRJgicIC3vCTkKJhTJGJCzSioa1lFnf2wSxSl04HzOKCmP9NyYSaqWSsEQIzEwYY7IPSgPb0QMAaZpSHEscCZVQFVJBFAt0rDWTqT0bkgrAhca5zHHIHR1Gn88RlJ0GudUg9xrkQQWcf34zmqFw_Fq6Wgwkz1dkxok10Q57PiRLxO563P54XAEXxbjOxcsbO_xb8VOw3ui0mrx52747AhuBYxP2MeBVUJqMX_QxWJOvk142PvGT-gOloO6z |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yinjxLa6umoM3DW6aNG1PIuqiuC6CD7yFNA9YkG6x9fXvTdLWXUUF8Txpm04eM5PMfB8Au4HBEVGii6x3rBFVWKA0lAS5yBmbxJ2dVWQT0WAQ398nVxNV_D7bvbmSrGoaHEpTVh7kyhxMFL4xRpG1L8gxx4fIbsLT1CXSu3j9-m4Muxt5mmIHtIeIte512cz37_hsmsb-5pcrUm95egv_7_MimK-9TnhUTZMlMKWzZbDQMDrAeoGvAH42eoFqBC_7MJ8AMipg7vJf7MYI9Wv-4AuuXE7t2yEUGRz6tMmhfoEeqxaODGxqrworV1A2hC3FKrjtnd4cn6GaggFJkuASYWEj7ySUWChjRMIirWjYTZn1yU0Qq9Sl-TGjqDDWr2MioVYqCUuEwMyEMSZroJXZjq4DSNOU4ljiSKiEqpAKoligY62ZTG3MSNoAN9rnssYndzQZD3yMrOw0yK0GudcgD9pg7-OZvELn-LV1pxlUXq_UghNruh0mfUh-ELtjc_vjcRvsN2M8Fv_8sY2_Nd8Bs1cnPd4_H1xsgrnAkQz71PAOaJWPT3oLzMjnclg8bvv5_Q6a9veX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+ML+practitioners+perceive+explainability%3F+an+interview+study+of+practices+and+challenges&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=30&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1007%2Fs10664-024-10565-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |