How do ML practitioners perceive explainability? an interview study of practices and challenges

Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical software engineering : an international journal Jg. 30; H. 1; S. 18
Hauptverfasser: Habiba, Umm-e-, Habib, Mohammad Kasra, Bogner, Justus, Fritzsch, Jonas, Wagner, Stefan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2025
Springer Nature B.V
Schlagworte:
ISSN:1382-3256, 1573-7616
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems that use machine learning (ML) techniques. However, there is a notable absence of studies investigating how ML practitioners perceive the concept of explainability, the challenges they encounter, and the potential trade-offs with other quality attributes. In this study, we want to discover how practitioners define explainability for AI-based systems and what challenges they encounter in making them explainable. Furthermore, we explore how explainability interacts with other quality attributes. To this end, we conducted semi-structured interviews with 14 ML practitioners from 11 companies. Our study reveals diverse viewpoints on explainability and applied practices. Results suggest that the importance of explainability lies in enhancing transparency, refining models, and mitigating bias. Methods like SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanation (LIME) are frequently used by ML practitioners to understand how models work, while tailored approaches are typically adopted to meet the specific requirements of stakeholders. Moreover, we have discerned emerging challenges in eight categories. Issues such as effective communication with non-technical stakeholders and the absence of standardized approaches are frequently stated as recurring hurdles. We contextualize these findings in terms of requirements engineering and conclude that industry currently lacks a standardized framework to address arising explainability needs.
AbstractList Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making processes understandable and transparent for users. Research already identified explainability as an emerging requirement for AI-based systems that use machine learning (ML) techniques. However, there is a notable absence of studies investigating how ML practitioners perceive the concept of explainability, the challenges they encounter, and the potential trade-offs with other quality attributes. In this study, we want to discover how practitioners define explainability for AI-based systems and what challenges they encounter in making them explainable. Furthermore, we explore how explainability interacts with other quality attributes. To this end, we conducted semi-structured interviews with 14 ML practitioners from 11 companies. Our study reveals diverse viewpoints on explainability and applied practices. Results suggest that the importance of explainability lies in enhancing transparency, refining models, and mitigating bias. Methods like SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanation (LIME) are frequently used by ML practitioners to understand how models work, while tailored approaches are typically adopted to meet the specific requirements of stakeholders. Moreover, we have discerned emerging challenges in eight categories. Issues such as effective communication with non-technical stakeholders and the absence of standardized approaches are frequently stated as recurring hurdles. We contextualize these findings in terms of requirements engineering and conclude that industry currently lacks a standardized framework to address arising explainability needs.
ArticleNumber 18
Author Habib, Mohammad Kasra
Bogner, Justus
Habiba, Umm-e-
Wagner, Stefan
Fritzsch, Jonas
Author_xml – sequence: 1
  givenname: Umm-e-
  orcidid: 0000-0001-8953-9624
  surname: Habiba
  fullname: Habiba, Umm-e-
  email: umm-e-habiba@iste.uni-stuttgart.de
  organization: Institute of Software Engineering, University of Stuttgart, Department of Software Engineering, University of Kotli Azad Jammu Kashmir
– sequence: 2
  givenname: Mohammad Kasra
  orcidid: 0000-0002-1272-9873
  surname: Habib
  fullname: Habib, Mohammad Kasra
  organization: TUM School of Communication, Information and Technology, Technical University of Munich
– sequence: 3
  givenname: Justus
  orcidid: 0000-0001-5788-0991
  surname: Bogner
  fullname: Bogner, Justus
  organization: Department of Computer Science, Vrije Universiteit Amsterdam
– sequence: 4
  givenname: Jonas
  orcidid: 0000-0002-6121-2731
  surname: Fritzsch
  fullname: Fritzsch, Jonas
  organization: Institute of Software Engineering, University of Stuttgart
– sequence: 5
  givenname: Stefan
  orcidid: 0000-0002-5256-8429
  surname: Wagner
  fullname: Wagner, Stefan
  organization: Institute of Software Engineering, University of Stuttgart, TUM School of Communication, Information and Technology, Technical University of Munich
BookMark eNp9kE1LAzEURYNUsK3-AVcB19F8TDIzK5GiVqi40XXI5ENTxpkxSVv7701tQXDR1Qu8e-4LZwJGXd9ZAC4JviYYlzeRYCEKhGmBCOaCI3oCxoSXDJWCiFF-s4oiRrk4A5MYlxjjuiz4GMh5v4Gmh88LOASlk08-N4cIBxu09WsL7ffQKt-pxrc-bW-h6qDvkg1rbzcwppXZwt4dYG1j3huoP1Tb2u7dxnNw6lQb7cVhTsHbw_3rbI4WL49Ps7sF0qwmCRFlG1pzTZRxTtWitKbguBFlSR2tTNO4wghnCuWIYELVRd5qJmqliHC8ImwKrva9Q-i_VjYmuexXocsnJSOcMpw7q-MpykiJCWc5Ve1TOvQxBuuk9kntxKSgfCsJljvpci9dZunyV7qkGaX_0CH4TxW2xyG2h2IOZ2nh71dHqB_7lJaw
CitedBy_id crossref_primary_10_1186_s12911_025_02990_0
crossref_primary_10_1057_s41270_025_00436_0
crossref_primary_10_1080_19386389_2025_2515766
Cites_doi 10.3389/fcomp.2023.1117848
10.1109/REW53955.2021.00031
10.1109/RE.2019.00046
10.1109/DSAA.2018.00018
10.1109/ISSREW.2019.00035
10.1109/RE48521.2020.00046
10.1016/j.jbi.2020.103655
10.1016/j.dsp.2017.10.011
10.1109/ISR50024.2021.9419498
10.1145/3561048
10.1109/REW53955.2021.00033
10.1007/978-3-030-68796-0_1
10.21203/rs.3.rs-2963888/v1
10.3390/electronics8080832
10.1007/s10664-008-9102-8
10.1109/RE51729.2021.00025
10.1145/3236386.3241340
10.1007/978-1-84800-044-5_2
10.1016/j.artint.2018.07.007
10.1007/s10664-021-10072-8
10.1145/3334480.3383047
10.1088/1741-2552/ab8131
10.1016/j.eswa.2019.113100
10.1109/REW53955.2021.00032
10.1109/REW.2019.00050
10.1145/2783258.2788613
10.1007/s00766-020-00333-1
10.1145/2939672.2939778
10.1145/3411764.3445088
10.1109/REW56159.2022.00038
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10664-024-10565-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_024_10565_2
GrantInformation_xml – fundername: Universität Stuttgart (1023)
– fundername: German Federal Ministry of Education and Research
  funderid: 21IV005E
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-1aeb295c1adffa967ed450b6772f28dbbf4d6fd4af1636a94450c369aa16f5813
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345929200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 16:50:22 EST 2025
Tue Dec 02 16:28:06 EST 2025
Sat Nov 29 05:37:48 EST 2025
Tue Nov 18 21:37:32 EST 2025
Fri Feb 21 02:34:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Requirements engineering
Interviews
Explainable AI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-1aeb295c1adffa967ed450b6772f28dbbf4d6fd4af1636a94450c369aa16f5813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1272-9873
0000-0002-6121-2731
0000-0001-5788-0991
0000-0001-8953-9624
0000-0002-5256-8429
OpenAccessLink https://link.springer.com/10.1007/s10664-024-10565-2
PQID 3123170153
PQPubID 326341
ParticipantIDs proquest_journals_3152309678
proquest_journals_3123170153
crossref_citationtrail_10_1007_s10664_024_10565_2
crossref_primary_10_1007_s10664_024_10565_2
springer_journals_10_1007_s10664_024_10565_2
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 10565_CR15
10565_CR14
W Jin (10565_CR19) 2020; 17
10565_CR17
10565_CR39
10565_CR38
S Dhanorkar (10565_CR9) 2021; 2021
10565_CR10
10565_CR13
10565_CR35
10565_CR12
10565_CR34
10565_CR31
10565_CR30
L Chazette (10565_CR7) 2020; 25
ZC Lipton (10565_CR29) 2018; 16
DV Carvalho (10565_CR6) 2019; 8
AF Markus (10565_CR32) 2021; 113
10565_CR1
10565_CR26
RR Hoffman (10565_CR16) 2023; 5
10565_CR25
10565_CR3
10565_CR4
10565_CR27
S Sachan (10565_CR37) 2020; 144
10565_CR5
10565_CR22
S Baltes (10565_CR2) 2022; 27
10565_CR21
10565_CR24
10565_CR8
10565_CR23
10565_CR40
10565_CR20
10565_CR42
10565_CR41
T Miller (10565_CR33) 2019; 267
P Runeson (10565_CR36) 2009; 14
10565_CR18
R Dwivedi (10565_CR11) 2023; 55
ZC Lipton (10565_CR28) 2018; 16
References_xml – ident: 10565_CR18
– volume: 5
  start-page: 1117848
  year: 2023
  ident: 10565_CR16
  publication-title: Front Comput Sci
  doi: 10.3389/fcomp.2023.1117848
– ident: 10565_CR21
  doi: 10.1109/REW53955.2021.00031
– ident: 10565_CR22
  doi: 10.1109/RE.2019.00046
– ident: 10565_CR13
  doi: 10.1109/DSAA.2018.00018
– ident: 10565_CR25
  doi: 10.1109/ISSREW.2019.00035
– ident: 10565_CR26
– ident: 10565_CR17
  doi: 10.1109/RE48521.2020.00046
– ident: 10565_CR20
– volume: 113
  start-page: 103655
  year: 2021
  ident: 10565_CR32
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103655
– ident: 10565_CR31
– ident: 10565_CR34
  doi: 10.1016/j.dsp.2017.10.011
– ident: 10565_CR23
  doi: 10.1109/RE.2019.00046
– ident: 10565_CR1
– ident: 10565_CR40
  doi: 10.1109/ISR50024.2021.9419498
– volume: 55
  start-page: 1
  issue: 9
  year: 2023
  ident: 10565_CR11
  publication-title: ACM Comput Surv
  doi: 10.1145/3561048
– ident: 10565_CR38
  doi: 10.1109/REW53955.2021.00033
– ident: 10565_CR12
– ident: 10565_CR15
  doi: 10.1007/978-3-030-68796-0_1
– ident: 10565_CR24
  doi: 10.21203/rs.3.rs-2963888/v1
– volume: 8
  start-page: 832
  issue: 8
  year: 2019
  ident: 10565_CR6
  publication-title: Electron
  doi: 10.3390/electronics8080832
– ident: 10565_CR10
– volume: 14
  start-page: 131
  year: 2009
  ident: 10565_CR36
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9102-8
– ident: 10565_CR8
  doi: 10.1109/RE51729.2021.00025
– volume: 2021
  start-page: 1591
  year: 2021
  ident: 10565_CR9
  publication-title: Designing Interactive Systems Conference
– volume: 16
  start-page: 31
  issue: 3
  year: 2018
  ident: 10565_CR28
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: 10565_CR39
  doi: 10.1007/978-1-84800-044-5_2
– volume: 267
  start-page: 1
  year: 2019
  ident: 10565_CR33
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
– volume: 27
  start-page: 94
  issue: 4
  year: 2022
  ident: 10565_CR2
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-021-10072-8
– ident: 10565_CR3
  doi: 10.1145/3334480.3383047
– volume: 17
  start-page: 021002
  issue: 2
  year: 2020
  ident: 10565_CR19
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab8131
– volume: 144
  year: 2020
  ident: 10565_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113100
– ident: 10565_CR4
  doi: 10.1109/REW53955.2021.00032
– ident: 10565_CR30
– ident: 10565_CR27
– ident: 10565_CR42
  doi: 10.1109/REW.2019.00050
– ident: 10565_CR5
  doi: 10.1145/2783258.2788613
– volume: 25
  start-page: 493
  issue: 4
  year: 2020
  ident: 10565_CR7
  publication-title: Requir Eng
  doi: 10.1007/s00766-020-00333-1
– volume: 16
  start-page: 31
  issue: 3
  year: 2018
  ident: 10565_CR29
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: 10565_CR35
  doi: 10.1145/2939672.2939778
– ident: 10565_CR41
  doi: 10.1145/3411764.3445088
– ident: 10565_CR14
  doi: 10.1109/REW56159.2022.00038
SSID ssj0009745
Score 2.413057
Snippet Explainable artificial intelligence (XAI) is a field of study that focuses on the development process of AI-based systems while making their decision-making...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Artificial intelligence
Compilers
Computer Science
Decision making
Explainable artificial intelligence
Interpreters
Interviews
Machine learning
Professional ethics
Programming Languages
Quality management
Requirements analysis
Software engineering
Software Engineering/Programming and Operating Systems
Software quality
Stakeholders
Subject specialists
Title How do ML practitioners perceive explainability? an interview study of practices and challenges
URI https://link.springer.com/article/10.1007/s10664-024-10565-2
https://www.proquest.com/docview/3123170153
https://www.proquest.com/docview/3152309678
Volume 30
WOSCitedRecordID wos001345929200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iHrw4P3E6JQdvGliaNG1OIuLYQYf4xW4lzQcMxlbW6fS_N8kaO8UJen5pm74k770k7_1-AJxGBidEiTay0bFGVGGB8lgS5HbO2HB3djYnm0h6vbTf53dVUVgZst3DlaS31AvFboxRZH0KcmzxMbKGd826u9QRNtw_PNdQu4mnJnbgeohYj16Vyvz8jq_uqI4xv12Lem_Tafyvn1tgs4ou4eV8OmyDFT3aAY3A3ACrhbwLsu54BtUY3t7AYgGwqISFy3OxBhDqt2LoC6tc7uz7BRQjOPDpkQM9gx6TFo4NDDVWpZUrKAMxS7kHnjrXj1ddVFEtIEk4niIs7A6bxxILZYzgLNGKxu2c2djbRKnKXTofM4oKY-M3Jji1UkkYFwIzE6eY7IPVke3oAYA0zylOJU6E4lTFVBDFIp1qzWRu94akCXDQeCYrHHJHhzHMagRlp8HMajDzGsyiJjj7fKaYo3D82roVBjKrVmSZEeuiHfZ8TJaI3fG4_fG0Cc7DuNbi5R87_FvzI7AROQZhn_fdAqvTyYs-BuvydTooJyd-In8AkBjrzw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBb1Yn1itmoM3DTSbbHb3JCKWim0RrdJbyOYBhdKWbrX6703SXVvFCnqebJKdPGaSzHwfAGeBwRFRooasd6wRVVigNJQEuZMzNom7O5uRTUTtdtztJvd5UlhWRLsXT5J-p15IdmOMImtTkGOLD5HdeFdthaFDzH94fJ5D7UaemtiB6yFiLXqeKvNzHV_N0dzH_PYs6q1Nvfy_fm6Bzdy7hFez6bANVvRgB5QL5gaYL-RdwBvDKVRD2GrC0QJgUQZHLs7FboBQv436PrHKxc6-X0IxgD0fHtnTU-gxaeHQwCLHKrNyBWVBzJLtgaf6Tee6gXKqBSRJgicIC3vCTkKJhTJGJCzSioa1lFnf2wSxSl04HzOKCmP9NyYSaqWSsEQIzEwYY7IPSgPb0QMAaZpSHEscCZVQFVJBFAt0rDWTqT0bkgrAhca5zHHIHR1Gn88RlJ0GudUg9xrkQQWcf34zmqFw_Fq6Wgwkz1dkxok10Q57PiRLxO563P54XAEXxbjOxcsbO_xb8VOw3ui0mrx52747AhuBYxP2MeBVUJqMX_QxWJOvk142PvGT-gOloO6z
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yinjxLa6umoM3DW6aNG1PIuqiuC6CD7yFNA9YkG6x9fXvTdLWXUUF8Txpm04eM5PMfB8Au4HBEVGii6x3rBFVWKA0lAS5yBmbxJ2dVWQT0WAQ398nVxNV_D7bvbmSrGoaHEpTVh7kyhxMFL4xRpG1L8gxx4fIbsLT1CXSu3j9-m4Muxt5mmIHtIeIte512cz37_hsmsb-5pcrUm95egv_7_MimK-9TnhUTZMlMKWzZbDQMDrAeoGvAH42eoFqBC_7MJ8AMipg7vJf7MYI9Wv-4AuuXE7t2yEUGRz6tMmhfoEeqxaODGxqrworV1A2hC3FKrjtnd4cn6GaggFJkuASYWEj7ySUWChjRMIirWjYTZn1yU0Qq9Sl-TGjqDDWr2MioVYqCUuEwMyEMSZroJXZjq4DSNOU4ljiSKiEqpAKoligY62ZTG3MSNoAN9rnssYndzQZD3yMrOw0yK0GudcgD9pg7-OZvELn-LV1pxlUXq_UghNruh0mfUh-ELtjc_vjcRvsN2M8Fv_8sY2_Nd8Bs1cnPd4_H1xsgrnAkQz71PAOaJWPT3oLzMjnclg8bvv5_Q6a9veX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+ML+practitioners+perceive+explainability%3F+an+interview+study+of+practices+and+challenges&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=30&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1007%2Fs10664-024-10565-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon