A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics

We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear e...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 379; p. 113741
Main Authors: Haghighat, Ehsan, Raissi, Maziar, Moure, Adrian, Gomez, Hector, Juanes, Ruben
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.06.2021
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network—thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling. •Application of Physics-Informed Neural Networks (PINNs) to solid mechanics.•Novel application to inversion, transfer learning, and surrogate modeling.•Formulation of PINNs for linear elasticity and von-Mises elastoplasticity.
AbstractList We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network—thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling. •Application of Physics-Informed Neural Networks (PINNs) to solid mechanics.•Novel application to inversion, transfer learning, and surrogate modeling.•Formulation of PINNs for linear elasticity and von-Mises elastoplasticity.
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network-thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling.
ArticleNumber 113741
Author Juanes, Ruben
Gomez, Hector
Haghighat, Ehsan
Moure, Adrian
Raissi, Maziar
Author_xml – sequence: 1
  givenname: Ehsan
  orcidid: 0000-0003-2659-0507
  surname: Haghighat
  fullname: Haghighat, Ehsan
  organization: Massachusetts Institute of Technology, Cambridge, MA, United States of America
– sequence: 2
  givenname: Maziar
  surname: Raissi
  fullname: Raissi, Maziar
  organization: University of Colorado Boulder, Boulder, CO, United States of America
– sequence: 3
  givenname: Adrian
  surname: Moure
  fullname: Moure, Adrian
  organization: Purdue University, West Lafayette, IN, United States of America
– sequence: 4
  givenname: Hector
  orcidid: 0000-0002-2553-9091
  surname: Gomez
  fullname: Gomez, Hector
  organization: Purdue University, West Lafayette, IN, United States of America
– sequence: 5
  givenname: Ruben
  orcidid: 0000-0002-7370-2332
  surname: Juanes
  fullname: Juanes, Ruben
  email: juanes@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, United States of America
BookMark eNp9kD1PAzEMhiMEEqXwA9giMV-Jc5fmTkwI8SVVYoE5ShOnTblLSnIF8e9JVSYGvHjw-9jyc0aOQwxIyCWwGTCYX29mZtAzzjjMAGrZwBGZQCu7ikPdHpMJY42oZMvFKTnLecNKtcAnZHlLt-vv7E2ufHAxDWipRdzSHnUKPqyoS3rAr5jeaRlTHz4xZR8D1cHSvEsprvSIdIgW-33cB5pj7y0d0Kx1KIvPyYnTfcaL3z4lbw_3r3dP1eLl8fnudlGZuoOxgo5pjZrXthHd3HVd0zLRiFpLwZgE0wlYyqUVrrVOziWTNaIzjLladoKDrqfk6rB3m-LHDvOoNnGXQjmpeAkAcCGbkoJDyqSYc0KntskPOn0rYGqvUm1UUan2KtVBZWHkH8b4UY_Fwpi07_8lbw4klsc_PSaVjcdg0PqEZlQ2-n_oH36Jj8s
CitedBy_id crossref_primary_10_1139_cgj_2023_0567
crossref_primary_10_1177_14759217231202547
crossref_primary_10_1007_s10845_024_02427_x
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_1021_acs_jpca_5c00405
crossref_primary_10_1016_j_camwa_2024_04_017
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1016_j_cma_2024_117063
crossref_primary_10_1016_j_cnsns_2025_109341
crossref_primary_10_3390_math9212804
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1016_j_neucom_2024_129119
crossref_primary_10_1016_j_engfracmech_2025_111133
crossref_primary_10_1016_j_cma_2022_114587
crossref_primary_10_1016_j_advengsoft_2023_103525
crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1186_s40323_024_00265_3
crossref_primary_10_1016_j_ast_2023_108797
crossref_primary_10_1111_mice_13292
crossref_primary_10_1016_j_ijrmms_2025_106147
crossref_primary_10_1007_s00466_024_02516_x
crossref_primary_10_3390_met15040408
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126785
crossref_primary_10_1002_adem_202401299
crossref_primary_10_1098_rsos_231606
crossref_primary_10_3390_buildings13030650
crossref_primary_10_1016_j_ijplas_2025_104305
crossref_primary_10_1007_s11071_024_10309_3
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1016_j_tafmec_2024_104717
crossref_primary_10_1177_13694332251369102
crossref_primary_10_1002_fld_5374
crossref_primary_10_1016_j_engappai_2023_106468
crossref_primary_10_1016_j_cma_2022_115100
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_1007_s11227_024_06586_9
crossref_primary_10_1016_j_cma_2024_117043
crossref_primary_10_1080_17499518_2025_2478627
crossref_primary_10_1071_EP24037
crossref_primary_10_1016_j_compgeo_2023_105472
crossref_primary_10_1016_j_compbiomed_2021_104794
crossref_primary_10_1016_j_ymssp_2024_112009
crossref_primary_10_1186_s40323_024_00279_x
crossref_primary_10_1061__ASCE_EM_1943_7889_0002156
crossref_primary_10_1016_j_icheatmasstransfer_2025_109310
crossref_primary_10_1016_j_eswa_2024_126343
crossref_primary_10_1016_j_ijfatigue_2024_108382
crossref_primary_10_1038_s41598_023_33203_1
crossref_primary_10_1016_j_jrmge_2024_10_025
crossref_primary_10_1007_s00366_023_01914_8
crossref_primary_10_1016_j_jcp_2024_113188
crossref_primary_10_1007_s12572_023_00365_0
crossref_primary_10_1016_j_advengsoft_2022_103392
crossref_primary_10_1016_j_engstruct_2025_119884
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123112
crossref_primary_10_1080_19942060_2025_2535015
crossref_primary_10_1016_j_ijrmms_2025_106244
crossref_primary_10_1186_s40323_025_00304_7
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_1007_s10409_025_24593_x
crossref_primary_10_1016_j_cpc_2025_109757
crossref_primary_10_1063_5_0248278
crossref_primary_10_1016_j_ijsolstr_2023_112521
crossref_primary_10_1016_j_jmps_2023_105444
crossref_primary_10_1016_j_enganabound_2023_09_009
crossref_primary_10_1016_j_jocs_2024_102514
crossref_primary_10_2514_1_J062708
crossref_primary_10_1007_s00466_025_02676_4
crossref_primary_10_1016_j_cirp_2024_04_102
crossref_primary_10_1049_elp2_70047
crossref_primary_10_1007_s11071_025_11062_x
crossref_primary_10_1016_j_cma_2025_117787
crossref_primary_10_1016_j_jcp_2024_113299
crossref_primary_10_1016_j_cma_2024_117024
crossref_primary_10_1177_14759217241289575
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1016_j_ast_2023_108109
crossref_primary_10_1016_j_finel_2022_103852
crossref_primary_10_1063_5_0267865
crossref_primary_10_1016_j_engstruct_2025_119636
crossref_primary_10_1016_j_jnnfm_2024_105265
crossref_primary_10_1038_s41598_025_10148_1
crossref_primary_10_1016_j_finel_2024_104305
crossref_primary_10_1016_j_enganabound_2022_10_017
crossref_primary_10_1016_j_jmps_2022_105177
crossref_primary_10_1038_s41598_025_12844_4
crossref_primary_10_3390_math11112529
crossref_primary_10_1016_j_compgeo_2024_106825
crossref_primary_10_1016_j_cpc_2024_109462
crossref_primary_10_1016_j_jcp_2023_112751
crossref_primary_10_3390_a17070279
crossref_primary_10_1016_j_neucom_2025_130812
crossref_primary_10_2139_ssrn_3790066
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1115_1_4065457
crossref_primary_10_32604_cmes_2024_053520
crossref_primary_10_1186_s40323_025_00285_7
crossref_primary_10_1016_j_cma_2024_117498
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1016_j_cma_2025_117793
crossref_primary_10_3390_modelling5040080
crossref_primary_10_1016_j_euromechsol_2022_104584
crossref_primary_10_3390_pr13082457
crossref_primary_10_1016_j_jmps_2022_105044
crossref_primary_10_1016_j_ress_2023_109338
crossref_primary_10_1016_j_cma_2022_115348
crossref_primary_10_1016_j_compstruct_2025_119260
crossref_primary_10_1142_S0219876224500907
crossref_primary_10_1016_j_cma_2022_115141
crossref_primary_10_1016_j_oceaneng_2022_113101
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_1016_j_ijmecsci_2024_109214
crossref_primary_10_1016_j_ijthermalsci_2025_110142
crossref_primary_10_1002_adma_202308505
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_32604_cmes_2023_030278
crossref_primary_10_1016_j_jmps_2025_106122
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1016_j_advwatres_2024_104797
crossref_primary_10_3390_math13091515
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_1007_s00158_025_04064_1
crossref_primary_10_3390_lubricants12020062
crossref_primary_10_3390_fluids10080190
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1016_j_ijsolstr_2023_112452
crossref_primary_10_1088_1741_4326_ae00db
crossref_primary_10_3390_computation13030068
crossref_primary_10_1016_j_neunet_2025_107166
crossref_primary_10_1016_j_compgeo_2024_106801
crossref_primary_10_1016_j_compgeo_2025_107091
crossref_primary_10_1016_j_jmps_2025_106251
crossref_primary_10_1016_j_cma_2024_117474
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1016_j_cma_2024_117355
crossref_primary_10_1016_j_brainresbull_2025_111318
crossref_primary_10_1016_j_ijsolstr_2023_112319
crossref_primary_10_1016_j_neucom_2025_129917
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1007_s00366_025_02170_8
crossref_primary_10_1007_s10489_023_04745_8
crossref_primary_10_1007_s00366_024_01998_w
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1139_cgj_2024_0131
crossref_primary_10_1016_j_jcp_2024_113379
crossref_primary_10_1007_s10444_025_10241_z
crossref_primary_10_1109_ACCESS_2025_3587245
crossref_primary_10_3390_fluids9120296
crossref_primary_10_1016_j_engstruct_2025_120262
crossref_primary_10_1016_j_ijplas_2023_103728
crossref_primary_10_1007_s10483_024_3149_8
crossref_primary_10_1016_j_cma_2023_116095
crossref_primary_10_1016_j_cma_2022_115839
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_1002_wcms_1701
crossref_primary_10_1016_j_compchemeng_2024_108858
crossref_primary_10_1016_j_engfracmech_2022_108649
crossref_primary_10_1016_j_actbio_2022_11_024
crossref_primary_10_1016_j_oceaneng_2024_120260
crossref_primary_10_1016_j_probengmech_2023_103534
crossref_primary_10_1016_j_ymssp_2024_112189
crossref_primary_10_3390_app14083204
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1186_s10033_025_01224_8
crossref_primary_10_1016_j_cmpb_2025_109044
crossref_primary_10_1016_j_cma_2025_118046
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_1007_s42791_025_00106_3
crossref_primary_10_1007_s40747_023_01167_4
crossref_primary_10_1190_geo2023_0615_1
crossref_primary_10_1016_j_soildyn_2023_108420
crossref_primary_10_1016_j_geoen_2023_212554
crossref_primary_10_1016_j_ijnonlinmec_2024_104902
crossref_primary_10_1016_j_wavemoti_2024_103371
crossref_primary_10_1002_msd2_12102
crossref_primary_10_1016_j_jallcom_2023_173210
crossref_primary_10_1016_j_cpc_2023_109010
crossref_primary_10_1007_s00366_024_02034_7
crossref_primary_10_1016_j_jcp_2022_111731
crossref_primary_10_1109_ACCESS_2025_3532669
crossref_primary_10_1007_s00466_023_02334_7
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_advengsoft_2023_103461
crossref_primary_10_1016_j_procs_2025_03_106
crossref_primary_10_2118_218258_PA
crossref_primary_10_3390_aerospace9120750
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_3390_math11092016
crossref_primary_10_1016_j_cma_2024_116907
crossref_primary_10_1016_j_ijplas_2025_104275
crossref_primary_10_1016_j_actaastro_2025_08_058
crossref_primary_10_1016_j_compgeo_2025_107055
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1038_s41540_025_00527_9
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_1016_j_cma_2022_115616
crossref_primary_10_1016_j_mfglet_2023_08_074
crossref_primary_10_1016_j_enganabound_2025_106200
crossref_primary_10_1016_j_istruc_2025_109454
crossref_primary_10_1016_j_enganabound_2025_106448
crossref_primary_10_1080_17455030_2022_2083264
crossref_primary_10_1109_TMI_2023_3338178
crossref_primary_10_1002_nag_3620
crossref_primary_10_1016_j_compstruc_2022_106784
crossref_primary_10_1007_s11440_025_02729_1
crossref_primary_10_1088_1361_665X_ad8a31
crossref_primary_10_1109_TGRS_2025_3581638
crossref_primary_10_1007_s00466_022_02257_9
crossref_primary_10_1080_15376494_2023_2263445
crossref_primary_10_1360_SSI_2024_0192
crossref_primary_10_3390_en18174742
crossref_primary_10_1016_j_jcp_2024_112804
crossref_primary_10_1016_j_biosystemseng_2023_04_012
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1016_j_compstruc_2025_107698
crossref_primary_10_1016_j_cma_2021_114217
crossref_primary_10_1016_j_engappai_2025_111105
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_1016_j_cma_2023_115902
crossref_primary_10_1016_j_neunet_2024_106369
crossref_primary_10_1016_j_engappai_2023_106724
crossref_primary_10_1016_j_cma_2022_114790
crossref_primary_10_1098_rsta_2022_0400
crossref_primary_10_1016_j_cma_2025_118356
crossref_primary_10_1016_j_fusengdes_2024_114193
crossref_primary_10_1016_j_ijfatigue_2023_107917
crossref_primary_10_1186_s40517_024_00312_7
crossref_primary_10_1002_nag_3679
crossref_primary_10_1111_mice_70045
crossref_primary_10_1061_JGGEFK_GTENG_13267
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1007_s40192_024_00377_z
crossref_primary_10_1088_1361_651X_ad4b4c
crossref_primary_10_1121_10_0034458
crossref_primary_10_1080_15376494_2024_2439557
crossref_primary_10_1080_10589759_2024_2443768
crossref_primary_10_1016_j_engappai_2023_107828
crossref_primary_10_1142_S1758825125500619
crossref_primary_10_1016_j_tust_2024_105669
crossref_primary_10_1016_j_cma_2025_118125
crossref_primary_10_1016_j_ijmecsci_2025_110491
crossref_primary_10_3390_math11122723
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126242
crossref_primary_10_1016_j_engappai_2025_111762
crossref_primary_10_1061_JCCEE5_CPENG_6151
crossref_primary_10_1063_5_0211398
crossref_primary_10_1016_j_tws_2025_113503
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1515_zna_2024_0009
crossref_primary_10_1016_j_ijplas_2023_103531
crossref_primary_10_1016_j_enganabound_2024_106054
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126216
crossref_primary_10_1016_j_cma_2021_114012
crossref_primary_10_3847_1538_4357_ad063f
crossref_primary_10_1016_j_cageo_2023_105477
crossref_primary_10_1007_s00366_023_01799_7
crossref_primary_10_1137_22M1493318
crossref_primary_10_3390_ma17010123
crossref_primary_10_1007_s00521_025_11292_5
crossref_primary_10_1007_s00158_022_03290_1
crossref_primary_10_1016_j_jcp_2025_114373
crossref_primary_10_1038_s41598_023_50759_0
crossref_primary_10_1049_elp2_12183
crossref_primary_10_1016_j_cma_2021_114128
crossref_primary_10_1088_1361_6439_ad809b
crossref_primary_10_1016_j_cma_2023_115934
crossref_primary_10_1016_j_ymssp_2025_113012
crossref_primary_10_1016_j_engappai_2022_105686
crossref_primary_10_1016_j_engstruct_2025_120673
crossref_primary_10_1186_s40323_024_00268_0
crossref_primary_10_1016_j_ijmecsci_2025_110111
crossref_primary_10_1177_08927057251315080
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1007_s11831_022_09838_0
crossref_primary_10_1016_j_compgeo_2025_107131
crossref_primary_10_3390_app13074539
crossref_primary_10_1016_j_cma_2024_117073
crossref_primary_10_2118_208602_PA
crossref_primary_10_1016_j_euromechsol_2022_104849
crossref_primary_10_26599_RSM_2024_9435842
crossref_primary_10_1038_s42005_025_02063_8
crossref_primary_10_1016_j_jcp_2025_114364
crossref_primary_10_3390_app14177694
crossref_primary_10_1016_j_cma_2022_115766
crossref_primary_10_1002_nme_7176
crossref_primary_10_1002_nme_7054
crossref_primary_10_1002_nme_7296
crossref_primary_10_3390_mca28020052
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1016_j_engappai_2025_111718
crossref_primary_10_1142_S2591728524400024
crossref_primary_10_1016_j_optlastec_2023_109590
crossref_primary_10_1016_j_compositesa_2024_108421
crossref_primary_10_1016_j_ress_2022_108716
crossref_primary_10_1016_j_mechmat_2024_105145
crossref_primary_10_1063_5_0156517
crossref_primary_10_1137_24M1658620
crossref_primary_10_1016_j_cma_2021_114507
crossref_primary_10_1016_j_mechmat_2024_105141
crossref_primary_10_1016_j_aei_2023_102232
crossref_primary_10_1007_s00707_023_03691_3
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_1016_j_ijmecsci_2022_107282
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1063_5_0142127
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_3390_app11209411
crossref_primary_10_1002_nme_7228
crossref_primary_10_1093_pnasnexus_pgae186
crossref_primary_10_1038_s41598_023_42141_x
crossref_primary_10_1016_j_cma_2024_116883
crossref_primary_10_1029_2024WR037059
crossref_primary_10_1016_j_jcp_2023_112291
crossref_primary_10_1016_j_jgsce_2024_205307
crossref_primary_10_1016_j_taml_2023_100489
crossref_primary_10_1016_j_tust_2024_105981
crossref_primary_10_1109_ACCESS_2024_3402240
crossref_primary_10_1016_j_ymssp_2024_111920
crossref_primary_10_1007_s00466_023_02403_x
crossref_primary_10_1016_j_enganabound_2024_01_004
crossref_primary_10_1002_nme_7357
crossref_primary_10_1016_j_cma_2023_116139
crossref_primary_10_1016_j_jclepro_2023_139039
crossref_primary_10_1016_j_ymssp_2023_110574
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_1061_AJRUA6_RUENG_1616
crossref_primary_10_1016_j_psep_2023_12_005
crossref_primary_10_1016_j_taml_2023_100450
crossref_primary_10_1016_j_cherd_2024_01_056
crossref_primary_10_1016_j_cma_2024_116991
crossref_primary_10_1016_j_compgeo_2024_106173
crossref_primary_10_1016_j_engappai_2023_106908
crossref_primary_10_1016_j_eswa_2024_123758
crossref_primary_10_1177_13506501241291403
crossref_primary_10_3390_civileng6010002
crossref_primary_10_1063_5_0220392
crossref_primary_10_1007_s40964_023_00495_8
crossref_primary_10_1016_j_neunet_2024_106998
crossref_primary_10_1155_2024_5532909
crossref_primary_10_1016_j_applthermaleng_2024_124099
crossref_primary_10_1029_2021JB023120
crossref_primary_10_1038_s41524_022_00752_4
crossref_primary_10_1016_j_advwatres_2025_105046
crossref_primary_10_1016_j_eml_2022_101925
crossref_primary_10_1016_j_jmbbm_2023_106228
crossref_primary_10_1109_LSP_2024_3483036
crossref_primary_10_1016_j_ymssp_2023_110668
crossref_primary_10_1038_s41598_023_43325_1
crossref_primary_10_1016_j_ins_2023_119066
crossref_primary_10_1002_nme_7146
crossref_primary_10_1002_nme_7388
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1016_j_compstruct_2024_118171
crossref_primary_10_3390_app15158341
crossref_primary_10_3390_s23020663
crossref_primary_10_1186_s40323_024_00281_3
crossref_primary_10_1007_s11831_025_10365_x
crossref_primary_10_1016_j_engappai_2023_105828
crossref_primary_10_1007_s00466_023_02435_3
crossref_primary_10_1016_j_tws_2022_110309
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_cma_2023_116160
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127098
crossref_primary_10_1007_s00707_024_03984_1
crossref_primary_10_1016_j_camwa_2025_02_004
crossref_primary_10_1080_00207160_2024_2374820
crossref_primary_10_1080_24725854_2023_2223620
crossref_primary_10_1016_j_camwa_2025_09_014
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1080_09544828_2023_2193879
crossref_primary_10_1016_j_mechmat_2025_105317
crossref_primary_10_1016_j_mechmat_2025_105316
crossref_primary_10_1016_j_icheatmasstransfer_2023_107045
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1002_smtd_202400620
crossref_primary_10_1016_j_enganabound_2025_106433
crossref_primary_10_1177_03093247241293499
crossref_primary_10_1016_j_measurement_2023_113334
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1016_j_cam_2024_116223
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1061_JENMDT_EMENG_7463
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_engfracmech_2025_110800
crossref_primary_10_1007_s10483_023_2995_8
crossref_primary_10_1016_j_cma_2023_116172
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1016_j_neunet_2025_107945
crossref_primary_10_1002_nme_7323
crossref_primary_10_1016_j_mechrescom_2025_104420
crossref_primary_10_3390_mca30040072
crossref_primary_10_1016_j_cma_2024_116847
crossref_primary_10_1016_j_sciaf_2025_e02637
crossref_primary_10_1038_s41524_025_01718_y
crossref_primary_10_1038_s41598_024_78784_7
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1140_epjp_s13360_022_03078_8
crossref_primary_10_1016_j_cma_2023_116184
crossref_primary_10_1038_s41524_022_00876_7
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1016_j_cpc_2023_108887
crossref_primary_10_1002_advs_202414526
crossref_primary_10_1080_15502287_2024_2440420
crossref_primary_10_1016_j_apenergy_2023_120855
crossref_primary_10_1016_j_camwa_2024_07_024
crossref_primary_10_1007_s10845_025_02649_7
crossref_primary_10_1016_j_eml_2023_102051
crossref_primary_10_1016_j_matdes_2025_113659
crossref_primary_10_1016_j_jmbbm_2023_105695
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_1002_eer2_70005
crossref_primary_10_1016_j_ijsolstr_2021_111320
crossref_primary_10_1038_s41524_024_01307_5
crossref_primary_10_1016_j_compgeo_2025_107652
crossref_primary_10_1016_j_neucom_2025_131446
crossref_primary_10_1016_j_cma_2021_114524
crossref_primary_10_1002_nme_7585
crossref_primary_10_1016_j_cma_2024_116825
crossref_primary_10_1007_s00158_024_03856_1
crossref_primary_10_1002_msd2_12127
crossref_primary_10_1063_5_0223510
crossref_primary_10_1088_1674_1137_acc518
crossref_primary_10_4271_2022_01_0941
crossref_primary_10_1016_j_compstruc_2023_107054
crossref_primary_10_1007_s10483_024_3174_9
crossref_primary_10_1016_j_cma_2025_118184
crossref_primary_10_1007_s11081_025_10004_1
crossref_primary_10_1016_j_euromechsol_2024_105332
crossref_primary_10_1016_j_ijmecsci_2025_110075
crossref_primary_10_1016_j_euromechsol_2025_105752
crossref_primary_10_1016_j_cma_2025_118180
crossref_primary_10_1016_j_jmapro_2024_10_001
crossref_primary_10_1093_imanum_drae081
crossref_primary_10_1016_j_ijsolstr_2024_113157
crossref_primary_10_1016_j_jcp_2022_111832
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1007_s00366_023_01822_x
crossref_primary_10_1016_j_compstruc_2025_107899
crossref_primary_10_3390_s23052792
crossref_primary_10_1016_j_cma_2024_117226
crossref_primary_10_1016_j_cma_2024_117104
crossref_primary_10_1016_j_ultrasmedbio_2024_08_004
crossref_primary_10_1002_nme_7637
crossref_primary_10_3390_en15207697
crossref_primary_10_1016_j_jmps_2025_106222
crossref_primary_10_1111_mice_13208
crossref_primary_10_3390_s24010207
crossref_primary_10_1007_s11340_024_01139_w
crossref_primary_10_1016_j_engstruct_2024_118900
crossref_primary_10_1016_j_ress_2024_110083
crossref_primary_10_3389_fphy_2022_971722
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1016_j_simpa_2025_100753
crossref_primary_10_1016_j_tws_2025_113014
crossref_primary_10_1007_s10237_023_01796_1
crossref_primary_10_1016_j_tafmec_2024_104457
crossref_primary_10_1016_j_engappai_2023_107183
crossref_primary_10_1016_j_jcp_2023_112435
crossref_primary_10_1016_j_compositesa_2024_108019
crossref_primary_10_1007_s10915_023_02179_5
crossref_primary_10_1007_s11071_024_09972_3
crossref_primary_10_1109_TVT_2024_3399918
crossref_primary_10_1016_j_cma_2025_117755
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1016_j_triboint_2023_108871
crossref_primary_10_1016_j_cma_2024_117694
crossref_primary_10_3390_app132413312
crossref_primary_10_1038_s41598_024_74711_y
crossref_primary_10_1016_j_ijsolstr_2025_113315
crossref_primary_10_1016_j_neucom_2024_127343
crossref_primary_10_1016_j_ymssp_2024_111405
crossref_primary_10_1007_s11071_024_10655_2
crossref_primary_10_1016_j_jcp_2023_112323
crossref_primary_10_1016_j_matdes_2023_112034
crossref_primary_10_1007_s40192_022_00283_2
crossref_primary_10_1016_j_cad_2023_103520
crossref_primary_10_1016_j_watres_2024_121679
crossref_primary_10_1115_1_4066118
crossref_primary_10_1007_s11440_023_02179_7
crossref_primary_10_2514_1_G008503
crossref_primary_10_1002_nme_70067
crossref_primary_10_1515_polyeng_2024_0228
crossref_primary_10_1109_TC_2024_3441828
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1016_j_ast_2025_110363
crossref_primary_10_1016_j_mechrescom_2023_104087
crossref_primary_10_1088_2632_2153_ad5f74
crossref_primary_10_1016_j_jer_2024_02_011
crossref_primary_10_1109_TEC_2022_3180295
crossref_primary_10_1016_j_cma_2025_117956
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_compgeo_2025_107612
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_1016_j_apenergy_2025_126294
crossref_primary_10_1016_j_cma_2023_116561
crossref_primary_10_1016_j_jnucmat_2024_155573
crossref_primary_10_1016_j_eswa_2024_124678
crossref_primary_10_1088_2632_2153_ad3a32
crossref_primary_10_1016_j_engappai_2024_108313
crossref_primary_10_1016_j_engstruct_2025_119801
crossref_primary_10_1111_mice_13436
crossref_primary_10_1016_j_trgeo_2024_101409
crossref_primary_10_1016_j_engappai_2022_104953
crossref_primary_10_1007_s00707_022_03449_3
crossref_primary_10_1016_j_cscm_2021_e00854
crossref_primary_10_1016_j_applthermaleng_2024_125334
crossref_primary_10_1038_s41598_025_90826_2
crossref_primary_10_1111_str_12431
crossref_primary_10_1016_j_cma_2021_113924
crossref_primary_10_1016_j_cad_2025_103945
crossref_primary_10_3390_s23063001
crossref_primary_10_1002_nme_70085
crossref_primary_10_1016_j_cma_2024_117423
crossref_primary_10_1016_j_engappai_2023_106049
crossref_primary_10_1061_JENMDT_EMENG_7062
crossref_primary_10_1016_j_engappai_2023_107258
crossref_primary_10_1016_j_engappai_2025_111084
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104476
crossref_primary_10_1073_pnas_2310142120
crossref_primary_10_1016_j_ress_2023_109849
crossref_primary_10_1038_s41598_024_57137_4
crossref_primary_10_1007_s10489_023_04923_8
crossref_primary_10_1029_2023JB028037
crossref_primary_10_1016_j_matdes_2025_114800
crossref_primary_10_1016_j_cma_2023_116569
crossref_primary_10_1016_j_ijmecsci_2023_108575
crossref_primary_10_1016_j_jcp_2024_113569
crossref_primary_10_1016_j_cma_2023_116343
crossref_primary_10_1016_j_ijrmms_2022_105277
crossref_primary_10_1109_TAI_2022_3192362
crossref_primary_10_1016_j_aei_2025_103306
crossref_primary_10_1007_s00466_023_02370_3
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_3390_math10122024
crossref_primary_10_1016_j_cma_2024_117406
crossref_primary_10_1016_j_cma_2025_117826
crossref_primary_10_1016_j_engappai_2023_107150
crossref_primary_10_1016_j_ymssp_2024_111683
crossref_primary_10_1002_admt_202301769
crossref_primary_10_1016_j_engappai_2023_106267
crossref_primary_10_1016_j_eng_2025_02_022
crossref_primary_10_1016_j_engappai_2024_108765
crossref_primary_10_1680_jgeot_22_00046
crossref_primary_10_1016_j_engappai_2024_108764
crossref_primary_10_1016_j_engappai_2024_109735
crossref_primary_10_1115_1_4068456
crossref_primary_10_1007_s00366_024_01967_3
crossref_primary_10_1016_j_engstruct_2025_121090
crossref_primary_10_1016_j_cma_2023_116590
crossref_primary_10_1016_j_finel_2022_103904
crossref_primary_10_1016_j_ijsolstr_2024_112695
crossref_primary_10_1016_j_euromechsol_2024_105506
crossref_primary_10_1016_j_ijsolstr_2024_112692
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1016_j_cma_2023_116229
crossref_primary_10_1038_s41524_023_01173_7
crossref_primary_10_1109_ACCESS_2025_3581683
crossref_primary_10_1016_j_cma_2021_113959
crossref_primary_10_1016_j_cma_2025_117914
crossref_primary_10_1007_s10346_023_02072_0
crossref_primary_10_1137_24M1690667
crossref_primary_10_1016_j_ymssp_2024_111111
crossref_primary_10_1016_j_strusafe_2023_102399
crossref_primary_10_1016_j_matdes_2024_113529
crossref_primary_10_1016_j_cma_2025_117930
crossref_primary_10_1137_22M154209X
crossref_primary_10_1016_j_cma_2023_116120
crossref_primary_10_1016_j_cma_2023_116125
crossref_primary_10_1016_j_actbio_2024_06_038
crossref_primary_10_1038_s41598_022_11058_2
crossref_primary_10_1016_j_ifacol_2025_03_013
crossref_primary_10_1007_s10483_024_3178_9
crossref_primary_10_1016_j_ijplas_2024_104221
crossref_primary_10_3390_math10162949
crossref_primary_10_1016_j_jmsy_2024_10_008
crossref_primary_10_1016_j_ifacol_2024_08_411
crossref_primary_10_1103_PhysRevE_111_L023302
crossref_primary_10_1098_rsta_2021_0213
crossref_primary_10_1002_msd2_70030
crossref_primary_10_1016_j_enganabound_2023_10_027
crossref_primary_10_1016_j_matdes_2023_112494
crossref_primary_10_1016_j_heliyon_2024_e38799
Cites_doi 10.1016/j.ymssp.2019.06.003
10.1016/0895-7177(94)90095-7
10.1109/72.870037
10.1038/nature14539
10.1016/S0266-352X(97)00034-7
10.1007/978-3-642-27645-3_2
10.1038/srep02810
10.1016/j.cma.2004.10.008
10.1016/j.cma.2020.113552
10.4208/cicp.OA-2020-0164
10.1073/pnas.1911815116
10.1016/j.jcp.2018.10.045
10.1002/tal.1400
10.1137/18M1191944
10.25080/Majora-92bf1922-003
10.1007/s11837-011-0057-7
10.1038/nrg3920
10.1016/j.cma.2009.02.036
10.1103/PhysRevFluids.4.100501
10.1126/science.aau0323
10.1002/nme.1620010107
10.1088/2515-7639/ab291e
10.1126/sciadv.1501057
10.1038/s41586-018-0337-2
10.1073/pnas.1718942115
10.1785/0220180259
10.1029/2019GL082706
10.1016/j.jcp.2019.05.024
10.1109/72.712178
10.1073/pnas.1818555116
10.1038/s41586-018-0438-y
10.1073/pnas.1814058116
10.1146/annurev-fluid-010719-060214
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jun 1, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 1, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.113741
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_113741
S0045782521000773
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-190aaea23d4596f994805453a750071c951b7bd5f8df767073eefc00f379521a3
ISICitedReferencesCount 739
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638011900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 06:11:55 EST 2025
Sat Nov 29 07:31:08 EST 2025
Tue Nov 18 20:05:59 EST 2025
Fri Feb 23 02:45:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inversion
Artificial neural network
Physics-informed deep learning
Elastoplasticity
Transfer learning
Linear elasticity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-190aaea23d4596f994805453a750071c951b7bd5f8df767073eefc00f379521a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2659-0507
0000-0002-2553-9091
0000-0002-7370-2332
PQID 2521112574
PQPubID 2045269
ParticipantIDs proquest_journals_2521112574
crossref_primary_10_1016_j_cma_2021_113741
crossref_citationtrail_10_1016_j_cma_2021_113741
elsevier_sciencedirect_doi_10_1016_j_cma_2021_113741
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg (b42) 2010; 199
Sen, Aghazadeh, Mousavi, Nagarajaiah, Baraniuk, Dabak (b17) 2019; 131
Wang, Wang, Perdikaris (b51) 2020
Rafiei, Adeli (b16) 2017; 26
Brunton, Noack, Koumoutsakos (b14) 2020; 52
Cottrell, Hughes, Bazilevs (b33) 2009
Goodfellow, Bengio, Courville (b3) 2016
Shi, Tsymbalov, Dao, Suresh, Shapeev, Li (b11) 2019; 116
Wang, Teng, Perdikaris (b46) 2020
Butler, Davies, Cartwright, Isayev, Walsh (b10) 2018; 559
Haghighat, Bekar, Madenci, Juanes (b50) 2020
Bergen, Johnson, de Hoop, Beroza (b5) 2019; 363
Simo, Hughes (b43) 1998; vol. 7
Baydin, Pearlmutter, Radul, Siskind (b35) 2017; 18
Haghighat, Juanes (b40) 2021; 373
Smith, Kindermans, Ying, Le (b45) 2017
Lange, Gabel, Riedmiller (b31) 2012; 12
Yoon, O’Reilly, Bergen, Beroza (b4) 2015; 1
Wang, Yu, Perdikaris (b47) 2020
LeCun, Bengio, Hinton (b2) 2015; 521
Bishop (b1) 2006
Hughes, Cottrell, Bazilevs (b32) 2005; 194
Ghaboussi, Sidarta (b18) 1998; 22
Zienkiewicz, Valliappan, King (b44) 1969; 1
Kalidindi, Niezgoda, Salem (b19) 2011; 63
Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang, Zhang (b36) 2015
(b41) 2020
Bar-Sinai, Hoyer, Hickey, Brenner (b24) 2019; 116
Meade, Fernandez (b26) 1994; 19
Kong, Trugman, Ross, Bianco, Meade, Gerstoft (b7) 2018; 90
Brunton, Kutz (b12) 2019; 2
Kingma, Ba (b38) 2014
Raissi, Perdikaris, Karniadakis (b22) 2019; 378
Lagaris, Likas, Papageorgiou (b28) 2000; 11
Taylor, Stone (b34) 2009; 10
Han, Jentzen, E (b23) 2018; 115
DeVries, Viégas, Wattenberg, Meade (b6) 2018; 560
Pilania, Wang, Jiang, Rajasekaran, Ramprasad (b9) 2013; 3
Libbrecht, Noble (b15) 2015; 16
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (b30) 2016
Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (b48) 2019; vol. 97
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), Vol. 4, Austin, TX, 2010.
Zhu, Zabaras, Koutsourelakis, Perdikaris (b25) 2019; 394
Brenner, Eldredge, Freund (b13) 2019; 4
Duchi, Hazan, Singer (b39) 2011; 12
Jagtap, Karniadakis (b49) 2020; 28
Lagaris, Likas, Fotiadis (b27) 1998; 9
Rudy, Alla, Brunton, Kutz (b21) 2019; 18
Chollet (b37) 2015
Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (b20) 2019; 116
Ren, Dorostkar, Rouet-Leduc, Hulbert, Strebel, Guyer, Johnson, Carmeliet (b8) 2019; 46
Simo (10.1016/j.cma.2021.113741_b43) 1998; vol. 7
Bishop (10.1016/j.cma.2021.113741_b1) 2006
Hughes (10.1016/j.cma.2021.113741_b32) 2005; 194
Rudy (10.1016/j.cma.2021.113741_b21) 2019; 18
Mozaffar (10.1016/j.cma.2021.113741_b20) 2019; 116
Smith (10.1016/j.cma.2021.113741_b45) 2017
Bergen (10.1016/j.cma.2021.113741_b5) 2019; 363
Taylor (10.1016/j.cma.2021.113741_b34) 2009; 10
Duchi (10.1016/j.cma.2021.113741_b39) 2011; 12
Kingma (10.1016/j.cma.2021.113741_b38) 2014
Han (10.1016/j.cma.2021.113741_b23) 2018; 115
Chollet (10.1016/j.cma.2021.113741_b37) 2015
Baydin (10.1016/j.cma.2021.113741_b35) 2017; 18
Wang (10.1016/j.cma.2021.113741_b47) 2020
10.1016/j.cma.2021.113741_b29
Rahaman (10.1016/j.cma.2021.113741_b48) 2019; vol. 97
(10.1016/j.cma.2021.113741_b41) 2020
DeVries (10.1016/j.cma.2021.113741_b6) 2018; 560
Meade (10.1016/j.cma.2021.113741_b26) 1994; 19
Haghighat (10.1016/j.cma.2021.113741_b50) 2020
Wang (10.1016/j.cma.2021.113741_b46) 2020
Ghaboussi (10.1016/j.cma.2021.113741_b18) 1998; 22
Jagtap (10.1016/j.cma.2021.113741_b49) 2020; 28
Lagaris (10.1016/j.cma.2021.113741_b27) 1998; 9
Abadi (10.1016/j.cma.2021.113741_b30) 2016
Wang (10.1016/j.cma.2021.113741_b51) 2020
Raissi (10.1016/j.cma.2021.113741_b22) 2019; 378
Zhu (10.1016/j.cma.2021.113741_b25) 2019; 394
Sen (10.1016/j.cma.2021.113741_b17) 2019; 131
Zienkiewicz (10.1016/j.cma.2021.113741_b44) 1969; 1
Lange (10.1016/j.cma.2021.113741_b31) 2012; 12
LeCun (10.1016/j.cma.2021.113741_b2) 2015; 521
Ren (10.1016/j.cma.2021.113741_b8) 2019; 46
Lagaris (10.1016/j.cma.2021.113741_b28) 2000; 11
Kalidindi (10.1016/j.cma.2021.113741_b19) 2011; 63
Bar-Sinai (10.1016/j.cma.2021.113741_b24) 2019; 116
Goodfellow (10.1016/j.cma.2021.113741_b3) 2016
Butler (10.1016/j.cma.2021.113741_b10) 2018; 559
Yoon (10.1016/j.cma.2021.113741_b4) 2015; 1
Bazilevs (10.1016/j.cma.2021.113741_b42) 2010; 199
Brunton (10.1016/j.cma.2021.113741_b14) 2020; 52
Kong (10.1016/j.cma.2021.113741_b7) 2018; 90
Brunton (10.1016/j.cma.2021.113741_b12) 2019; 2
Pilania (10.1016/j.cma.2021.113741_b9) 2013; 3
Chen (10.1016/j.cma.2021.113741_b36) 2015
Rafiei (10.1016/j.cma.2021.113741_b16) 2017; 26
Brenner (10.1016/j.cma.2021.113741_b13) 2019; 4
Shi (10.1016/j.cma.2021.113741_b11) 2019; 116
Libbrecht (10.1016/j.cma.2021.113741_b15) 2015; 16
Haghighat (10.1016/j.cma.2021.113741_b40) 2021; 373
Cottrell (10.1016/j.cma.2021.113741_b33) 2009
References_xml – volume: 363
  year: 2019
  ident: b5
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
– volume: 4
  year: 2019
  ident: b13
  article-title: Perspective on machine learning for advancing fluid mechanics
  publication-title: Phys. Rev. Fluids
– year: 2020
  ident: b41
  article-title: COMSOL Multiphysics User’s Guide
– year: 2020
  ident: b46
  article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks
– year: 2009
  ident: b33
  article-title: Isogeometric Analysis: Toward Integration of CAD and FEA
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b27
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 116
  start-page: 26414
  year: 2019
  end-page: 26420
  ident: b20
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b28
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– start-page: 265
  year: 2016
  end-page: 283
  ident: b30
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– volume: 28
  start-page: 2002
  year: 2020
  end-page: 2041
  ident: b49
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
– volume: 46
  start-page: 7395
  year: 2019
  end-page: 7403
  ident: b8
  article-title: Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault
  publication-title: Geophys. Res. Lett.
– volume: 19
  start-page: 1
  year: 1994
  end-page: 25
  ident: b26
  article-title: The numerical solution of linear ordinary differential equations by feed-forward neural networks
  publication-title: Math. Comput. Modelling
– volume: 560
  start-page: 632
  year: 2018
  end-page: 634
  ident: b6
  article-title: Deep learning of aftershock patterns following large earthquakes
  publication-title: Nature
– volume: vol. 7
  year: 1998
  ident: b43
  publication-title: Computational Inelasticity
– year: 2014
  ident: b38
  article-title: Adam: A method for stochastic optimization
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b2
  article-title: Deep learning
  publication-title: Nature
– start-page: 800
  year: 2016
  ident: b3
  article-title: Deep Learning
– year: 2015
  ident: b36
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
– volume: 22
  start-page: 29
  year: 1998
  end-page: 52
  ident: b18
  article-title: New nested adaptive neural networks (NANN) for constitutive modeling
  publication-title: Comput. Geotech.
– reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), Vol. 4, Austin, TX, 2010.
– year: 2017
  ident: b45
  article-title: Don’t decay the learning rate, increase the batch size
– volume: 90
  start-page: 3
  year: 2018
  end-page: 14
  ident: b7
  article-title: Machine learning in seismology: turning data into insights
  publication-title: Seismol. Res. Lett.
– volume: 199
  start-page: 229
  year: 2010
  end-page: 263
  ident: b42
  article-title: Isogeometric analysis using T-splines
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 131
  start-page: 524
  year: 2019
  end-page: 537
  ident: b17
  article-title: Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes
  publication-title: Mech. Syst. Signal Process.
– year: 2015
  ident: b37
  article-title: Keras
– year: 2020
  ident: b51
  article-title: On the eigenvector bias of fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
– volume: 18
  start-page: 643
  year: 2019
  end-page: 660
  ident: b21
  article-title: Data-driven identification of parametric partial differential equations
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b14
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 26
  start-page: 1
  year: 2017
  end-page: 11
  ident: b16
  article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures
  publication-title: Struct. Des. Tall Special Build.
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: b25
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– volume: 10
  start-page: 1633
  year: 2009
  end-page: 1685
  ident: b34
  article-title: Transfer learning for reinforcement learning domains: A survey
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 5595
  year: 2017
  end-page: 5637
  ident: b35
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 116
  start-page: 4117
  year: 2019
  end-page: 4122
  ident: b11
  article-title: Deep elastic strain engineering of bandgap through machine learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 1
  year: 2013
  end-page: 6
  ident: b9
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b39
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2006
  ident: b1
  article-title: Pattern Recognition and Machine Learning
– volume: vol. 97
  start-page: 5301
  year: 2019
  end-page: 5310
  ident: b48
  article-title: On the spectral bias of neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b32
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: b10
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 12
  start-page: 45
  year: 2012
  end-page: 73
  ident: b31
  article-title: Reinforcement learning
  publication-title: Adaptation, Learning, and Optimization
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b22
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 2
  year: 2019
  ident: b12
  article-title: Methods for data-driven multiscale model discovery for materials
  publication-title: J. Phys. Mater.
– volume: 116
  start-page: 15344
  year: 2019
  end-page: 15349
  ident: b24
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
– year: 2020
  ident: b50
  article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator
– volume: 373
  start-page: 113552
  year: 2021
  ident: b40
  article-title: SciANN: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b47
  article-title: When and why PINNs fail to train: A neural tangent kernel perspective
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b23
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 63
  start-page: 34
  year: 2011
  end-page: 41
  ident: b19
  article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols
  publication-title: JOM
– volume: 16
  start-page: 321
  year: 2015
  end-page: 332
  ident: b15
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nature Rev. Genet.
– volume: 1
  year: 2015
  ident: b4
  article-title: Earthquake detection through computationally efficient similarity search
  publication-title: Sci. Adv.
– volume: 1
  start-page: 75
  year: 1969
  end-page: 100
  ident: b44
  article-title: Elasto-plastic solutions of engineering problems ‘initial stress’, finite element approach
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2015
  ident: 10.1016/j.cma.2021.113741_b36
– volume: vol. 97
  start-page: 5301
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b48
  article-title: On the spectral bias of neural networks
– volume: 131
  start-page: 524
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b17
  article-title: Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.06.003
– volume: 19
  start-page: 1
  issue: 12
  year: 1994
  ident: 10.1016/j.cma.2021.113741_b26
  article-title: The numerical solution of linear ordinary differential equations by feed-forward neural networks
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(94)90095-7
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10.1016/j.cma.2021.113741_b28
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cma.2021.113741_b2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 29
  issue: 1
  year: 1998
  ident: 10.1016/j.cma.2021.113741_b18
  article-title: New nested adaptive neural networks (NANN) for constitutive modeling
  publication-title: Comput. Geotech.
  doi: 10.1016/S0266-352X(97)00034-7
– volume: 12
  start-page: 45
  year: 2012
  ident: 10.1016/j.cma.2021.113741_b31
  article-title: Reinforcement learning
  doi: 10.1007/978-3-642-27645-3_2
– volume: 3
  start-page: 1
  year: 2013
  ident: 10.1016/j.cma.2021.113741_b9
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/srep02810
– volume: 194
  start-page: 4135
  issue: 39
  year: 2005
  ident: 10.1016/j.cma.2021.113741_b32
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– start-page: 265
  year: 2016
  ident: 10.1016/j.cma.2021.113741_b30
  article-title: TensorFlow: A system for large-scale machine learning
– year: 2020
  ident: 10.1016/j.cma.2021.113741_b50
– volume: 373
  start-page: 113552
  year: 2021
  ident: 10.1016/j.cma.2021.113741_b40
  article-title: SciANN: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113552
– volume: 28
  start-page: 2002
  issue: 5
  year: 2020
  ident: 10.1016/j.cma.2021.113741_b49
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0164
– volume: 10
  start-page: 1633
  issue: Jul
  year: 2009
  ident: 10.1016/j.cma.2021.113741_b34
  article-title: Transfer learning for reinforcement learning domains: A survey
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2021.113741_b35
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.cma.2021.113741_b46
– year: 2006
  ident: 10.1016/j.cma.2021.113741_b1
– year: 2014
  ident: 10.1016/j.cma.2021.113741_b38
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b20
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1911815116
– year: 2020
  ident: 10.1016/j.cma.2021.113741_b51
– year: 2015
  ident: 10.1016/j.cma.2021.113741_b37
– year: 2017
  ident: 10.1016/j.cma.2021.113741_b45
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b22
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 26
  start-page: 1
  issue: 18
  year: 2017
  ident: 10.1016/j.cma.2021.113741_b16
  article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures
  publication-title: Struct. Des. Tall Special Build.
  doi: 10.1002/tal.1400
– volume: 18
  start-page: 643
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b21
  article-title: Data-driven identification of parametric partial differential equations
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/18M1191944
– ident: 10.1016/j.cma.2021.113741_b29
  doi: 10.25080/Majora-92bf1922-003
– volume: 63
  start-page: 34
  issue: 4
  year: 2011
  ident: 10.1016/j.cma.2021.113741_b19
  article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols
  publication-title: JOM
  doi: 10.1007/s11837-011-0057-7
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.cma.2021.113741_b39
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 321
  issue: 6
  year: 2015
  ident: 10.1016/j.cma.2021.113741_b15
  article-title: Machine learning applications in genetics and genomics
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3920
– volume: 199
  start-page: 229
  issue: 5–8
  year: 2010
  ident: 10.1016/j.cma.2021.113741_b42
  article-title: Isogeometric analysis using T-splines
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.02.036
– year: 2020
  ident: 10.1016/j.cma.2021.113741_b47
– volume: 4
  issue: 10
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b13
  article-title: Perspective on machine learning for advancing fluid mechanics
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.100501
– volume: 363
  issue: 6433
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b5
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
  doi: 10.1126/science.aau0323
– volume: 1
  start-page: 75
  issue: 1
  year: 1969
  ident: 10.1016/j.cma.2021.113741_b44
  article-title: Elasto-plastic solutions of engineering problems ‘initial stress’, finite element approach
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620010107
– volume: 2
  issue: 4
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b12
  article-title: Methods for data-driven multiscale model discovery for materials
  publication-title: J. Phys. Mater.
  doi: 10.1088/2515-7639/ab291e
– volume: 1
  issue: 11
  year: 2015
  ident: 10.1016/j.cma.2021.113741_b4
  article-title: Earthquake detection through computationally efficient similarity search
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501057
– volume: 559
  start-page: 547
  issue: 7715
  year: 2018
  ident: 10.1016/j.cma.2021.113741_b10
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.cma.2021.113741_b23
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718942115
– volume: 90
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2021.113741_b7
  article-title: Machine learning in seismology: turning data into insights
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220180259
– volume: 46
  start-page: 7395
  issue: 13
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b8
  article-title: Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL082706
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b25
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2021.113741_b27
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: vol. 7
  year: 1998
  ident: 10.1016/j.cma.2021.113741_b43
– year: 2009
  ident: 10.1016/j.cma.2021.113741_b33
– year: 2020
  ident: 10.1016/j.cma.2021.113741_b41
– volume: 116
  start-page: 4117
  issue: 10
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b11
  article-title: Deep elastic strain engineering of bandgap through machine learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1818555116
– volume: 560
  start-page: 632
  issue: 7720
  year: 2018
  ident: 10.1016/j.cma.2021.113741_b6
  article-title: Deep learning of aftershock patterns following large earthquakes
  publication-title: Nature
  doi: 10.1038/s41586-018-0438-y
– volume: 116
  start-page: 15344
  issue: 31
  year: 2019
  ident: 10.1016/j.cma.2021.113741_b24
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814058116
– start-page: 800
  year: 2016
  ident: 10.1016/j.cma.2021.113741_b3
– volume: 52
  start-page: 477
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2021.113741_b14
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
SSID ssj0000812
Score 2.7419631
Snippet We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113741
SubjectTerms Algorithms
Artificial neural network
Artificial neural networks
Constitutive relationships
Convergence
Deep learning
Elastoplasticity
Finite element method
Inversion
Linear elasticity
Machine learning
Mathematical models
Model testing
Neural networks
Parameters
Physics
Physics-informed deep learning
Robustness (mathematics)
Sensitivity analysis
Solid mechanics
Training
Transfer learning
Title A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
URI https://dx.doi.org/10.1016/j.cma.2021.113741
https://www.proquest.com/docview/2521112574
Volume 379
WOSCitedRecordID wos000638011900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgM98CigFlrkAyeqVIkTb-LjCi0UBBVCRdqb5cR2SdVmV8l2VfW_9L8y8SNJF7WiBy7RKmtbTubL-PN4Hgi9p0RkguUq0DoTQcJIHjDWRoFQmQGZG4M-NIHC39Lj42w2Yz9GoxsfC7M6T6squ7pii_8qargHwm5DZx8g7m5QuAG_QehwBbHD9Z8EP3HWiiawSVGBUUqlFr4-xOmB9v5YxsWwrFbWZGaOEZrLup63ljVbIscFvMCES3lwodooYe8d77MbuKoQrhS18a4Vjtl2HczQqs982Ku90zZdsjALwfT3wD_opwBAlDaY6LoUnQfxd3gD1gQr6wGwP88vrCX8yBxCDE0ZZOBy5dVzQgOgLHSonmNbbMYp2CiKU5sp6y_db80QZ4eFySdFosO-7e0822vrX-eV6B3ezjgMwdshuB3iEdokKWWgNDcnX6azr_1Sn0U2Hb2btz82Nw6Ea_O4i_isUQDDa06eo6duQ4InFkgv0EhV2-iZ25xgp_qbbbQ1yFz5EuUTvI4y3KIMe5ThDmUY_sYdyjBAAXcowx5l0AAblOEONK_Qr0_Tk49HgSvXERQxi5YBUEshlCCxTCgba_jkM9gP0FgAKQUiWwCXz9NcUp1JnY5TWFuU0kUYapAwkEgRv0Yb1bxSOwhrGksiZU5IkSchGQNnDnUkM6HgPiHRLgr9u-SFy2XfllQ553fKcBd96LosbCKX-xonXkDcMVHLMDmA7b5ue16Y3GmEhhN4NtjU0DR585ApvEVP-k9kD20s60u1jx4Xq2XZ1O8cEP8AKie1NA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physics-informed+deep+learning+framework+for+inversion+and+surrogate+modeling+in+solid+mechanics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Haghighat%2C+Ehsan&rft.au=Raissi%2C+Maziar&rft.au=Moure%2C+Adrian&rft.au=Gomez%2C+Hector&rft.date=2021-06-01&rft.issn=0045-7825&rft.volume=379&rft.spage=113741&rft_id=info:doi/10.1016%2Fj.cma.2021.113741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2021_113741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon