A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear e...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 379; s. 113741 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.06.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network—thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling.
•Application of Physics-Informed Neural Networks (PINNs) to solid mechanics.•Novel application to inversion, transfer learning, and surrogate modeling.•Formulation of PINNs for linear elasticity and von-Mises elastoplasticity. |
|---|---|
| AbstractList | We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network—thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling.
•Application of Physics-Informed Neural Networks (PINNs) to solid mechanics.•Novel application to inversion, transfer learning, and surrogate modeling.•Formulation of PINNs for linear elasticity and von-Mises elastoplasticity. We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network-thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling. |
| ArticleNumber | 113741 |
| Author | Juanes, Ruben Gomez, Hector Haghighat, Ehsan Moure, Adrian Raissi, Maziar |
| Author_xml | – sequence: 1 givenname: Ehsan orcidid: 0000-0003-2659-0507 surname: Haghighat fullname: Haghighat, Ehsan organization: Massachusetts Institute of Technology, Cambridge, MA, United States of America – sequence: 2 givenname: Maziar surname: Raissi fullname: Raissi, Maziar organization: University of Colorado Boulder, Boulder, CO, United States of America – sequence: 3 givenname: Adrian surname: Moure fullname: Moure, Adrian organization: Purdue University, West Lafayette, IN, United States of America – sequence: 4 givenname: Hector orcidid: 0000-0002-2553-9091 surname: Gomez fullname: Gomez, Hector organization: Purdue University, West Lafayette, IN, United States of America – sequence: 5 givenname: Ruben orcidid: 0000-0002-7370-2332 surname: Juanes fullname: Juanes, Ruben email: juanes@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA, United States of America |
| BookMark | eNp9kD1PAzEMhiMEEqXwA9giMV-Jc5fmTkwI8SVVYoE5ShOnTblLSnIF8e9JVSYGvHjw-9jyc0aOQwxIyCWwGTCYX29mZtAzzjjMAGrZwBGZQCu7ikPdHpMJY42oZMvFKTnLecNKtcAnZHlLt-vv7E2ufHAxDWipRdzSHnUKPqyoS3rAr5jeaRlTHz4xZR8D1cHSvEsprvSIdIgW-33cB5pj7y0d0Kx1KIvPyYnTfcaL3z4lbw_3r3dP1eLl8fnudlGZuoOxgo5pjZrXthHd3HVd0zLRiFpLwZgE0wlYyqUVrrVOziWTNaIzjLladoKDrqfk6rB3m-LHDvOoNnGXQjmpeAkAcCGbkoJDyqSYc0KntskPOn0rYGqvUm1UUan2KtVBZWHkH8b4UY_Fwpi07_8lbw4klsc_PSaVjcdg0PqEZlQ2-n_oH36Jj8s |
| CitedBy_id | crossref_primary_10_1139_cgj_2023_0567 crossref_primary_10_1177_14759217231202547 crossref_primary_10_1007_s10845_024_02427_x crossref_primary_10_1016_j_cpc_2025_109782 crossref_primary_10_1021_acs_jpca_5c00405 crossref_primary_10_1016_j_camwa_2024_04_017 crossref_primary_10_1007_s40436_025_00545_0 crossref_primary_10_1016_j_cma_2024_117063 crossref_primary_10_1016_j_cnsns_2025_109341 crossref_primary_10_3390_math9212804 crossref_primary_10_1007_s11831_024_10145_z crossref_primary_10_1007_s00466_023_02365_0 crossref_primary_10_1016_j_neucom_2024_129119 crossref_primary_10_1016_j_engfracmech_2025_111133 crossref_primary_10_1016_j_cma_2022_114587 crossref_primary_10_1016_j_advengsoft_2023_103525 crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1186_s40323_024_00265_3 crossref_primary_10_1016_j_ast_2023_108797 crossref_primary_10_1111_mice_13292 crossref_primary_10_1016_j_ijrmms_2025_106147 crossref_primary_10_1007_s00466_024_02516_x crossref_primary_10_3390_met15040408 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126785 crossref_primary_10_1002_adem_202401299 crossref_primary_10_1098_rsos_231606 crossref_primary_10_3390_buildings13030650 crossref_primary_10_1016_j_ijplas_2025_104305 crossref_primary_10_1007_s11071_024_10309_3 crossref_primary_10_1016_j_jestch_2023_101489 crossref_primary_10_1016_j_tafmec_2024_104717 crossref_primary_10_1177_13694332251369102 crossref_primary_10_1002_fld_5374 crossref_primary_10_1016_j_engappai_2023_106468 crossref_primary_10_1016_j_cma_2022_115100 crossref_primary_10_1038_s43588_023_00412_7 crossref_primary_10_1007_s11227_024_06586_9 crossref_primary_10_1016_j_cma_2024_117043 crossref_primary_10_1080_17499518_2025_2478627 crossref_primary_10_1071_EP24037 crossref_primary_10_1016_j_compgeo_2023_105472 crossref_primary_10_1016_j_compbiomed_2021_104794 crossref_primary_10_1016_j_ymssp_2024_112009 crossref_primary_10_1186_s40323_024_00279_x crossref_primary_10_1061__ASCE_EM_1943_7889_0002156 crossref_primary_10_1016_j_icheatmasstransfer_2025_109310 crossref_primary_10_1016_j_eswa_2024_126343 crossref_primary_10_1016_j_ijfatigue_2024_108382 crossref_primary_10_1038_s41598_023_33203_1 crossref_primary_10_1016_j_jrmge_2024_10_025 crossref_primary_10_1007_s00366_023_01914_8 crossref_primary_10_1016_j_jcp_2024_113188 crossref_primary_10_1007_s12572_023_00365_0 crossref_primary_10_1016_j_advengsoft_2022_103392 crossref_primary_10_1016_j_engstruct_2025_119884 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123112 crossref_primary_10_1080_19942060_2025_2535015 crossref_primary_10_1016_j_ijrmms_2025_106244 crossref_primary_10_1186_s40323_025_00304_7 crossref_primary_10_1016_j_advengsoft_2022_103390 crossref_primary_10_1016_j_engappai_2023_107324 crossref_primary_10_1007_s10409_025_24593_x crossref_primary_10_1016_j_cpc_2025_109757 crossref_primary_10_1063_5_0248278 crossref_primary_10_1016_j_ijsolstr_2023_112521 crossref_primary_10_1016_j_jmps_2023_105444 crossref_primary_10_1016_j_enganabound_2023_09_009 crossref_primary_10_1016_j_jocs_2024_102514 crossref_primary_10_2514_1_J062708 crossref_primary_10_1007_s00466_025_02676_4 crossref_primary_10_1016_j_cirp_2024_04_102 crossref_primary_10_1049_elp2_70047 crossref_primary_10_1007_s11071_025_11062_x crossref_primary_10_1016_j_cma_2025_117787 crossref_primary_10_1016_j_jcp_2024_113299 crossref_primary_10_1016_j_cma_2024_117024 crossref_primary_10_1177_14759217241289575 crossref_primary_10_1016_j_cma_2024_117268 crossref_primary_10_1016_j_ast_2023_108109 crossref_primary_10_1016_j_finel_2022_103852 crossref_primary_10_1063_5_0267865 crossref_primary_10_1016_j_engstruct_2025_119636 crossref_primary_10_1016_j_jnnfm_2024_105265 crossref_primary_10_1038_s41598_025_10148_1 crossref_primary_10_1016_j_finel_2024_104305 crossref_primary_10_1016_j_enganabound_2022_10_017 crossref_primary_10_1016_j_jmps_2022_105177 crossref_primary_10_1038_s41598_025_12844_4 crossref_primary_10_3390_math11112529 crossref_primary_10_1016_j_compgeo_2024_106825 crossref_primary_10_1016_j_cpc_2024_109462 crossref_primary_10_1016_j_jcp_2023_112751 crossref_primary_10_3390_a17070279 crossref_primary_10_1016_j_neucom_2025_130812 crossref_primary_10_2139_ssrn_3790066 crossref_primary_10_1016_j_jcp_2022_111260 crossref_primary_10_1115_1_4065457 crossref_primary_10_32604_cmes_2024_053520 crossref_primary_10_1186_s40323_025_00285_7 crossref_primary_10_1016_j_cma_2024_117498 crossref_primary_10_1016_j_jcp_2024_113284 crossref_primary_10_1016_j_cma_2025_117793 crossref_primary_10_3390_modelling5040080 crossref_primary_10_1016_j_euromechsol_2022_104584 crossref_primary_10_3390_pr13082457 crossref_primary_10_1016_j_jmps_2022_105044 crossref_primary_10_1016_j_ress_2023_109338 crossref_primary_10_1016_j_cma_2022_115348 crossref_primary_10_1016_j_compstruct_2025_119260 crossref_primary_10_1142_S0219876224500907 crossref_primary_10_1016_j_cma_2022_115141 crossref_primary_10_1016_j_oceaneng_2022_113101 crossref_primary_10_1016_j_engappai_2023_106425 crossref_primary_10_1016_j_ijmecsci_2024_109214 crossref_primary_10_1016_j_ijthermalsci_2025_110142 crossref_primary_10_1002_adma_202308505 crossref_primary_10_1016_j_cma_2025_117764 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_32604_cmes_2023_030278 crossref_primary_10_1016_j_jmps_2025_106122 crossref_primary_10_1017_dce_2024_33 crossref_primary_10_1016_j_advwatres_2024_104797 crossref_primary_10_3390_math13091515 crossref_primary_10_1038_s42256_023_00685_7 crossref_primary_10_1007_s00158_025_04064_1 crossref_primary_10_3390_lubricants12020062 crossref_primary_10_3390_fluids10080190 crossref_primary_10_1016_j_jmps_2023_105231 crossref_primary_10_1016_j_ijsolstr_2023_112452 crossref_primary_10_1088_1741_4326_ae00db crossref_primary_10_3390_computation13030068 crossref_primary_10_1016_j_neunet_2025_107166 crossref_primary_10_1016_j_compgeo_2024_106801 crossref_primary_10_1016_j_compgeo_2025_107091 crossref_primary_10_1016_j_jmps_2025_106251 crossref_primary_10_1016_j_cma_2024_117474 crossref_primary_10_1007_s10439_022_02967_4 crossref_primary_10_1016_j_cma_2024_117355 crossref_primary_10_1016_j_brainresbull_2025_111318 crossref_primary_10_1016_j_ijsolstr_2023_112319 crossref_primary_10_1016_j_neucom_2025_129917 crossref_primary_10_1016_j_cma_2022_115491 crossref_primary_10_1007_s00366_025_02170_8 crossref_primary_10_1007_s10489_023_04745_8 crossref_primary_10_1007_s00366_024_01998_w crossref_primary_10_1016_j_physd_2024_134304 crossref_primary_10_1139_cgj_2024_0131 crossref_primary_10_1016_j_jcp_2024_113379 crossref_primary_10_1007_s10444_025_10241_z crossref_primary_10_1109_ACCESS_2025_3587245 crossref_primary_10_3390_fluids9120296 crossref_primary_10_1016_j_engstruct_2025_120262 crossref_primary_10_1016_j_ijplas_2023_103728 crossref_primary_10_1007_s10483_024_3149_8 crossref_primary_10_1016_j_cma_2023_116095 crossref_primary_10_1016_j_cma_2022_115839 crossref_primary_10_1016_j_cpc_2024_109428 crossref_primary_10_1002_wcms_1701 crossref_primary_10_1016_j_compchemeng_2024_108858 crossref_primary_10_1016_j_engfracmech_2022_108649 crossref_primary_10_1016_j_actbio_2022_11_024 crossref_primary_10_1016_j_oceaneng_2024_120260 crossref_primary_10_1016_j_probengmech_2023_103534 crossref_primary_10_1016_j_ymssp_2024_112189 crossref_primary_10_3390_app14083204 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1186_s10033_025_01224_8 crossref_primary_10_1016_j_cmpb_2025_109044 crossref_primary_10_1016_j_cma_2025_118046 crossref_primary_10_1016_j_cma_2025_118284 crossref_primary_10_1007_s42791_025_00106_3 crossref_primary_10_1007_s40747_023_01167_4 crossref_primary_10_1190_geo2023_0615_1 crossref_primary_10_1016_j_soildyn_2023_108420 crossref_primary_10_1016_j_geoen_2023_212554 crossref_primary_10_1016_j_ijnonlinmec_2024_104902 crossref_primary_10_1016_j_wavemoti_2024_103371 crossref_primary_10_1002_msd2_12102 crossref_primary_10_1016_j_jallcom_2023_173210 crossref_primary_10_1016_j_cpc_2023_109010 crossref_primary_10_1007_s00366_024_02034_7 crossref_primary_10_1016_j_jcp_2022_111731 crossref_primary_10_1109_ACCESS_2025_3532669 crossref_primary_10_1007_s00466_023_02334_7 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_advengsoft_2023_103461 crossref_primary_10_1016_j_procs_2025_03_106 crossref_primary_10_2118_218258_PA crossref_primary_10_3390_aerospace9120750 crossref_primary_10_1080_0952813X_2023_2242356 crossref_primary_10_1016_j_apm_2022_02_036 crossref_primary_10_3390_math11092016 crossref_primary_10_1016_j_cma_2024_116907 crossref_primary_10_1016_j_ijplas_2025_104275 crossref_primary_10_1016_j_actaastro_2025_08_058 crossref_primary_10_1016_j_compgeo_2025_107055 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1038_s41540_025_00527_9 crossref_primary_10_1016_j_jcp_2022_111402 crossref_primary_10_1016_j_cma_2022_115616 crossref_primary_10_1016_j_mfglet_2023_08_074 crossref_primary_10_1016_j_enganabound_2025_106200 crossref_primary_10_1016_j_istruc_2025_109454 crossref_primary_10_1016_j_enganabound_2025_106448 crossref_primary_10_1080_17455030_2022_2083264 crossref_primary_10_1109_TMI_2023_3338178 crossref_primary_10_1002_nag_3620 crossref_primary_10_1016_j_compstruc_2022_106784 crossref_primary_10_1007_s11440_025_02729_1 crossref_primary_10_1088_1361_665X_ad8a31 crossref_primary_10_1109_TGRS_2025_3581638 crossref_primary_10_1007_s00466_022_02257_9 crossref_primary_10_1080_15376494_2023_2263445 crossref_primary_10_1360_SSI_2024_0192 crossref_primary_10_3390_en18174742 crossref_primary_10_1016_j_jcp_2024_112804 crossref_primary_10_1016_j_biosystemseng_2023_04_012 crossref_primary_10_1016_j_enganabound_2025_106207 crossref_primary_10_1016_j_jcp_2022_111510 crossref_primary_10_1016_j_compstruc_2025_107698 crossref_primary_10_1016_j_cma_2021_114217 crossref_primary_10_1016_j_engappai_2025_111105 crossref_primary_10_1007_s10409_025_25340_x crossref_primary_10_1016_j_cma_2023_115902 crossref_primary_10_1016_j_neunet_2024_106369 crossref_primary_10_1016_j_engappai_2023_106724 crossref_primary_10_1016_j_cma_2022_114790 crossref_primary_10_1098_rsta_2022_0400 crossref_primary_10_1016_j_cma_2025_118356 crossref_primary_10_1016_j_fusengdes_2024_114193 crossref_primary_10_1016_j_ijfatigue_2023_107917 crossref_primary_10_1186_s40517_024_00312_7 crossref_primary_10_1002_nag_3679 crossref_primary_10_1111_mice_70045 crossref_primary_10_1061_JGGEFK_GTENG_13267 crossref_primary_10_1016_j_compgeo_2025_107110 crossref_primary_10_1007_s40192_024_00377_z crossref_primary_10_1088_1361_651X_ad4b4c crossref_primary_10_1121_10_0034458 crossref_primary_10_1080_15376494_2024_2439557 crossref_primary_10_1080_10589759_2024_2443768 crossref_primary_10_1016_j_engappai_2023_107828 crossref_primary_10_1142_S1758825125500619 crossref_primary_10_1016_j_tust_2024_105669 crossref_primary_10_1016_j_cma_2025_118125 crossref_primary_10_1016_j_ijmecsci_2025_110491 crossref_primary_10_3390_math11122723 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126242 crossref_primary_10_1016_j_engappai_2025_111762 crossref_primary_10_1061_JCCEE5_CPENG_6151 crossref_primary_10_1063_5_0211398 crossref_primary_10_1016_j_tws_2025_113503 crossref_primary_10_1016_j_cma_2021_114399 crossref_primary_10_1515_zna_2024_0009 crossref_primary_10_1016_j_ijplas_2023_103531 crossref_primary_10_1016_j_enganabound_2024_106054 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126216 crossref_primary_10_1016_j_cma_2021_114012 crossref_primary_10_3847_1538_4357_ad063f crossref_primary_10_1016_j_cageo_2023_105477 crossref_primary_10_1007_s00366_023_01799_7 crossref_primary_10_1137_22M1493318 crossref_primary_10_3390_ma17010123 crossref_primary_10_1007_s00521_025_11292_5 crossref_primary_10_1007_s00158_022_03290_1 crossref_primary_10_1016_j_jcp_2025_114373 crossref_primary_10_1038_s41598_023_50759_0 crossref_primary_10_1049_elp2_12183 crossref_primary_10_1016_j_cma_2021_114128 crossref_primary_10_1088_1361_6439_ad809b crossref_primary_10_1016_j_cma_2023_115934 crossref_primary_10_1016_j_ymssp_2025_113012 crossref_primary_10_1016_j_engappai_2022_105686 crossref_primary_10_1016_j_engstruct_2025_120673 crossref_primary_10_1186_s40323_024_00268_0 crossref_primary_10_1016_j_ijmecsci_2025_110111 crossref_primary_10_1177_08927057251315080 crossref_primary_10_1080_17486025_2025_2502029 crossref_primary_10_1007_s11831_022_09838_0 crossref_primary_10_1016_j_compgeo_2025_107131 crossref_primary_10_3390_app13074539 crossref_primary_10_1016_j_cma_2024_117073 crossref_primary_10_2118_208602_PA crossref_primary_10_1016_j_euromechsol_2022_104849 crossref_primary_10_26599_RSM_2024_9435842 crossref_primary_10_1038_s42005_025_02063_8 crossref_primary_10_1016_j_jcp_2025_114364 crossref_primary_10_3390_app14177694 crossref_primary_10_1016_j_cma_2022_115766 crossref_primary_10_1002_nme_7176 crossref_primary_10_1002_nme_7054 crossref_primary_10_1002_nme_7296 crossref_primary_10_3390_mca28020052 crossref_primary_10_1016_j_cma_2023_116012 crossref_primary_10_1016_j_engappai_2025_111718 crossref_primary_10_1142_S2591728524400024 crossref_primary_10_1016_j_optlastec_2023_109590 crossref_primary_10_1016_j_compositesa_2024_108421 crossref_primary_10_1016_j_ress_2022_108716 crossref_primary_10_1016_j_mechmat_2024_105145 crossref_primary_10_1063_5_0156517 crossref_primary_10_1137_24M1658620 crossref_primary_10_1016_j_cma_2021_114507 crossref_primary_10_1016_j_mechmat_2024_105141 crossref_primary_10_1016_j_aei_2023_102232 crossref_primary_10_1007_s00707_023_03691_3 crossref_primary_10_1016_j_cma_2022_114909 crossref_primary_10_1016_j_ijmecsci_2022_107282 crossref_primary_10_1038_s44172_024_00303_3 crossref_primary_10_1063_5_0142127 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_3390_app11209411 crossref_primary_10_1002_nme_7228 crossref_primary_10_1093_pnasnexus_pgae186 crossref_primary_10_1038_s41598_023_42141_x crossref_primary_10_1016_j_cma_2024_116883 crossref_primary_10_1029_2024WR037059 crossref_primary_10_1016_j_jcp_2023_112291 crossref_primary_10_1016_j_jgsce_2024_205307 crossref_primary_10_1016_j_taml_2023_100489 crossref_primary_10_1016_j_tust_2024_105981 crossref_primary_10_1109_ACCESS_2024_3402240 crossref_primary_10_1016_j_ymssp_2024_111920 crossref_primary_10_1007_s00466_023_02403_x crossref_primary_10_1016_j_enganabound_2024_01_004 crossref_primary_10_1002_nme_7357 crossref_primary_10_1016_j_cma_2023_116139 crossref_primary_10_1016_j_jclepro_2023_139039 crossref_primary_10_1016_j_ymssp_2023_110574 crossref_primary_10_1007_s00466_022_02252_0 crossref_primary_10_1061_AJRUA6_RUENG_1616 crossref_primary_10_1016_j_psep_2023_12_005 crossref_primary_10_1016_j_taml_2023_100450 crossref_primary_10_1016_j_cherd_2024_01_056 crossref_primary_10_1016_j_cma_2024_116991 crossref_primary_10_1016_j_compgeo_2024_106173 crossref_primary_10_1016_j_engappai_2023_106908 crossref_primary_10_1016_j_eswa_2024_123758 crossref_primary_10_1177_13506501241291403 crossref_primary_10_3390_civileng6010002 crossref_primary_10_1063_5_0220392 crossref_primary_10_1007_s40964_023_00495_8 crossref_primary_10_1016_j_neunet_2024_106998 crossref_primary_10_1155_2024_5532909 crossref_primary_10_1016_j_applthermaleng_2024_124099 crossref_primary_10_1029_2021JB023120 crossref_primary_10_1038_s41524_022_00752_4 crossref_primary_10_1016_j_advwatres_2025_105046 crossref_primary_10_1016_j_eml_2022_101925 crossref_primary_10_1016_j_jmbbm_2023_106228 crossref_primary_10_1109_LSP_2024_3483036 crossref_primary_10_1016_j_ymssp_2023_110668 crossref_primary_10_1038_s41598_023_43325_1 crossref_primary_10_1016_j_ins_2023_119066 crossref_primary_10_1002_nme_7146 crossref_primary_10_1002_nme_7388 crossref_primary_10_1007_s10462_025_11322_7 crossref_primary_10_1016_j_compstruct_2024_118171 crossref_primary_10_3390_app15158341 crossref_primary_10_3390_s23020663 crossref_primary_10_1186_s40323_024_00281_3 crossref_primary_10_1007_s11831_025_10365_x crossref_primary_10_1016_j_engappai_2023_105828 crossref_primary_10_1007_s00466_023_02435_3 crossref_primary_10_1016_j_tws_2022_110309 crossref_primary_10_1038_s42005_024_01521_z crossref_primary_10_1016_j_cma_2023_116160 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127098 crossref_primary_10_1007_s00707_024_03984_1 crossref_primary_10_1016_j_camwa_2025_02_004 crossref_primary_10_1080_00207160_2024_2374820 crossref_primary_10_1080_24725854_2023_2223620 crossref_primary_10_1016_j_camwa_2025_09_014 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_1080_09544828_2023_2193879 crossref_primary_10_1016_j_mechmat_2025_105317 crossref_primary_10_1016_j_mechmat_2025_105316 crossref_primary_10_1016_j_icheatmasstransfer_2023_107045 crossref_primary_10_1016_j_jcp_2024_112761 crossref_primary_10_1002_smtd_202400620 crossref_primary_10_1016_j_enganabound_2025_106433 crossref_primary_10_1177_03093247241293499 crossref_primary_10_1016_j_measurement_2023_113334 crossref_primary_10_1016_j_jmps_2024_105570 crossref_primary_10_1016_j_cam_2024_116223 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1061_JENMDT_EMENG_7463 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1016_j_engfracmech_2025_110800 crossref_primary_10_1007_s10483_023_2995_8 crossref_primary_10_1016_j_cma_2023_116172 crossref_primary_10_1016_j_aei_2023_102035 crossref_primary_10_1016_j_neunet_2025_107945 crossref_primary_10_1002_nme_7323 crossref_primary_10_1016_j_mechrescom_2025_104420 crossref_primary_10_3390_mca30040072 crossref_primary_10_1016_j_cma_2024_116847 crossref_primary_10_1016_j_sciaf_2025_e02637 crossref_primary_10_1038_s41524_025_01718_y crossref_primary_10_1038_s41598_024_78784_7 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1140_epjp_s13360_022_03078_8 crossref_primary_10_1016_j_cma_2023_116184 crossref_primary_10_1038_s41524_022_00876_7 crossref_primary_10_1007_s00366_024_02090_z crossref_primary_10_1016_j_cpc_2023_108887 crossref_primary_10_1002_advs_202414526 crossref_primary_10_1080_15502287_2024_2440420 crossref_primary_10_1016_j_apenergy_2023_120855 crossref_primary_10_1016_j_camwa_2024_07_024 crossref_primary_10_1007_s10845_025_02649_7 crossref_primary_10_1016_j_eml_2023_102051 crossref_primary_10_1016_j_matdes_2025_113659 crossref_primary_10_1016_j_jmbbm_2023_105695 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392 crossref_primary_10_1038_s41598_023_41039_y crossref_primary_10_1002_eer2_70005 crossref_primary_10_1016_j_ijsolstr_2021_111320 crossref_primary_10_1038_s41524_024_01307_5 crossref_primary_10_1016_j_compgeo_2025_107652 crossref_primary_10_1016_j_neucom_2025_131446 crossref_primary_10_1016_j_cma_2021_114524 crossref_primary_10_1002_nme_7585 crossref_primary_10_1016_j_cma_2024_116825 crossref_primary_10_1007_s00158_024_03856_1 crossref_primary_10_1002_msd2_12127 crossref_primary_10_1063_5_0223510 crossref_primary_10_1088_1674_1137_acc518 crossref_primary_10_4271_2022_01_0941 crossref_primary_10_1016_j_compstruc_2023_107054 crossref_primary_10_1007_s10483_024_3174_9 crossref_primary_10_1016_j_cma_2025_118184 crossref_primary_10_1007_s11081_025_10004_1 crossref_primary_10_1016_j_euromechsol_2024_105332 crossref_primary_10_1016_j_ijmecsci_2025_110075 crossref_primary_10_1016_j_euromechsol_2025_105752 crossref_primary_10_1016_j_cma_2025_118180 crossref_primary_10_1016_j_jmapro_2024_10_001 crossref_primary_10_1093_imanum_drae081 crossref_primary_10_1016_j_ijsolstr_2024_113157 crossref_primary_10_1016_j_jcp_2022_111832 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1007_s00366_023_01822_x crossref_primary_10_1016_j_compstruc_2025_107899 crossref_primary_10_3390_s23052792 crossref_primary_10_1016_j_cma_2024_117226 crossref_primary_10_1016_j_cma_2024_117104 crossref_primary_10_1016_j_ultrasmedbio_2024_08_004 crossref_primary_10_1002_nme_7637 crossref_primary_10_3390_en15207697 crossref_primary_10_1016_j_jmps_2025_106222 crossref_primary_10_1111_mice_13208 crossref_primary_10_3390_s24010207 crossref_primary_10_1007_s11340_024_01139_w crossref_primary_10_1016_j_engstruct_2024_118900 crossref_primary_10_1016_j_ress_2024_110083 crossref_primary_10_3389_fphy_2022_971722 crossref_primary_10_1016_j_physd_2024_134399 crossref_primary_10_1016_j_simpa_2025_100753 crossref_primary_10_1016_j_tws_2025_113014 crossref_primary_10_1007_s10237_023_01796_1 crossref_primary_10_1016_j_tafmec_2024_104457 crossref_primary_10_1016_j_engappai_2023_107183 crossref_primary_10_1016_j_jcp_2023_112435 crossref_primary_10_1016_j_compositesa_2024_108019 crossref_primary_10_1007_s10915_023_02179_5 crossref_primary_10_1007_s11071_024_09972_3 crossref_primary_10_1109_TVT_2024_3399918 crossref_primary_10_1016_j_cma_2025_117755 crossref_primary_10_1016_j_cma_2024_117211 crossref_primary_10_1016_j_triboint_2023_108871 crossref_primary_10_1016_j_cma_2024_117694 crossref_primary_10_3390_app132413312 crossref_primary_10_1038_s41598_024_74711_y crossref_primary_10_1016_j_ijsolstr_2025_113315 crossref_primary_10_1016_j_neucom_2024_127343 crossref_primary_10_1016_j_ymssp_2024_111405 crossref_primary_10_1007_s11071_024_10655_2 crossref_primary_10_1016_j_jcp_2023_112323 crossref_primary_10_1016_j_matdes_2023_112034 crossref_primary_10_1007_s40192_022_00283_2 crossref_primary_10_1016_j_cad_2023_103520 crossref_primary_10_1016_j_watres_2024_121679 crossref_primary_10_1115_1_4066118 crossref_primary_10_1007_s11440_023_02179_7 crossref_primary_10_2514_1_G008503 crossref_primary_10_1002_nme_70067 crossref_primary_10_1515_polyeng_2024_0228 crossref_primary_10_1109_TC_2024_3441828 crossref_primary_10_1088_2399_6528_ace416 crossref_primary_10_1016_j_ast_2025_110363 crossref_primary_10_1016_j_mechrescom_2023_104087 crossref_primary_10_1088_2632_2153_ad5f74 crossref_primary_10_1016_j_jer_2024_02_011 crossref_primary_10_1109_TEC_2022_3180295 crossref_primary_10_1016_j_cma_2025_117956 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_1016_j_compgeo_2025_107612 crossref_primary_10_1016_j_ijmecsci_2024_109783 crossref_primary_10_1016_j_neunet_2023_03_014 crossref_primary_10_1016_j_apenergy_2025_126294 crossref_primary_10_1016_j_cma_2023_116561 crossref_primary_10_1016_j_jnucmat_2024_155573 crossref_primary_10_1016_j_eswa_2024_124678 crossref_primary_10_1088_2632_2153_ad3a32 crossref_primary_10_1016_j_engappai_2024_108313 crossref_primary_10_1016_j_engstruct_2025_119801 crossref_primary_10_1111_mice_13436 crossref_primary_10_1016_j_trgeo_2024_101409 crossref_primary_10_1016_j_engappai_2022_104953 crossref_primary_10_1007_s00707_022_03449_3 crossref_primary_10_1016_j_cscm_2021_e00854 crossref_primary_10_1016_j_applthermaleng_2024_125334 crossref_primary_10_1038_s41598_025_90826_2 crossref_primary_10_1111_str_12431 crossref_primary_10_1016_j_cma_2021_113924 crossref_primary_10_1016_j_cad_2025_103945 crossref_primary_10_3390_s23063001 crossref_primary_10_1002_nme_70085 crossref_primary_10_1016_j_cma_2024_117423 crossref_primary_10_1016_j_engappai_2023_106049 crossref_primary_10_1061_JENMDT_EMENG_7062 crossref_primary_10_1016_j_engappai_2023_107258 crossref_primary_10_1016_j_engappai_2025_111084 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104476 crossref_primary_10_1073_pnas_2310142120 crossref_primary_10_1016_j_ress_2023_109849 crossref_primary_10_1038_s41598_024_57137_4 crossref_primary_10_1007_s10489_023_04923_8 crossref_primary_10_1029_2023JB028037 crossref_primary_10_1016_j_matdes_2025_114800 crossref_primary_10_1016_j_cma_2023_116569 crossref_primary_10_1016_j_ijmecsci_2023_108575 crossref_primary_10_1016_j_jcp_2024_113569 crossref_primary_10_1016_j_cma_2023_116343 crossref_primary_10_1016_j_ijrmms_2022_105277 crossref_primary_10_1109_TAI_2022_3192362 crossref_primary_10_1016_j_aei_2025_103306 crossref_primary_10_1007_s00466_023_02370_3 crossref_primary_10_1080_01495739_2024_2321205 crossref_primary_10_3390_math10122024 crossref_primary_10_1016_j_cma_2024_117406 crossref_primary_10_1016_j_cma_2025_117826 crossref_primary_10_1016_j_engappai_2023_107150 crossref_primary_10_1016_j_ymssp_2024_111683 crossref_primary_10_1002_admt_202301769 crossref_primary_10_1016_j_engappai_2023_106267 crossref_primary_10_1016_j_eng_2025_02_022 crossref_primary_10_1016_j_engappai_2024_108765 crossref_primary_10_1680_jgeot_22_00046 crossref_primary_10_1016_j_engappai_2024_108764 crossref_primary_10_1016_j_engappai_2024_109735 crossref_primary_10_1115_1_4068456 crossref_primary_10_1007_s00366_024_01967_3 crossref_primary_10_1016_j_engstruct_2025_121090 crossref_primary_10_1016_j_cma_2023_116590 crossref_primary_10_1016_j_finel_2022_103904 crossref_primary_10_1016_j_ijsolstr_2024_112695 crossref_primary_10_1016_j_euromechsol_2024_105506 crossref_primary_10_1016_j_ijsolstr_2024_112692 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_1016_j_cma_2023_116229 crossref_primary_10_1038_s41524_023_01173_7 crossref_primary_10_1109_ACCESS_2025_3581683 crossref_primary_10_1016_j_cma_2021_113959 crossref_primary_10_1016_j_cma_2025_117914 crossref_primary_10_1007_s10346_023_02072_0 crossref_primary_10_1137_24M1690667 crossref_primary_10_1016_j_ymssp_2024_111111 crossref_primary_10_1016_j_strusafe_2023_102399 crossref_primary_10_1016_j_matdes_2024_113529 crossref_primary_10_1016_j_cma_2025_117930 crossref_primary_10_1137_22M154209X crossref_primary_10_1016_j_cma_2023_116120 crossref_primary_10_1016_j_cma_2023_116125 crossref_primary_10_1016_j_actbio_2024_06_038 crossref_primary_10_1038_s41598_022_11058_2 crossref_primary_10_1016_j_ifacol_2025_03_013 crossref_primary_10_1007_s10483_024_3178_9 crossref_primary_10_1016_j_ijplas_2024_104221 crossref_primary_10_3390_math10162949 crossref_primary_10_1016_j_jmsy_2024_10_008 crossref_primary_10_1016_j_ifacol_2024_08_411 crossref_primary_10_1103_PhysRevE_111_L023302 crossref_primary_10_1098_rsta_2021_0213 crossref_primary_10_1002_msd2_70030 crossref_primary_10_1016_j_enganabound_2023_10_027 crossref_primary_10_1016_j_matdes_2023_112494 crossref_primary_10_1016_j_heliyon_2024_e38799 |
| Cites_doi | 10.1016/j.ymssp.2019.06.003 10.1016/0895-7177(94)90095-7 10.1109/72.870037 10.1038/nature14539 10.1016/S0266-352X(97)00034-7 10.1007/978-3-642-27645-3_2 10.1038/srep02810 10.1016/j.cma.2004.10.008 10.1016/j.cma.2020.113552 10.4208/cicp.OA-2020-0164 10.1073/pnas.1911815116 10.1016/j.jcp.2018.10.045 10.1002/tal.1400 10.1137/18M1191944 10.25080/Majora-92bf1922-003 10.1007/s11837-011-0057-7 10.1038/nrg3920 10.1016/j.cma.2009.02.036 10.1103/PhysRevFluids.4.100501 10.1126/science.aau0323 10.1002/nme.1620010107 10.1088/2515-7639/ab291e 10.1126/sciadv.1501057 10.1038/s41586-018-0337-2 10.1073/pnas.1718942115 10.1785/0220180259 10.1029/2019GL082706 10.1016/j.jcp.2019.05.024 10.1109/72.712178 10.1073/pnas.1818555116 10.1038/s41586-018-0438-y 10.1073/pnas.1814058116 10.1146/annurev-fluid-010719-060214 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jun 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jun 1, 2021 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2021.113741 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2021_113741 S0045782521000773 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c391t-190aaea23d4596f994805453a750071c951b7bd5f8df767073eefc00f379521a3 |
| ISICitedReferencesCount | 739 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638011900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sun Nov 09 06:11:55 EST 2025 Sat Nov 29 07:31:08 EST 2025 Tue Nov 18 20:05:59 EST 2025 Fri Feb 23 02:45:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Inversion Artificial neural network Physics-informed deep learning Elastoplasticity Transfer learning Linear elasticity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c391t-190aaea23d4596f994805453a750071c951b7bd5f8df767073eefc00f379521a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2659-0507 0000-0002-2553-9091 0000-0002-7370-2332 |
| PQID | 2521112574 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2521112574 crossref_primary_10_1016_j_cma_2021_113741 crossref_citationtrail_10_1016_j_cma_2021_113741 elsevier_sciencedirect_doi_10_1016_j_cma_2021_113741 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Bazilevs, Calo, Cottrell, Evans, Hughes, Lipton, Scott, Sederberg (b42) 2010; 199 Sen, Aghazadeh, Mousavi, Nagarajaiah, Baraniuk, Dabak (b17) 2019; 131 Wang, Wang, Perdikaris (b51) 2020 Rafiei, Adeli (b16) 2017; 26 Brunton, Noack, Koumoutsakos (b14) 2020; 52 Cottrell, Hughes, Bazilevs (b33) 2009 Goodfellow, Bengio, Courville (b3) 2016 Shi, Tsymbalov, Dao, Suresh, Shapeev, Li (b11) 2019; 116 Wang, Teng, Perdikaris (b46) 2020 Butler, Davies, Cartwright, Isayev, Walsh (b10) 2018; 559 Haghighat, Bekar, Madenci, Juanes (b50) 2020 Bergen, Johnson, de Hoop, Beroza (b5) 2019; 363 Simo, Hughes (b43) 1998; vol. 7 Baydin, Pearlmutter, Radul, Siskind (b35) 2017; 18 Haghighat, Juanes (b40) 2021; 373 Smith, Kindermans, Ying, Le (b45) 2017 Lange, Gabel, Riedmiller (b31) 2012; 12 Yoon, O’Reilly, Bergen, Beroza (b4) 2015; 1 Wang, Yu, Perdikaris (b47) 2020 LeCun, Bengio, Hinton (b2) 2015; 521 Bishop (b1) 2006 Hughes, Cottrell, Bazilevs (b32) 2005; 194 Ghaboussi, Sidarta (b18) 1998; 22 Zienkiewicz, Valliappan, King (b44) 1969; 1 Kalidindi, Niezgoda, Salem (b19) 2011; 63 Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang, Zhang (b36) 2015 (b41) 2020 Bar-Sinai, Hoyer, Hickey, Brenner (b24) 2019; 116 Meade, Fernandez (b26) 1994; 19 Kong, Trugman, Ross, Bianco, Meade, Gerstoft (b7) 2018; 90 Brunton, Kutz (b12) 2019; 2 Kingma, Ba (b38) 2014 Raissi, Perdikaris, Karniadakis (b22) 2019; 378 Lagaris, Likas, Papageorgiou (b28) 2000; 11 Taylor, Stone (b34) 2009; 10 Han, Jentzen, E (b23) 2018; 115 DeVries, Viégas, Wattenberg, Meade (b6) 2018; 560 Pilania, Wang, Jiang, Rajasekaran, Ramprasad (b9) 2013; 3 Libbrecht, Noble (b15) 2015; 16 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (b30) 2016 Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (b48) 2019; vol. 97 J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), Vol. 4, Austin, TX, 2010. Zhu, Zabaras, Koutsourelakis, Perdikaris (b25) 2019; 394 Brenner, Eldredge, Freund (b13) 2019; 4 Duchi, Hazan, Singer (b39) 2011; 12 Jagtap, Karniadakis (b49) 2020; 28 Lagaris, Likas, Fotiadis (b27) 1998; 9 Rudy, Alla, Brunton, Kutz (b21) 2019; 18 Chollet (b37) 2015 Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (b20) 2019; 116 Ren, Dorostkar, Rouet-Leduc, Hulbert, Strebel, Guyer, Johnson, Carmeliet (b8) 2019; 46 Simo (10.1016/j.cma.2021.113741_b43) 1998; vol. 7 Bishop (10.1016/j.cma.2021.113741_b1) 2006 Hughes (10.1016/j.cma.2021.113741_b32) 2005; 194 Rudy (10.1016/j.cma.2021.113741_b21) 2019; 18 Mozaffar (10.1016/j.cma.2021.113741_b20) 2019; 116 Smith (10.1016/j.cma.2021.113741_b45) 2017 Bergen (10.1016/j.cma.2021.113741_b5) 2019; 363 Taylor (10.1016/j.cma.2021.113741_b34) 2009; 10 Duchi (10.1016/j.cma.2021.113741_b39) 2011; 12 Kingma (10.1016/j.cma.2021.113741_b38) 2014 Han (10.1016/j.cma.2021.113741_b23) 2018; 115 Chollet (10.1016/j.cma.2021.113741_b37) 2015 Baydin (10.1016/j.cma.2021.113741_b35) 2017; 18 Wang (10.1016/j.cma.2021.113741_b47) 2020 10.1016/j.cma.2021.113741_b29 Rahaman (10.1016/j.cma.2021.113741_b48) 2019; vol. 97 (10.1016/j.cma.2021.113741_b41) 2020 DeVries (10.1016/j.cma.2021.113741_b6) 2018; 560 Meade (10.1016/j.cma.2021.113741_b26) 1994; 19 Haghighat (10.1016/j.cma.2021.113741_b50) 2020 Wang (10.1016/j.cma.2021.113741_b46) 2020 Ghaboussi (10.1016/j.cma.2021.113741_b18) 1998; 22 Jagtap (10.1016/j.cma.2021.113741_b49) 2020; 28 Lagaris (10.1016/j.cma.2021.113741_b27) 1998; 9 Abadi (10.1016/j.cma.2021.113741_b30) 2016 Wang (10.1016/j.cma.2021.113741_b51) 2020 Raissi (10.1016/j.cma.2021.113741_b22) 2019; 378 Zhu (10.1016/j.cma.2021.113741_b25) 2019; 394 Sen (10.1016/j.cma.2021.113741_b17) 2019; 131 Zienkiewicz (10.1016/j.cma.2021.113741_b44) 1969; 1 Lange (10.1016/j.cma.2021.113741_b31) 2012; 12 LeCun (10.1016/j.cma.2021.113741_b2) 2015; 521 Ren (10.1016/j.cma.2021.113741_b8) 2019; 46 Lagaris (10.1016/j.cma.2021.113741_b28) 2000; 11 Kalidindi (10.1016/j.cma.2021.113741_b19) 2011; 63 Bar-Sinai (10.1016/j.cma.2021.113741_b24) 2019; 116 Goodfellow (10.1016/j.cma.2021.113741_b3) 2016 Butler (10.1016/j.cma.2021.113741_b10) 2018; 559 Yoon (10.1016/j.cma.2021.113741_b4) 2015; 1 Bazilevs (10.1016/j.cma.2021.113741_b42) 2010; 199 Brunton (10.1016/j.cma.2021.113741_b14) 2020; 52 Kong (10.1016/j.cma.2021.113741_b7) 2018; 90 Brunton (10.1016/j.cma.2021.113741_b12) 2019; 2 Pilania (10.1016/j.cma.2021.113741_b9) 2013; 3 Chen (10.1016/j.cma.2021.113741_b36) 2015 Rafiei (10.1016/j.cma.2021.113741_b16) 2017; 26 Brenner (10.1016/j.cma.2021.113741_b13) 2019; 4 Shi (10.1016/j.cma.2021.113741_b11) 2019; 116 Libbrecht (10.1016/j.cma.2021.113741_b15) 2015; 16 Haghighat (10.1016/j.cma.2021.113741_b40) 2021; 373 Cottrell (10.1016/j.cma.2021.113741_b33) 2009 |
| References_xml | – volume: 363 year: 2019 ident: b5 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science – volume: 4 year: 2019 ident: b13 article-title: Perspective on machine learning for advancing fluid mechanics publication-title: Phys. Rev. Fluids – year: 2020 ident: b41 article-title: COMSOL Multiphysics User’s Guide – year: 2020 ident: b46 article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks – year: 2009 ident: b33 article-title: Isogeometric Analysis: Toward Integration of CAD and FEA – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: b27 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – volume: 116 start-page: 26414 year: 2019 end-page: 26420 ident: b20 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 1041 year: 2000 end-page: 1049 ident: b28 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. – start-page: 265 year: 2016 end-page: 283 ident: b30 article-title: TensorFlow: A system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) – volume: 28 start-page: 2002 year: 2020 end-page: 2041 ident: b49 article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Commun. Comput. Phys. – volume: 46 start-page: 7395 year: 2019 end-page: 7403 ident: b8 article-title: Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault publication-title: Geophys. Res. Lett. – volume: 19 start-page: 1 year: 1994 end-page: 25 ident: b26 article-title: The numerical solution of linear ordinary differential equations by feed-forward neural networks publication-title: Math. Comput. Modelling – volume: 560 start-page: 632 year: 2018 end-page: 634 ident: b6 article-title: Deep learning of aftershock patterns following large earthquakes publication-title: Nature – volume: vol. 7 year: 1998 ident: b43 publication-title: Computational Inelasticity – year: 2014 ident: b38 article-title: Adam: A method for stochastic optimization – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b2 article-title: Deep learning publication-title: Nature – start-page: 800 year: 2016 ident: b3 article-title: Deep Learning – year: 2015 ident: b36 article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems – volume: 22 start-page: 29 year: 1998 end-page: 52 ident: b18 article-title: New nested adaptive neural networks (NANN) for constitutive modeling publication-title: Comput. Geotech. – reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy), Vol. 4, Austin, TX, 2010. – year: 2017 ident: b45 article-title: Don’t decay the learning rate, increase the batch size – volume: 90 start-page: 3 year: 2018 end-page: 14 ident: b7 article-title: Machine learning in seismology: turning data into insights publication-title: Seismol. Res. Lett. – volume: 199 start-page: 229 year: 2010 end-page: 263 ident: b42 article-title: Isogeometric analysis using T-splines publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 131 start-page: 524 year: 2019 end-page: 537 ident: b17 article-title: Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes publication-title: Mech. Syst. Signal Process. – year: 2015 ident: b37 article-title: Keras – year: 2020 ident: b51 article-title: On the eigenvector bias of fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks – volume: 18 start-page: 643 year: 2019 end-page: 660 ident: b21 article-title: Data-driven identification of parametric partial differential equations publication-title: SIAM J. Appl. Dyn. Syst. – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b14 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 26 start-page: 1 year: 2017 end-page: 11 ident: b16 article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures publication-title: Struct. Des. Tall Special Build. – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: b25 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. – volume: 10 start-page: 1633 year: 2009 end-page: 1685 ident: b34 article-title: Transfer learning for reinforcement learning domains: A survey publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 5595 year: 2017 end-page: 5637 ident: b35 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 116 start-page: 4117 year: 2019 end-page: 4122 ident: b11 article-title: Deep elastic strain engineering of bandgap through machine learning publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 1 year: 2013 end-page: 6 ident: b9 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b39 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – year: 2006 ident: b1 article-title: Pattern Recognition and Machine Learning – volume: vol. 97 start-page: 5301 year: 2019 end-page: 5310 ident: b48 article-title: On the spectral bias of neural networks publication-title: Proceedings of the 36th International Conference on Machine Learning – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b32 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: b10 article-title: Machine learning for molecular and materials science publication-title: Nature – volume: 12 start-page: 45 year: 2012 end-page: 73 ident: b31 article-title: Reinforcement learning publication-title: Adaptation, Learning, and Optimization – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b22 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 2 year: 2019 ident: b12 article-title: Methods for data-driven multiscale model discovery for materials publication-title: J. Phys. Mater. – volume: 116 start-page: 15344 year: 2019 end-page: 15349 ident: b24 article-title: Learning data-driven discretizations for partial differential equations publication-title: Proc. Natl. Acad. Sci. – year: 2020 ident: b50 article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator – volume: 373 start-page: 113552 year: 2021 ident: b40 article-title: SciANN: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2020 ident: b47 article-title: When and why PINNs fail to train: A neural tangent kernel perspective – volume: 115 start-page: 8505 year: 2018 end-page: 8510 ident: b23 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. – volume: 63 start-page: 34 year: 2011 end-page: 41 ident: b19 article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols publication-title: JOM – volume: 16 start-page: 321 year: 2015 end-page: 332 ident: b15 article-title: Machine learning applications in genetics and genomics publication-title: Nature Rev. Genet. – volume: 1 year: 2015 ident: b4 article-title: Earthquake detection through computationally efficient similarity search publication-title: Sci. Adv. – volume: 1 start-page: 75 year: 1969 end-page: 100 ident: b44 article-title: Elasto-plastic solutions of engineering problems ‘initial stress’, finite element approach publication-title: Internat. J. Numer. Methods Engrg. – year: 2015 ident: 10.1016/j.cma.2021.113741_b36 – volume: vol. 97 start-page: 5301 year: 2019 ident: 10.1016/j.cma.2021.113741_b48 article-title: On the spectral bias of neural networks – volume: 131 start-page: 524 year: 2019 ident: 10.1016/j.cma.2021.113741_b17 article-title: Data-driven semi-supervised and supervised learning algorithms for health monitoring of pipes publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.06.003 – volume: 19 start-page: 1 issue: 12 year: 1994 ident: 10.1016/j.cma.2021.113741_b26 article-title: The numerical solution of linear ordinary differential equations by feed-forward neural networks publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(94)90095-7 – volume: 11 start-page: 1041 issue: 5 year: 2000 ident: 10.1016/j.cma.2021.113741_b28 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870037 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cma.2021.113741_b2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: 29 issue: 1 year: 1998 ident: 10.1016/j.cma.2021.113741_b18 article-title: New nested adaptive neural networks (NANN) for constitutive modeling publication-title: Comput. Geotech. doi: 10.1016/S0266-352X(97)00034-7 – volume: 12 start-page: 45 year: 2012 ident: 10.1016/j.cma.2021.113741_b31 article-title: Reinforcement learning doi: 10.1007/978-3-642-27645-3_2 – volume: 3 start-page: 1 year: 2013 ident: 10.1016/j.cma.2021.113741_b9 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. doi: 10.1038/srep02810 – volume: 194 start-page: 4135 issue: 39 year: 2005 ident: 10.1016/j.cma.2021.113741_b32 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.10.008 – start-page: 265 year: 2016 ident: 10.1016/j.cma.2021.113741_b30 article-title: TensorFlow: A system for large-scale machine learning – year: 2020 ident: 10.1016/j.cma.2021.113741_b50 – volume: 373 start-page: 113552 year: 2021 ident: 10.1016/j.cma.2021.113741_b40 article-title: SciANN: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113552 – volume: 28 start-page: 2002 issue: 5 year: 2020 ident: 10.1016/j.cma.2021.113741_b49 article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0164 – volume: 10 start-page: 1633 issue: Jul year: 2009 ident: 10.1016/j.cma.2021.113741_b34 article-title: Transfer learning for reinforcement learning domains: A survey publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 5595 issue: 1 year: 2017 ident: 10.1016/j.cma.2021.113741_b35 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – year: 2020 ident: 10.1016/j.cma.2021.113741_b46 – year: 2006 ident: 10.1016/j.cma.2021.113741_b1 – year: 2014 ident: 10.1016/j.cma.2021.113741_b38 – volume: 116 start-page: 26414 issue: 52 year: 2019 ident: 10.1016/j.cma.2021.113741_b20 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1911815116 – year: 2020 ident: 10.1016/j.cma.2021.113741_b51 – year: 2015 ident: 10.1016/j.cma.2021.113741_b37 – year: 2017 ident: 10.1016/j.cma.2021.113741_b45 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2021.113741_b22 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 26 start-page: 1 issue: 18 year: 2017 ident: 10.1016/j.cma.2021.113741_b16 article-title: A novel machine learning-based algorithm to detect damage in high-rise building structures publication-title: Struct. Des. Tall Special Build. doi: 10.1002/tal.1400 – volume: 18 start-page: 643 issue: 2 year: 2019 ident: 10.1016/j.cma.2021.113741_b21 article-title: Data-driven identification of parametric partial differential equations publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/18M1191944 – ident: 10.1016/j.cma.2021.113741_b29 doi: 10.25080/Majora-92bf1922-003 – volume: 63 start-page: 34 issue: 4 year: 2011 ident: 10.1016/j.cma.2021.113741_b19 article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols publication-title: JOM doi: 10.1007/s11837-011-0057-7 – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.cma.2021.113741_b39 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 321 issue: 6 year: 2015 ident: 10.1016/j.cma.2021.113741_b15 article-title: Machine learning applications in genetics and genomics publication-title: Nature Rev. Genet. doi: 10.1038/nrg3920 – volume: 199 start-page: 229 issue: 5–8 year: 2010 ident: 10.1016/j.cma.2021.113741_b42 article-title: Isogeometric analysis using T-splines publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.02.036 – year: 2020 ident: 10.1016/j.cma.2021.113741_b47 – volume: 4 issue: 10 year: 2019 ident: 10.1016/j.cma.2021.113741_b13 article-title: Perspective on machine learning for advancing fluid mechanics publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.100501 – volume: 363 issue: 6433 year: 2019 ident: 10.1016/j.cma.2021.113741_b5 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science doi: 10.1126/science.aau0323 – volume: 1 start-page: 75 issue: 1 year: 1969 ident: 10.1016/j.cma.2021.113741_b44 article-title: Elasto-plastic solutions of engineering problems ‘initial stress’, finite element approach publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620010107 – volume: 2 issue: 4 year: 2019 ident: 10.1016/j.cma.2021.113741_b12 article-title: Methods for data-driven multiscale model discovery for materials publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab291e – volume: 1 issue: 11 year: 2015 ident: 10.1016/j.cma.2021.113741_b4 article-title: Earthquake detection through computationally efficient similarity search publication-title: Sci. Adv. doi: 10.1126/sciadv.1501057 – volume: 559 start-page: 547 issue: 7715 year: 2018 ident: 10.1016/j.cma.2021.113741_b10 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 115 start-page: 8505 issue: 34 year: 2018 ident: 10.1016/j.cma.2021.113741_b23 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1718942115 – volume: 90 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.cma.2021.113741_b7 article-title: Machine learning in seismology: turning data into insights publication-title: Seismol. Res. Lett. doi: 10.1785/0220180259 – volume: 46 start-page: 7395 issue: 13 year: 2019 ident: 10.1016/j.cma.2021.113741_b8 article-title: Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL082706 – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.cma.2021.113741_b25 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.cma.2021.113741_b27 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: vol. 7 year: 1998 ident: 10.1016/j.cma.2021.113741_b43 – year: 2009 ident: 10.1016/j.cma.2021.113741_b33 – year: 2020 ident: 10.1016/j.cma.2021.113741_b41 – volume: 116 start-page: 4117 issue: 10 year: 2019 ident: 10.1016/j.cma.2021.113741_b11 article-title: Deep elastic strain engineering of bandgap through machine learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1818555116 – volume: 560 start-page: 632 issue: 7720 year: 2018 ident: 10.1016/j.cma.2021.113741_b6 article-title: Deep learning of aftershock patterns following large earthquakes publication-title: Nature doi: 10.1038/s41586-018-0438-y – volume: 116 start-page: 15344 issue: 31 year: 2019 ident: 10.1016/j.cma.2021.113741_b24 article-title: Learning data-driven discretizations for partial differential equations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1814058116 – start-page: 800 year: 2016 ident: 10.1016/j.cma.2021.113741_b3 – volume: 52 start-page: 477 issue: 1 year: 2020 ident: 10.1016/j.cma.2021.113741_b14 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 |
| SSID | ssj0000812 |
| Score | 2.7419631 |
| Snippet | We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113741 |
| SubjectTerms | Algorithms Artificial neural network Artificial neural networks Constitutive relationships Convergence Deep learning Elastoplasticity Finite element method Inversion Linear elasticity Machine learning Mathematical models Model testing Neural networks Parameters Physics Physics-informed deep learning Robustness (mathematics) Sensitivity analysis Solid mechanics Training Transfer learning |
| Title | A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics |
| URI | https://dx.doi.org/10.1016/j.cma.2021.113741 https://www.proquest.com/docview/2521112574 |
| Volume | 379 |
| WOSCitedRecordID | wos000638011900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQ48AhFFAraA-JAZeRn1j5GKKWgECqUVrmt1t51cdU6wU6jip_Cr2X2GRNBBAcuVuRXHM-XmW9m54HQK6Dwcezn3CtK8FVjUvge43KlMPP9gmRJztQ4oLMxmUzS2Sw76fV-2FqY1SWp6_TmJlv8V1HDPhC2LJ39B3G7m8IO-AxChy2IHbZ_JfihiVa0nm6KCoySC7Gw8yHOD0ubj6VSDKt6pUNmahmhvW6auYys6RE5puAFHrjih1dCVgnb7Hjb3cBMhTCjqFV2LTPM1l2gbi3WnQ_Xau9ctktmyhCMvnbyg74wAESli4m-V8xlEH-CN6BDsLzpAPv9_EpHwo_VIkQ3lBF2Uq50fM3V2Jx1VXaceEBjkq7KjvQAGqN0g9-aAh2VuHhbqPZSYSCn1xDdZOvXttuTz_TodDym09Fs-nrxzZMTyeTKvRnPcgvthiTJQGPuDj-MZh_Xdj4NdC9684B2zVxlD258659Yz4b9V6Rm-hDdN94IHmoUPUI9UffRA-OZYKP32z6612lb2Ud3TjTAHqN8iDfBhiXYsAUbdmDDcBg7sGFABHZgwxZscAJWYMMOO3vo9Gg0fXfsmakdXhFlwdIDhsmYYGHE4yQblKALUnALkogBNwU-WwClz0nOkzLlJRkQMDFClIXvlyBU4JIseoJ26nktniKcB4kAAkmAxwWgRng-EBEDkwMuQyYnSe4j375VWpiW9nKyyiW1uYsXFARBpSCoFsQ-euMuWeh-LttOjq2oqCGkmmhSANm2yw6sWKlRDC0N4beBb5OQ-Nn2w8_R3fV_4wDtLJtr8QLdLlbLqm1eGhD-BNeVtj0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physics-informed+deep+learning+framework+for+inversion+and+surrogate+modeling+in+solid+mechanics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Haghighat%2C+Ehsan&rft.au=Raissi%2C+Maziar&rft.au=Moure%2C+Adrian&rft.au=Gomez%2C+Hector&rft.date=2021-06-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=379&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.113741&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |