A multi-layer sparse coding network learns contour coding from natural images

An important approach in visual neuroscience considers how the function of the early visual system relates to the statistics of its natural input. Previous studies have shown how many basic properties of the primary visual cortex, such as the receptive fields of simple and complex cells and the spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) Jg. 42; H. 12; S. 1593 - 1605
Hauptverfasser: Hoyer, Patrik O, Hyvärinen, Aapo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.06.2002
Elsevier Science
Schlagworte:
ISSN:0042-6989, 1878-5646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important approach in visual neuroscience considers how the function of the early visual system relates to the statistics of its natural input. Previous studies have shown how many basic properties of the primary visual cortex, such as the receptive fields of simple and complex cells and the spatial organization (topography) of the cells, can be understood as efficient coding of natural images. Here we extend the framework by considering how the responses of complex cells could be sparsely represented by a higher-order neural layer. This leads to contour coding and end-stopped receptive fields. In addition, contour integration could be interpreted as top-down inference in the presented model.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0042-6989
1878-5646
DOI:10.1016/S0042-6989(02)00017-2