Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation
The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform lar...
Saved in:
| Published in: | Journal of computational chemistry Vol. 37; no. 21; pp. 1983 - 1992 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Blackwell Publishing Ltd
05.08.2016
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0192-8651, 1096-987X, 1096-987X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC‐DFTB potential energy surface are implemented to the program called DC‐DFTB‐K. A novel interpolation‐based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC‐DFTB‐K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC‐DFTB‐K program, a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.
The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program called DC‐DFTB‐K that can be routinely applied to on‐the‐fly molecular reaction dynamics simulations of large systems. Numerical tests based on calculations of water clusters in a cubic box show a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. |
|---|---|
| AbstractList | The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC‐DFTB potential energy surface are implemented to the program called DC‐DFTB‐K. A novel interpolation‐based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC‐DFTB‐K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC‐DFTB‐K program, a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program called DC‐DFTB‐K that can be routinely applied to on‐the‐fly molecular reaction dynamics simulations of large systems. Numerical tests based on calculations of water clusters in a cubic box show a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. |
| Author | Irle, Stephan Nakai, Hiromi Kobayashi, Masato Nishimura, Yoshifumi Nishizawa, Hiroaki |
| Author_xml | – sequence: 1 givenname: Hiroaki surname: Nishizawa fullname: Nishizawa, Hiroaki organization: Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 444-8585, Okazaki, Japan – sequence: 2 givenname: Yoshifumi surname: Nishimura fullname: Nishimura, Yoshifumi organization: Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 444-8585, Okazaki, Japan – sequence: 3 givenname: Masato surname: Kobayashi fullname: Kobayashi, Masato organization: Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Japan – sequence: 4 givenname: Stephan surname: Irle fullname: Irle, Stephan organization: Department of Chemistry, Graduate School of Science, and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, 464-8602, Nagoya, Japan – sequence: 5 givenname: Hiromi surname: Nakai fullname: Nakai, Hiromi email: nakai@waseda.jp organization: Research Institute for Science and Engineering, Waseda University, 169-8555, Tokyo, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27317328$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFBS-ALLEBqWnt2IkTdmiAQjWCzSC6sxzbmfHgn6mdDOTJeD3cmbaLSrCwLFnfOef6nhNw5IPXALzE6BwjVF5spDwvKcXtEzDDqK2LtmHXR2CGcFsWTV3hY3CS0gYhRKqaPgPHJSOYkbKZgT_LddQabo21IibYhwiFXBu9M34Fb0bhh9FBp-VaeCOFhS5YLcfMQjV54YxMMBmXHwYTfIKhh-txpWGa0qBdegc_mJ1RuhBeFTL4m1HHM6i0T2aYin708laWbQezWg9FZ7zKuWcw49CJlMxO2wluRRTWagtlcNtx2Ec9B097YZN-cXefgu-fPi7nn4vFt8sv8_eLQpIWt0XTVorqkjYdkaqpVSkRabpKK4VpyxSrUdvVgqBK0F6XJWNK9kSomjaCkk4KcgreHHy3MeTp08CdSVLnbXkdxsRxgxBFOCdk9PUjdBPGmH-3p0g-rK4y9eqOGjunFd9G40Sc-H0lGXh7AGQMKUXdPyAY8du6ea6b7-vO7MUjVprDfoYojP2f4pexevq3Nb-az-8VxUFhcqW_HxQi_uQ1I6ziP75ecnLV0MU1W3JE_gLc1M6u |
| CODEN | JCCHDD |
| CitedBy_id | crossref_primary_10_1246_cl_200895 crossref_primary_10_5059_yukigoseikyokaishi_83_814 crossref_primary_10_1002_jcc_26197 crossref_primary_10_1002_jcc_25086 crossref_primary_10_1002_jcc_25360 crossref_primary_10_1002_jcc_26053 crossref_primary_10_1002_adts_202400691 crossref_primary_10_1002_anie_201901573 crossref_primary_10_1002_wcms_1322 crossref_primary_10_1002_jcc_25841 crossref_primary_10_1002_jcc_24497 crossref_primary_10_1002_jcc_24693 crossref_primary_10_2477_jccj_2021_0020 crossref_primary_10_1002_jcc_25804 crossref_primary_10_2477_jccj_2023_0033 crossref_primary_10_1016_j_cplett_2022_139489 crossref_primary_10_1039_D1SC02574K crossref_primary_10_1002_jcc_26217 crossref_primary_10_1080_23746149_2019_1710252 crossref_primary_10_1002_cphc_202200109 crossref_primary_10_1039_D2RA04563J crossref_primary_10_1002_jcc_25174 crossref_primary_10_1002_wcms_1419 crossref_primary_10_1039_C9CP04739E crossref_primary_10_1002_ange_201901573 crossref_primary_10_1093_chemle_upae004 crossref_primary_10_3390_molecules23010118 crossref_primary_10_1016_j_cplett_2018_05_002 crossref_primary_10_1088_1361_648X_aa7c5c crossref_primary_10_1002_pssb_201900634 crossref_primary_10_1002_tcr_201800141 crossref_primary_10_1246_cl_210263 crossref_primary_10_1002_jcc_26486 crossref_primary_10_1080_08927022_2018_1554903 crossref_primary_10_1246_bcsj_20170142 crossref_primary_10_1016_j_cplett_2019_04_001 crossref_primary_10_1016_j_cplett_2023_140818 |
| Cites_doi | 10.1103/PhysRevB.47.10891 10.1103/PhysRevB.58.7260 10.1007/s00214-015-1710-y 10.1088/0034-4885/75/3/036503 10.1002/wcms.27 10.1007/978-90-481-2853-2_9 10.1007/s00894-015-2666-5 10.1063/1.4776228 10.1021/ct500115v 10.1002/wcms.85 10.1063/1.3568010 10.1002/jcc.24254 10.1063/1.470549 10.1021/ar500038z 10.1021/jp070308d 10.1063/1.2339019 10.1021/ct500489d 10.1021/jp070186p 10.1016/B978-044451719-7/50084-6 10.1063/1.2956490 10.1021/ct3010134 10.1063/1.1879792 10.1007/978-90-481-2853-2_5 10.1021/jp709896w 10.1007/978-94-007-0923-2_5 10.1063/1.2761878 10.1002/jcc.21855 10.1063/1.3524337 10.1063/1.1775786 10.1142/S0219633605001763 10.1063/1.1787832 10.1103/RevModPhys.71.1085 10.1088/0034-4885/78/3/036501 10.15748/jasse.1.87 10.1201/9781420078497-3 10.1088/0953-8984/22/7/074207 10.1007/978-90-481-2853-2_10 10.1063/1.4894185 10.1063/1.481208 10.1016/j.commatsci.2006.04.012 10.1021/ja031940x 10.1103/PhysRevB.42.9458 10.1002/jcc.20112 10.1002/jcc.23782 10.1007/s00214-015-1650-6 10.1103/PhysRevB.37.6991 10.1021/ct100684s 10.1002/prot.1114 10.1021/jp004368u 10.1007/s00214-011-1008-7 10.1017/CBO9780511609633 10.1039/C3CP55239J 10.1063/1.3211119 10.1016/j.cplett.2010.10.005 10.1063/1.1775787 10.1002/jcc.540141112 10.1002/jcc.20707 10.1039/c2cp40153c 10.1002/qua.24093 |
| ContentType | Journal Article |
| Copyright | 2016 Wiley Periodicals, Inc. Copyright Wiley Subscription Services, Inc. Aug 5, 2016 |
| Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: Copyright Wiley Subscription Services, Inc. Aug 5, 2016 |
| DBID | BSCLL AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1002/jcc.24419 |
| DatabaseName | Istex CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 1992 |
| ExternalDocumentID | 4114286681 27317328 10_1002_jcc_24419 JCC24419 ark_67375_WNG_3J84LX7T_0 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: JSPS KAKENHI funderid: 25810011 – fundername: Computational Materials Science Initiative (CMSI), Strategic Programs for Innovative Research (SPIRE) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and FLAGSHIP2020, MEXT within priority study 5 (Development of new fundamental technologies for high‐efficiency energy creation, conversion/storage and use) |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN ESX RWI RWK WRC AAYXX CITATION O8X NPM JQ2 7X8 |
| ID | FETCH-LOGICAL-c3919-895d4e248b3cd86d2c038b5edd1497d7609b6a305a4fe2277dcf3ad648a43bca3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379744200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Sun Nov 09 09:51:34 EST 2025 Fri Jul 25 19:14:38 EDT 2025 Wed Feb 19 02:42:17 EST 2025 Sat Nov 29 03:23:34 EST 2025 Tue Nov 18 21:20:37 EST 2025 Wed Jan 22 17:03:42 EST 2025 Tue Nov 11 03:32:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | quantum mechanical molecular dynamics density-functional tight-binding method massively parallel computation linear-scaling divide-and-conquer method |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3919-895d4e248b3cd86d2c038b5edd1497d7609b6a305a4fe2277dcf3ad648a43bca3 |
| Notes | JSPS KAKENHI - No. 25810011 Computational Materials Science Initiative (CMSI), Strategic Programs for Innovative Research (SPIRE) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and FLAGSHIP2020, MEXT within priority study 5 (Development of new fundamental technologies for high-efficiency energy creation, conversion/storage and use) ArticleID:JCC24419 ark:/67375/WNG-3J84LX7T-0 istex:41C9FEB6888C1F6708193A40894F1B8500A2DF6F SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4001-3581 |
| PMID | 27317328 |
| PQID | 1803180765 |
| PQPubID | 48816 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1800401248 proquest_journals_1803180765 pubmed_primary_27317328 crossref_primary_10_1002_jcc_24419 crossref_citationtrail_10_1002_jcc_24419 wiley_primary_10_1002_jcc_24419_JCC24419 istex_primary_ark_67375_WNG_3J84LX7T_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-05 August 05, 2016 20160805 |
| PublicationDateYYYYMMDD | 2016-08-05 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J. Comput. Chem |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | A. P. Rahalkar, S. D. Yeole, V. Ganesh, S. R. Gadre, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G.Papadopoulos, P. G.Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 199-225. M. Kobayashi, T. Taketsugu, Theor. Chem. Acc. 2015, 134, 107. T. Yoshikawa, H. Nakai, Theor. Chem. Acc. 2015, 134, 53. H. A. Witek, K. Morokuma, A. Stradomska, J. Theor. Comput. Chem. 2005, 4, 639. H. A. Witek, K. Morokuma, J. Comput. Chem. 2004, 25, 1858. T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambaşu, H. Heldenbrand, M. Huang, E. R. Kuechler, T.-S. Lee, M. T. Panteva, B. K. Radak, D. M. York, J. Chem. Theory Comput. 2013, 9, 1417. L. W. Chung, H. Hirao, X. Li, K. Morokuma, WIREs Comput. Mol. Sci. 2012, 2, 327. M. A. Collins, J. Chem. Phys. 2014, 141, 094108. M. Kobayashi, T. Yoshikawa, H. Nakai, Chem. Phys. Lett. 2010, 500, 172. B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678. M. Kobayashi, H. Nakai, J. Chem. Phys. 2009, 131, 114108. H. A. Witek, S. Irle, K. Morokuma, J. Chem. Phys. 2004, 121, 5163. Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori, In Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang, Eds.; InTech: Rijeka, 2012; pp. 3-24. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009. A. Scemama, N. Renon, M. Rapacioli, J. Chem. Theory Comput. 2014, 10, 2344. T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 2011, 134, 124115. M. Kobayashi, Y. Imamura, H. Nakai, J. Chem. Phys. 2007, 127, 074103. T. Yoshikawa, M. Kobayashi, H. Nakai, Theor. Chem. Acc. 2011, 130, 411. V. Ganesh, R. K. Dongare, P. Balanarayan, S. R. Gadre, J. Chem. Phys. 2006, 125, 104109. J. Tersoff, Phys. Rev. B 1988, 37, 6991. S. Li, W. Li, J. Ma, Acc. Chem. Res. 2014, 47, 2712. M. Kobayashi, H. Nakai, Phys. Chem. Chem. Phys. 2012, 14, 7629. R. B. Gerber, D. Shemesh, M. E. Varner, J. Kalinowski, B. Hirshberg, Phys. Chem. Chem. Phys. 2014, 16, 9760. M. Arita, S. Arapan, D. R. Bowler, T. Miyazaki, J. Adv. Simul. Sci. Eng. 2014, 1, 87. D. W. Brenner, Phys. Rev. B 1990, 42, 9458. A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 2001, 105, 9396. S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085. D. R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 2010, 22, 074207. X.-P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891. F. L. Gu, B. Kirtman, Y. Aoki, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 175-198. M. Kobayashi, H. Nakai, J. Chem. Phys. 2013, 138, 044102. D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503. M. Katouda, M. Kobayashi, H. Nakai, S. Nagase, J. Comput. Chem. 2011, 32, 2756. M. Kobayashi, H. Nakai, J. Chem. Phys. 2008, 129, 044103. T. Akama, M. Kobayashi, H. Nakai, J. Comput. Chem. 2007, 28, 2003. H. A. Witek, K. Morokuma, A. Stradomska, J. Chem. Phys. 2004, 121, 5171. S. Irle, A. J. Page, B. Saha, Y. Wang, K. R. S. Chandrakumar, Y. Nishimoto, H.-J. Qian, K. Morokuma, In Practical Aspects of Computational Chemistry II, J. Leszczynski, M. K. Shukla, Eds.; Springer: Dordrecht, 2012; pp. 103-172. D. G. Fedorov, K. Kitaura, The Fragment Molecular Orbital Method; CRC Press: Boca Raton, 2009. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr., J. Comput. Chem. 1993, 14, 1347. F. H. Wallrapp, V. Guallar, WIREs Comput. Mol. Sci. 2011, 1, 315. V. Deev, M. A. Collins, J. Chem. Phys. 2005, 122, 154102. T. Miyazaki, D. R. Bowler, R. Choudhury, M. J. Gillan, J. Chem. Phys. 2004, 121, 6186. A. J. Page, F. Ding, S. Irle, K. Morokuma, Rep. Prog. Phys. 2015, 78, 036501. M. Kobayashi, H. Nakai, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 97-127. W. Yang, T.-S. Lee, J. Chem. Phys. 1995, 103, 5674. S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys 2000, 112, 6472. T. Yoshikawa, H. Nakai, J. Comput. Chem. 2015, 36, 164. Z. Lu, W. Nowak, G. Lee, P. E. Marszalek, W. Yang, J. Am. Chem. Soc. 2004, 126, 9033. Y. Nishimoto, D. G. Fedorov, S. Irle, J. Chem. Theory Comput. 2014, 10, 4801. H. Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, W. Yang, Proteins 2001, 44, 484. M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys. 2011, 134, 034105. L. Jin, K. Liu, Y. Aoki, J. Mol. Model. 2015, 21, 117. M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed.; Cambridge University Press: Cambridge, 1992. H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 2007, 111, 5685. M. S. Gordon, M. W. Schmidt, In C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria Theory and Applications of Computational Chemistry: the First Forty Years; Elsevier: Amsterdam, 2005; pp. 1167-1189. T. Yoshikawa, M. Kobayashi, H. Nakai, Int. J. Quantum Chem. 2013, 113, 218. A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Srivastava, Comput. Mater. Sci. 2007, 38, 642. K. Chenoweth, A. C. T. van Duin, W. A. Goddard, III, J. Phys. Chem. A 2008, 112, 1040. M. Keçeli, H. Zhang, P. Zapol, D. A. Dixon, A. F. Wagner, J. Comput. Chem. 2016, 37, 448. 2015; 78 2004; 121 2015; 36 2004; 126 2004; 25 1988; 37 2010; 500 2012; 14 2001; 44 2016; 37 2013; 9 2001; 105 2007; 38 2007; 28 2014; 1 2010; 22 1990; 42 2015; 134 2014; 16 2013; 113 2008; 112 1998; 58 2006; 125 2014; 10 1993; 47 2007; 127 2011; 1 2012 2011 2009 2014; 47 2008; 129 2011; 32 2005 1992 2000; 112 2009; 131 2011; 130 2011; 134 2011; 7 2012; 75 1993; 14 2012; 2 2005; 122 2013; 138 2007; 111 2015; 21 2005; 4 1995; 103 1999; 71 2014; 141 e_1_2_8_28_1 Komeiji Y. (e_1_2_8_19_1) 2012 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Yoshikawa T. (e_1_2_8_51_1) 2015; 134 Press W. H. (e_1_2_8_56_1) 1992 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Jin L. (e_1_2_8_25_1) 2015; 21 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 T. Yoshikawa (e_1_2_8_34_1) 2015; 36 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 M. Kobayashi (e_1_2_8_33_1) 2010; 500 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – reference: D. R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 2010, 22, 074207. – reference: T. Yoshikawa, M. Kobayashi, H. Nakai, Theor. Chem. Acc. 2011, 130, 411. – reference: Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori, In Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang, Eds.; InTech: Rijeka, 2012; pp. 3-24. – reference: M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys. 2011, 134, 034105. – reference: B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678. – reference: L. W. Chung, H. Hirao, X. Li, K. Morokuma, WIREs Comput. Mol. Sci. 2012, 2, 327. – reference: M. S. Gordon, M. W. Schmidt, In C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria Theory and Applications of Computational Chemistry: the First Forty Years; Elsevier: Amsterdam, 2005; pp. 1167-1189. – reference: R. B. Gerber, D. Shemesh, M. E. Varner, J. Kalinowski, B. Hirshberg, Phys. Chem. Chem. Phys. 2014, 16, 9760. – reference: Z. Lu, W. Nowak, G. Lee, P. E. Marszalek, W. Yang, J. Am. Chem. Soc. 2004, 126, 9033. – reference: S. Irle, A. J. Page, B. Saha, Y. Wang, K. R. S. Chandrakumar, Y. Nishimoto, H.-J. Qian, K. Morokuma, In Practical Aspects of Computational Chemistry II, J. Leszczynski, M. K. Shukla, Eds.; Springer: Dordrecht, 2012; pp. 103-172. – reference: F. L. Gu, B. Kirtman, Y. Aoki, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 175-198. – reference: M. Katouda, M. Kobayashi, H. Nakai, S. Nagase, J. Comput. Chem. 2011, 32, 2756. – reference: A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Srivastava, Comput. Mater. Sci. 2007, 38, 642. – reference: M. Arita, S. Arapan, D. R. Bowler, T. Miyazaki, J. Adv. Simul. Sci. Eng. 2014, 1, 87. – reference: H. A. Witek, S. Irle, K. Morokuma, J. Chem. Phys. 2004, 121, 5163. – reference: H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 2007, 111, 5685. – reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2009, 131, 114108. – reference: M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931. – reference: D. G. Fedorov, K. Kitaura, The Fragment Molecular Orbital Method; CRC Press: Boca Raton, 2009. – reference: F. H. Wallrapp, V. Guallar, WIREs Comput. Mol. Sci. 2011, 1, 315. – reference: L. Jin, K. Liu, Y. Aoki, J. Mol. Model. 2015, 21, 117. – reference: A. J. Page, F. Ding, S. Irle, K. Morokuma, Rep. Prog. Phys. 2015, 78, 036501. – reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed.; Cambridge University Press: Cambridge, 1992. – reference: S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085. – reference: Y. Nishimoto, D. G. Fedorov, S. Irle, J. Chem. Theory Comput. 2014, 10, 4801. – reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2013, 138, 044102. – reference: M. Keçeli, H. Zhang, P. Zapol, D. A. Dixon, A. F. Wagner, J. Comput. Chem. 2016, 37, 448. – reference: S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys 2000, 112, 6472. – reference: M. A. Collins, J. Chem. Phys. 2014, 141, 094108. – reference: M. Kobayashi, T. Yoshikawa, H. Nakai, Chem. Phys. Lett. 2010, 500, 172. – reference: T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambaşu, H. Heldenbrand, M. Huang, E. R. Kuechler, T.-S. Lee, M. T. Panteva, B. K. Radak, D. M. York, J. Chem. Theory Comput. 2013, 9, 1417. – reference: D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503. – reference: D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009. – reference: T. Yoshikawa, H. Nakai, J. Comput. Chem. 2015, 36, 164. – reference: D. W. Brenner, Phys. Rev. B 1990, 42, 9458. – reference: H. A. Witek, K. Morokuma, J. Comput. Chem. 2004, 25, 1858. – reference: V. Ganesh, R. K. Dongare, P. Balanarayan, S. R. Gadre, J. Chem. Phys. 2006, 125, 104109. – reference: T. Yoshikawa, H. Nakai, Theor. Chem. Acc. 2015, 134, 53. – reference: H. A. Witek, K. Morokuma, A. Stradomska, J. Chem. Phys. 2004, 121, 5171. – reference: J. Tersoff, Phys. Rev. B 1988, 37, 6991. – reference: V. Deev, M. A. Collins, J. Chem. Phys. 2005, 122, 154102. – reference: H. Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, W. Yang, Proteins 2001, 44, 484. – reference: A. P. Rahalkar, S. D. Yeole, V. Ganesh, S. R. Gadre, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G.Papadopoulos, P. G.Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 199-225. – reference: K. Chenoweth, A. C. T. van Duin, W. A. Goddard, III, J. Phys. Chem. A 2008, 112, 1040. – reference: M. Kobayashi, T. Taketsugu, Theor. Chem. Acc. 2015, 134, 107. – reference: H. A. Witek, K. Morokuma, A. Stradomska, J. Theor. Comput. Chem. 2005, 4, 639. – reference: M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr., J. Comput. Chem. 1993, 14, 1347. – reference: T. Yoshikawa, M. Kobayashi, H. Nakai, Int. J. Quantum Chem. 2013, 113, 218. – reference: A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 2001, 105, 9396. – reference: M. Kobayashi, H. Nakai, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 97-127. – reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2008, 129, 044103. – reference: T. Miyazaki, D. R. Bowler, R. Choudhury, M. J. Gillan, J. Chem. Phys. 2004, 121, 6186. – reference: X.-P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891. – reference: M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260. – reference: T. Akama, M. Kobayashi, H. Nakai, J. Comput. Chem. 2007, 28, 2003. – reference: A. Scemama, N. Renon, M. Rapacioli, J. Chem. Theory Comput. 2014, 10, 2344. – reference: S. Li, W. Li, J. Ma, Acc. Chem. Res. 2014, 47, 2712. – reference: T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 2011, 134, 124115. – reference: M. Kobayashi, Y. Imamura, H. Nakai, J. Chem. Phys. 2007, 127, 074103. – reference: W. Yang, T.-S. Lee, J. Chem. Phys. 1995, 103, 5674. – reference: M. Kobayashi, H. Nakai, Phys. Chem. Chem. Phys. 2012, 14, 7629. – volume: 58 start-page: 7260 year: 1998 publication-title: Phys. Rev. B – year: 2009 – volume: 112 start-page: 6472 year: 2000 publication-title: J. Chem. Phys – volume: 130 start-page: 411 year: 2011 publication-title: Theor. Chem. Acc. – volume: 134 start-page: 107 year: 2015 publication-title: Theor. Chem. Acc. – volume: 25 start-page: 1858 year: 2004 publication-title: J. Comput. Chem. – volume: 21 start-page: 117 year: 2015 publication-title: J. Mol. Model. – volume: 1 start-page: 87 year: 2014 publication-title: J. Adv. Simul. Sci. Eng. – volume: 75 start-page: 036503 year: 2012 publication-title: Rep. Prog. Phys. – volume: 500 start-page: 172 year: 2010 publication-title: Chem. Phys. Lett – volume: 121 start-page: 6186 year: 2004 publication-title: J. Chem. Phys. – volume: 38 start-page: 642 year: 2007 publication-title: Comput. Mater. Sci. – volume: 134 start-page: 124115 year: 2011 publication-title: J. Chem. Phys. – start-page: 103 year: 2012 end-page: 172 – volume: 126 start-page: 9033 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 9760 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 141 start-page: 094108 year: 2014 publication-title: J. Chem. Phys. – volume: 28 start-page: 2003 year: 2007 publication-title: J. Comput. Chem. – volume: 44 start-page: 484 year: 2001 publication-title: Proteins – volume: 7 start-page: 931 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 138 start-page: 044102 year: 2013 publication-title: J. Chem. Phys. – volume: 121 start-page: 5171 year: 2004 publication-title: J. Chem. Phys. – volume: 127 start-page: 074103 year: 2007 publication-title: J. Chem. Phys. – volume: 4 start-page: 639 year: 2005 publication-title: J. Theor. Comput. Chem. – volume: 47 start-page: 10891 year: 1993 publication-title: Phys. Rev. B – volume: 14 start-page: 1347 year: 1993 publication-title: J. Comput. Chem. – volume: 10 start-page: 2344 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 1 start-page: 315 year: 2011 publication-title: WIREs Comput. Mol. Sci. – volume: 131 start-page: 114108 year: 2009 publication-title: J. Chem. Phys. – volume: 2 start-page: 327 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 37 start-page: 448 year: 2016 publication-title: J. Comput. Chem. – volume: 10 start-page: 4801 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 105 start-page: 9396 year: 2001 publication-title: J. Phys. Chem. A – volume: 111 start-page: 5678 year: 2007 publication-title: J. Phys. Chem. A – volume: 14 start-page: 7629 year: 2012 publication-title: Phys. Chem. Chem. Phys. – start-page: 1167 year: 2005 end-page: 1189 – volume: 111 start-page: 5685 year: 2007 publication-title: J. Phys. Chem. A – volume: 9 start-page: 1417 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 113 start-page: 218 year: 2013 publication-title: Int. J. Quantum Chem. – volume: 32 start-page: 2756 year: 2011 publication-title: J. Comput. Chem. – volume: 134 start-page: 53 year: 2015 publication-title: Theor. Chem. Acc. – volume: 71 start-page: 1085 year: 1999 publication-title: Rev. Mod. Phys. – volume: 112 start-page: 1040 year: 2008 publication-title: J. Phys. Chem. A – volume: 103 start-page: 5674 year: 1995 publication-title: J. Chem. Phys. – year: 1992 – volume: 125 start-page: 104109 year: 2006 publication-title: J. Chem. Phys. – volume: 78 start-page: 036501 year: 2015 publication-title: Rep. Prog. Phys. – volume: 129 start-page: 044103 year: 2008 publication-title: J. Chem. Phys. – volume: 42 start-page: 9458 year: 1990 publication-title: Phys. Rev. B – volume: 47 start-page: 2712 year: 2014 publication-title: Acc. Chem. Res. – start-page: 175 year: 2011 end-page: 198 – volume: 121 start-page: 5163 year: 2004 publication-title: J. Chem. Phys. – volume: 122 start-page: 154102 year: 2005 publication-title: J. Chem. Phys. – start-page: 97 year: 2011 end-page: 127 – volume: 37 start-page: 6991 year: 1988 publication-title: Phys. Rev. B – volume: 22 start-page: 074207 year: 2010 publication-title: J. Phys.: Condens. Matter – start-page: 199 year: 2011 end-page: 225 – volume: 36 start-page: 164 year: 2015 publication-title: J. Comput. Chem – volume: 134 start-page: 034105 year: 2011 publication-title: J. Chem. Phys. – start-page: 3 year: 2012 end-page: 24 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevB.47.10891 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevB.58.7260 – ident: e_1_2_8_38_1 doi: 10.1007/s00214-015-1710-y – ident: e_1_2_8_16_1 doi: 10.1088/0034-4885/75/3/036503 – ident: e_1_2_8_8_1 doi: 10.1002/wcms.27 – ident: e_1_2_8_24_1 doi: 10.1007/978-90-481-2853-2_9 – volume: 21 start-page: 117 year: 2015 ident: e_1_2_8_25_1 publication-title: J. Mol. Model. doi: 10.1007/s00894-015-2666-5 – ident: e_1_2_8_37_1 doi: 10.1063/1.4776228 – ident: e_1_2_8_47_1 doi: 10.1021/ct500115v – ident: e_1_2_8_9_1 doi: 10.1002/wcms.85 – ident: e_1_2_8_21_1 doi: 10.1063/1.3568010 – ident: e_1_2_8_49_1 doi: 10.1002/jcc.24254 – ident: e_1_2_8_29_1 doi: 10.1063/1.470549 – ident: e_1_2_8_28_1 doi: 10.1021/ar500038z – ident: e_1_2_8_42_1 doi: 10.1021/jp070308d – ident: e_1_2_8_23_1 doi: 10.1063/1.2339019 – ident: e_1_2_8_48_1 doi: 10.1021/ct500489d – ident: e_1_2_8_57_1 doi: 10.1021/jp070186p – ident: e_1_2_8_55_1 doi: 10.1016/B978-044451719-7/50084-6 – ident: e_1_2_8_39_1 doi: 10.1063/1.2956490 – ident: e_1_2_8_53_1 doi: 10.1021/ct3010134 – ident: e_1_2_8_26_1 doi: 10.1063/1.1879792 – ident: e_1_2_8_30_1 doi: 10.1007/978-90-481-2853-2_5 – ident: e_1_2_8_6_1 doi: 10.1021/jp709896w – ident: e_1_2_8_13_1 doi: 10.1007/978-94-007-0923-2_5 – ident: e_1_2_8_35_1 doi: 10.1063/1.2761878 – ident: e_1_2_8_50_1 doi: 10.1002/jcc.21855 – ident: e_1_2_8_52_1 doi: 10.1063/1.3524337 – ident: e_1_2_8_58_1 doi: 10.1063/1.1775786 – ident: e_1_2_8_61_1 doi: 10.1142/S0219633605001763 – ident: e_1_2_8_18_1 doi: 10.1063/1.1787832 – ident: e_1_2_8_15_1 doi: 10.1103/RevModPhys.71.1085 – ident: e_1_2_8_14_1 doi: 10.1088/0034-4885/78/3/036501 – ident: e_1_2_8_46_1 doi: 10.15748/jasse.1.87 – ident: e_1_2_8_20_1 doi: 10.1201/9781420078497-3 – ident: e_1_2_8_45_1 doi: 10.1088/0953-8984/22/7/074207 – ident: e_1_2_8_22_1 doi: 10.1007/978-90-481-2853-2_10 – ident: e_1_2_8_27_1 doi: 10.1063/1.4894185 – ident: e_1_2_8_4_1 doi: 10.1063/1.481208 – ident: e_1_2_8_7_1 doi: 10.1016/j.commatsci.2006.04.012 – ident: e_1_2_8_44_1 doi: 10.1021/ja031940x – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevB.42.9458 – ident: e_1_2_8_60_1 doi: 10.1002/jcc.20112 – volume: 36 start-page: 164 year: 2015 ident: e_1_2_8_34_1 publication-title: J. Comput. Chem doi: 10.1002/jcc.23782 – volume: 134 start-page: 53 year: 2015 ident: e_1_2_8_51_1 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-015-1650-6 – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevB.37.6991 – volume-title: Numerical Recipes in Fortran 77 year: 1992 ident: e_1_2_8_56_1 – ident: e_1_2_8_12_1 doi: 10.1021/ct100684s – ident: e_1_2_8_43_1 doi: 10.1002/prot.1114 – ident: e_1_2_8_5_1 doi: 10.1021/jp004368u – ident: e_1_2_8_36_1 doi: 10.1007/s00214-011-1008-7 – ident: e_1_2_8_1_1 doi: 10.1017/CBO9780511609633 – ident: e_1_2_8_10_1 doi: 10.1039/C3CP55239J – start-page: 3 volume-title: Molecular Dynamics—Theoretical Developments and Applications in Nanotechnology and Energy year: 2012 ident: e_1_2_8_19_1 – ident: e_1_2_8_40_1 doi: 10.1063/1.3211119 – volume: 500 start-page: 172 year: 2010 ident: e_1_2_8_33_1 publication-title: Chem. Phys. Lett doi: 10.1016/j.cplett.2010.10.005 – ident: e_1_2_8_59_1 doi: 10.1063/1.1775787 – ident: e_1_2_8_54_1 doi: 10.1002/jcc.540141112 – ident: e_1_2_8_32_1 doi: 10.1002/jcc.20707 – ident: e_1_2_8_31_1 doi: 10.1039/c2cp40153c – ident: e_1_2_8_41_1 doi: 10.1002/qua.24093 |
| SSID | ssj0003564 |
| Score | 2.4843864 |
| Snippet | The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively... The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1983 |
| SubjectTerms | Chemical reactions Computer simulation density-functional tight-binding method Geometry Interpolation linear-scaling divide-and-conquer method massively parallel computation Optimization algorithms quantum mechanical molecular dynamics Quantum theory |
| Title | Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation |
| URI | https://api.istex.fr/ark:/67375/WNG-3J84LX7T-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24419 https://www.ncbi.nlm.nih.gov/pubmed/27317328 https://www.proquest.com/docview/1803180765 https://www.proquest.com/docview/1800401248 |
| Volume | 37 |
| WOSCitedRecordID | wos000379744200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELWWFgleuF8Cy8oghHjYsG3iJDY8oS4FraoKoa7om-XYLhSSdEkaxL7xCfwR_8KXMONc0EqLhMRLFCVj2cmMx2d8OUPIY4i4xlow7QepVT7jgvmCW-0nSnCluBIqdTyzs2Q-58uleLtDXnRnYRp-iH7CDXuG89fYwVVaHfwhDf2k9TMYm5DycxiA3bIBGR6-mx7PekccRg17FIAYn8fRuCMWGgUHfeEzw9EQ_-y387DmWejqxp7p1f9q9TVypYWc9GVjI9fJji1ukEuTLtPbTfJzAQq19AQTEJUVBRhLcYulxbkG-qWGf1_nNLd4RhhVSvMupS41TT77ilbrvM0DVtHNin6sP1jakERXz-khHvmyv77_UIWBK0Tg8NnlPjW4eX57Co9wdG0mJekWZwvgUbp25232KRSiOUB8cMvZKUWq8iyzGdUuHYWr8hY5nr5aTN74bWIHX4diLHwuIsNswHgaasNjE-hRyNPIGgPxWmKSeCTSWIEnUmxlgyBJjF6FysSMKxamWoW3yaDYFPYuoQHE2NoyXA3mLDIQkEG0H1uNNPyhZcIjTzv9St2ynmPyjUw2fM2BBI1IpxGPPOpFTxqqj_OEnjgj6SVU-Rn3xiWRfD9_LcMjzmbLZCFHHtntrEi2bqGSY44-FBoYeeRh_xq0jas0qrCb2smAYwXYxT1yp7G-vjLAmmNkV4Kvckb293bKo8nE3dz7d9H75DLAwdhtb4x2yWBb1vYBuai_btdVuUcuJEu-1_ax37ELL8U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZWLdJy4f-nsIBBCHHYsE3iJDbigrqUZSkVQl3Rm-XYLhSSdkkaxN54BN6Id-FJmHF-0EqLhMQlipKJ4mTG42_G9jeEPISIy9eCaS9IrfIYF8wT3GovUYIrxZVQqeOZnSTTKZ_Pxdst8qzdC1PzQ3QJN-wZzl9jB8eE9N4f1tBPWj-BwQk5P_sMzCjqkf7-u_HRpPPEYVTTRwGK8Xgc-S2z0DDY6x4-NR718dd-OwtsnsaubvAZX_y_Zl8iFxrQSZ_XVnKZbNnVFbI9amu9XSU_Z6BSS4-xBFFRUgCyFBdZWsw20C8V_P0qp7nFXcKoVJq3RXWpqSval7Rc5k0lsJKuF_Rj9cHSmia6fEr3cdOX_fX9h1oZOEIMDt9d7FKDy-c3J3AJx9c6LUk3mC-AS-nS7bjZpfAQzQHkg2POTiiSlWeZzah2BSncK6-Ro_GL2ejAa0o7eDoUvvC4iAyzAeNpqA2PTaCHIU8jawxEbIlJ4qFIYwW-SLGFDYIkMXoRKhMzrliYahVeJ73VemVvEhpAlK0tw_lgziIDIRnE-7HVSMQfWiYG5HGrYKkb3nMsv5HJmrE5kKAR6TQyIA860eOa7OMsoUfOSjoJVXzG1XFJJN9PX8rwkLPJPJnJ4YDstGYkG8dQSp-jF4UGRgNyv7sN2sZ5GrWy68rJgGsF4MUH5EZtft3LAG36yK8EX-Ws7O_tlIejkTu59e-i98j2wezNRE5eTV_fJucBHMZusWO0Q3qborJ3yDn9dbMsi7tNV_sNkscyzQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELVWWwS8cL8UFjAIIR42bJM4iY14QS0Flqpaoa62b5Zju7uFNC1Ji9g3PoE_4l_4EmacC1ppkZB4iaJkLDuZ8fiML2cIeQoRl68F016QWuUxLpgnuNVeogRXiiuhUsczO0rGYz6dioMt8qo5C1PxQ7QTbtgznL_GDm5XZrb3hzX0k9YvYHBCzs8Oi0QM3bIz-Dg8HLWeOIwq-ihAMR6PI79hFuoFe23hM-NRB3_tt_PA5lns6gaf4dX_a_Y1cqUGnfR1ZSXXyZbNb5BL_SbX203ycwIqtXSFKYiKkgKQpbjJ0uJsA_2ygb-_WdCFxVPCqFS6aJLqUlNltC9pOV_UmcBKupzRk82xpRVNdPmSDvDQl_31_YfKDVwhBofvLnapwe3z61N4hONrNS1J1zhfAI_SuTtxs0uhEF0AyAfHnJ1SJCvPMptR7RJSuCpvkcPhm0n_nVendvB0KHzhcREZZgPG01AbHptA90KeRtYYiNgSk8Q9kcYKfJFiMxsESWL0LFQmZlyxMNUqvE2282Vu7xIaQJStLcP1YM4iAyEZxPux1UjEH1omuuR5o2Cpa95zTL-RyYqxOZCgEek00iVPWtFVRfZxntAzZyWthCo-4-64JJJH47cy3OdsNE0mstclO40ZydoxlNLn6EWhgVGXPG5fg7ZxnUbldrlxMuBaAXjxLrlTmV9bGaBNH_mV4Kuclf29nXK_33c39_5d9BG5eDAYytH78Yf75DJgw9jtdYx2yPa62NgH5IL-up6XxcO6p_0G1v4ySA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+pillars+for+achieving+quantum+mechanical+molecular+dynamics+simulations+of+huge+systems%3A+Divide%E2%80%90and%E2%80%90conquer%2C+density%E2%80%90functional+tight%E2%80%90binding%2C+and+massively+parallel+computation&rft.jtitle=Journal+of+computational+chemistry&rft.au=Nishizawa%2C+Hiroaki&rft.au=Nishimura%2C+Yoshifumi&rft.au=Kobayashi%2C+Masato&rft.au=Irle%2C+Stephan&rft.date=2016-08-05&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=37&rft.issue=21&rft.spage=1983&rft.epage=1992&rft_id=info:doi/10.1002%2Fjcc.24419&rft.externalDBID=10.1002%252Fjcc.24419&rft.externalDocID=JCC24419 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |