Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation

The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform lar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 37; no. 21; pp. 1983 - 1992
Main Authors: Nishizawa, Hiroaki, Nishimura, Yoshifumi, Kobayashi, Masato, Irle, Stephan, Nakai, Hiromi
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 05.08.2016
Wiley Subscription Services, Inc
Subjects:
ISSN:0192-8651, 1096-987X, 1096-987X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC‐DFTB potential energy surface are implemented to the program called DC‐DFTB‐K. A novel interpolation‐based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC‐DFTB‐K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC‐DFTB‐K program, a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program called DC‐DFTB‐K that can be routinely applied to on‐the‐fly molecular reaction dynamics simulations of large systems. Numerical tests based on calculations of water clusters in a cubic box show a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer.
AbstractList The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer.
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.
The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC‐DFTB potential energy surface are implemented to the program called DC‐DFTB‐K. A novel interpolation‐based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC‐DFTB‐K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC‐DFTB‐K program, a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program called DC‐DFTB‐K that can be routinely applied to on‐the‐fly molecular reaction dynamics simulations of large systems. Numerical tests based on calculations of water clusters in a cubic box show a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer.
Author Irle, Stephan
Nakai, Hiromi
Kobayashi, Masato
Nishimura, Yoshifumi
Nishizawa, Hiroaki
Author_xml – sequence: 1
  givenname: Hiroaki
  surname: Nishizawa
  fullname: Nishizawa, Hiroaki
  organization: Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 444-8585, Okazaki, Japan
– sequence: 2
  givenname: Yoshifumi
  surname: Nishimura
  fullname: Nishimura, Yoshifumi
  organization: Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 444-8585, Okazaki, Japan
– sequence: 3
  givenname: Masato
  surname: Kobayashi
  fullname: Kobayashi, Masato
  organization: Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Japan
– sequence: 4
  givenname: Stephan
  surname: Irle
  fullname: Irle, Stephan
  organization: Department of Chemistry, Graduate School of Science, and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, 464-8602, Nagoya, Japan
– sequence: 5
  givenname: Hiromi
  surname: Nakai
  fullname: Nakai, Hiromi
  email: nakai@waseda.jp
  organization: Research Institute for Science and Engineering, Waseda University, 169-8555, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27317328$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-ALLEBqWnt2IkTdmiAQjWCzSC6sxzbmfHgn6mdDOTJeD3cmbaLSrCwLFnfOef6nhNw5IPXALzE6BwjVF5spDwvKcXtEzDDqK2LtmHXR2CGcFsWTV3hY3CS0gYhRKqaPgPHJSOYkbKZgT_LddQabo21IibYhwiFXBu9M34Fb0bhh9FBp-VaeCOFhS5YLcfMQjV54YxMMBmXHwYTfIKhh-txpWGa0qBdegc_mJ1RuhBeFTL4m1HHM6i0T2aYin708laWbQezWg9FZ7zKuWcw49CJlMxO2wluRRTWagtlcNtx2Ec9B097YZN-cXefgu-fPi7nn4vFt8sv8_eLQpIWt0XTVorqkjYdkaqpVSkRabpKK4VpyxSrUdvVgqBK0F6XJWNK9kSomjaCkk4KcgreHHy3MeTp08CdSVLnbXkdxsRxgxBFOCdk9PUjdBPGmH-3p0g-rK4y9eqOGjunFd9G40Sc-H0lGXh7AGQMKUXdPyAY8du6ea6b7-vO7MUjVprDfoYojP2f4pexevq3Nb-az-8VxUFhcqW_HxQi_uQ1I6ziP75ecnLV0MU1W3JE_gLc1M6u
CODEN JCCHDD
CitedBy_id crossref_primary_10_1246_cl_200895
crossref_primary_10_5059_yukigoseikyokaishi_83_814
crossref_primary_10_1002_jcc_26197
crossref_primary_10_1002_jcc_25086
crossref_primary_10_1002_jcc_25360
crossref_primary_10_1002_jcc_26053
crossref_primary_10_1002_adts_202400691
crossref_primary_10_1002_anie_201901573
crossref_primary_10_1002_wcms_1322
crossref_primary_10_1002_jcc_25841
crossref_primary_10_1002_jcc_24497
crossref_primary_10_1002_jcc_24693
crossref_primary_10_2477_jccj_2021_0020
crossref_primary_10_1002_jcc_25804
crossref_primary_10_2477_jccj_2023_0033
crossref_primary_10_1016_j_cplett_2022_139489
crossref_primary_10_1039_D1SC02574K
crossref_primary_10_1002_jcc_26217
crossref_primary_10_1080_23746149_2019_1710252
crossref_primary_10_1002_cphc_202200109
crossref_primary_10_1039_D2RA04563J
crossref_primary_10_1002_jcc_25174
crossref_primary_10_1002_wcms_1419
crossref_primary_10_1039_C9CP04739E
crossref_primary_10_1002_ange_201901573
crossref_primary_10_1093_chemle_upae004
crossref_primary_10_3390_molecules23010118
crossref_primary_10_1016_j_cplett_2018_05_002
crossref_primary_10_1088_1361_648X_aa7c5c
crossref_primary_10_1002_pssb_201900634
crossref_primary_10_1002_tcr_201800141
crossref_primary_10_1246_cl_210263
crossref_primary_10_1002_jcc_26486
crossref_primary_10_1080_08927022_2018_1554903
crossref_primary_10_1246_bcsj_20170142
crossref_primary_10_1016_j_cplett_2019_04_001
crossref_primary_10_1016_j_cplett_2023_140818
Cites_doi 10.1103/PhysRevB.47.10891
10.1103/PhysRevB.58.7260
10.1007/s00214-015-1710-y
10.1088/0034-4885/75/3/036503
10.1002/wcms.27
10.1007/978-90-481-2853-2_9
10.1007/s00894-015-2666-5
10.1063/1.4776228
10.1021/ct500115v
10.1002/wcms.85
10.1063/1.3568010
10.1002/jcc.24254
10.1063/1.470549
10.1021/ar500038z
10.1021/jp070308d
10.1063/1.2339019
10.1021/ct500489d
10.1021/jp070186p
10.1016/B978-044451719-7/50084-6
10.1063/1.2956490
10.1021/ct3010134
10.1063/1.1879792
10.1007/978-90-481-2853-2_5
10.1021/jp709896w
10.1007/978-94-007-0923-2_5
10.1063/1.2761878
10.1002/jcc.21855
10.1063/1.3524337
10.1063/1.1775786
10.1142/S0219633605001763
10.1063/1.1787832
10.1103/RevModPhys.71.1085
10.1088/0034-4885/78/3/036501
10.15748/jasse.1.87
10.1201/9781420078497-3
10.1088/0953-8984/22/7/074207
10.1007/978-90-481-2853-2_10
10.1063/1.4894185
10.1063/1.481208
10.1016/j.commatsci.2006.04.012
10.1021/ja031940x
10.1103/PhysRevB.42.9458
10.1002/jcc.20112
10.1002/jcc.23782
10.1007/s00214-015-1650-6
10.1103/PhysRevB.37.6991
10.1021/ct100684s
10.1002/prot.1114
10.1021/jp004368u
10.1007/s00214-011-1008-7
10.1017/CBO9780511609633
10.1039/C3CP55239J
10.1063/1.3211119
10.1016/j.cplett.2010.10.005
10.1063/1.1775787
10.1002/jcc.540141112
10.1002/jcc.20707
10.1039/c2cp40153c
10.1002/qua.24093
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Aug 5, 2016
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Aug 5, 2016
DBID BSCLL
AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.24419
DatabaseName Istex
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1992
ExternalDocumentID 4114286681
27317328
10_1002_jcc_24419
JCC24419
ark_67375_WNG_3J84LX7T_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: JSPS KAKENHI
  funderid: 25810011
– fundername: Computational Materials Science Initiative (CMSI), Strategic Programs for Innovative Research (SPIRE) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and FLAGSHIP2020, MEXT within priority study 5 (Development of new fundamental technologies for high‐efficiency energy creation, conversion/storage and use)
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
RWI
RWK
WRC
AAYXX
CITATION
O8X
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3919-895d4e248b3cd86d2c038b5edd1497d7609b6a305a4fe2277dcf3ad648a43bca3
IEDL.DBID DRFUL
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379744200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Sun Nov 09 09:51:34 EST 2025
Fri Jul 25 19:14:38 EDT 2025
Wed Feb 19 02:42:17 EST 2025
Sat Nov 29 03:23:34 EST 2025
Tue Nov 18 21:20:37 EST 2025
Wed Jan 22 17:03:42 EST 2025
Tue Nov 11 03:32:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords quantum mechanical molecular dynamics
density-functional tight-binding method
massively parallel computation
linear-scaling divide-and-conquer method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-895d4e248b3cd86d2c038b5edd1497d7609b6a305a4fe2277dcf3ad648a43bca3
Notes JSPS KAKENHI - No. 25810011
Computational Materials Science Initiative (CMSI), Strategic Programs for Innovative Research (SPIRE) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and FLAGSHIP2020, MEXT within priority study 5 (Development of new fundamental technologies for high-efficiency energy creation, conversion/storage and use)
ArticleID:JCC24419
ark:/67375/WNG-3J84LX7T-0
istex:41C9FEB6888C1F6708193A40894F1B8500A2DF6F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4001-3581
PMID 27317328
PQID 1803180765
PQPubID 48816
PageCount 10
ParticipantIDs proquest_miscellaneous_1800401248
proquest_journals_1803180765
pubmed_primary_27317328
crossref_primary_10_1002_jcc_24419
crossref_citationtrail_10_1002_jcc_24419
wiley_primary_10_1002_jcc_24419_JCC24419
istex_primary_ark_67375_WNG_3J84LX7T_0
PublicationCentury 2000
PublicationDate 2016-08-05
August 05, 2016
20160805
PublicationDateYYYYMMDD 2016-08-05
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. P. Rahalkar, S. D. Yeole, V. Ganesh, S. R. Gadre, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G.Papadopoulos, P. G.Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 199-225.
M. Kobayashi, T. Taketsugu, Theor. Chem. Acc. 2015, 134, 107.
T. Yoshikawa, H. Nakai, Theor. Chem. Acc. 2015, 134, 53.
H. A. Witek, K. Morokuma, A. Stradomska, J. Theor. Comput. Chem. 2005, 4, 639.
H. A. Witek, K. Morokuma, J. Comput. Chem. 2004, 25, 1858.
T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambaşu, H. Heldenbrand, M. Huang, E. R. Kuechler, T.-S. Lee, M. T. Panteva, B. K. Radak, D. M. York, J. Chem. Theory Comput. 2013, 9, 1417.
L. W. Chung, H. Hirao, X. Li, K. Morokuma, WIREs Comput. Mol. Sci. 2012, 2, 327.
M. A. Collins, J. Chem. Phys. 2014, 141, 094108.
M. Kobayashi, T. Yoshikawa, H. Nakai, Chem. Phys. Lett. 2010, 500, 172.
B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678.
M. Kobayashi, H. Nakai, J. Chem. Phys. 2009, 131, 114108.
H. A. Witek, S. Irle, K. Morokuma, J. Chem. Phys. 2004, 121, 5163.
Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori, In Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang, Eds.; InTech: Rijeka, 2012; pp. 3-24.
D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.
A. Scemama, N. Renon, M. Rapacioli, J. Chem. Theory Comput. 2014, 10, 2344.
T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 2011, 134, 124115.
M. Kobayashi, Y. Imamura, H. Nakai, J. Chem. Phys. 2007, 127, 074103.
T. Yoshikawa, M. Kobayashi, H. Nakai, Theor. Chem. Acc. 2011, 130, 411.
V. Ganesh, R. K. Dongare, P. Balanarayan, S. R. Gadre, J. Chem. Phys. 2006, 125, 104109.
J. Tersoff, Phys. Rev. B 1988, 37, 6991.
S. Li, W. Li, J. Ma, Acc. Chem. Res. 2014, 47, 2712.
M. Kobayashi, H. Nakai, Phys. Chem. Chem. Phys. 2012, 14, 7629.
R. B. Gerber, D. Shemesh, M. E. Varner, J. Kalinowski, B. Hirshberg, Phys. Chem. Chem. Phys. 2014, 16, 9760.
M. Arita, S. Arapan, D. R. Bowler, T. Miyazaki, J. Adv. Simul. Sci. Eng. 2014, 1, 87.
D. W. Brenner, Phys. Rev. B 1990, 42, 9458.
A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 2001, 105, 9396.
S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085.
D. R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 2010, 22, 074207.
X.-P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891.
F. L. Gu, B. Kirtman, Y. Aoki, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 175-198.
M. Kobayashi, H. Nakai, J. Chem. Phys. 2013, 138, 044102.
D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503.
M. Katouda, M. Kobayashi, H. Nakai, S. Nagase, J. Comput. Chem. 2011, 32, 2756.
M. Kobayashi, H. Nakai, J. Chem. Phys. 2008, 129, 044103.
T. Akama, M. Kobayashi, H. Nakai, J. Comput. Chem. 2007, 28, 2003.
H. A. Witek, K. Morokuma, A. Stradomska, J. Chem. Phys. 2004, 121, 5171.
S. Irle, A. J. Page, B. Saha, Y. Wang, K. R. S. Chandrakumar, Y. Nishimoto, H.-J. Qian, K. Morokuma, In Practical Aspects of Computational Chemistry II, J. Leszczynski, M. K. Shukla, Eds.; Springer: Dordrecht, 2012; pp. 103-172.
D. G. Fedorov, K. Kitaura, The Fragment Molecular Orbital Method; CRC Press: Boca Raton, 2009.
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr., J. Comput. Chem. 1993, 14, 1347.
F. H. Wallrapp, V. Guallar, WIREs Comput. Mol. Sci. 2011, 1, 315.
V. Deev, M. A. Collins, J. Chem. Phys. 2005, 122, 154102.
T. Miyazaki, D. R. Bowler, R. Choudhury, M. J. Gillan, J. Chem. Phys. 2004, 121, 6186.
A. J. Page, F. Ding, S. Irle, K. Morokuma, Rep. Prog. Phys. 2015, 78, 036501.
M. Kobayashi, H. Nakai, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 97-127.
W. Yang, T.-S. Lee, J. Chem. Phys. 1995, 103, 5674.
S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys 2000, 112, 6472.
T. Yoshikawa, H. Nakai, J. Comput. Chem. 2015, 36, 164.
Z. Lu, W. Nowak, G. Lee, P. E. Marszalek, W. Yang, J. Am. Chem. Soc. 2004, 126, 9033.
Y. Nishimoto, D. G. Fedorov, S. Irle, J. Chem. Theory Comput. 2014, 10, 4801.
H. Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, W. Yang, Proteins 2001, 44, 484.
M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys. 2011, 134, 034105.
L. Jin, K. Liu, Y. Aoki, J. Mol. Model. 2015, 21, 117.
M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed.; Cambridge University Press: Cambridge, 1992.
H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 2007, 111, 5685.
M. S. Gordon, M. W. Schmidt, In C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria Theory and Applications of Computational Chemistry: the First Forty Years; Elsevier: Amsterdam, 2005; pp. 1167-1189.
T. Yoshikawa, M. Kobayashi, H. Nakai, Int. J. Quantum Chem. 2013, 113, 218.
A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Srivastava, Comput. Mater. Sci. 2007, 38, 642.
K. Chenoweth, A. C. T. van Duin, W. A. Goddard, III, J. Phys. Chem. A 2008, 112, 1040.
M. Keçeli, H. Zhang, P. Zapol, D. A. Dixon, A. F. Wagner, J. Comput. Chem. 2016, 37, 448.
2015; 78
2004; 121
2015; 36
2004; 126
2004; 25
1988; 37
2010; 500
2012; 14
2001; 44
2016; 37
2013; 9
2001; 105
2007; 38
2007; 28
2014; 1
2010; 22
1990; 42
2015; 134
2014; 16
2013; 113
2008; 112
1998; 58
2006; 125
2014; 10
1993; 47
2007; 127
2011; 1
2012
2011
2009
2014; 47
2008; 129
2011; 32
2005
1992
2000; 112
2009; 131
2011; 130
2011; 134
2011; 7
2012; 75
1993; 14
2012; 2
2005; 122
2013; 138
2007; 111
2015; 21
2005; 4
1995; 103
1999; 71
2014; 141
e_1_2_8_28_1
Komeiji Y. (e_1_2_8_19_1) 2012
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Yoshikawa T. (e_1_2_8_51_1) 2015; 134
Press W. H. (e_1_2_8_56_1) 1992
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Jin L. (e_1_2_8_25_1) 2015; 21
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
T. Yoshikawa (e_1_2_8_34_1) 2015; 36
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
M. Kobayashi (e_1_2_8_33_1) 2010; 500
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: D. R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 2010, 22, 074207.
– reference: T. Yoshikawa, M. Kobayashi, H. Nakai, Theor. Chem. Acc. 2011, 130, 411.
– reference: Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori, In Molecular Dynamics-Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang, Eds.; InTech: Rijeka, 2012; pp. 3-24.
– reference: M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys. 2011, 134, 034105.
– reference: B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678.
– reference: L. W. Chung, H. Hirao, X. Li, K. Morokuma, WIREs Comput. Mol. Sci. 2012, 2, 327.
– reference: M. S. Gordon, M. W. Schmidt, In C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria Theory and Applications of Computational Chemistry: the First Forty Years; Elsevier: Amsterdam, 2005; pp. 1167-1189.
– reference: R. B. Gerber, D. Shemesh, M. E. Varner, J. Kalinowski, B. Hirshberg, Phys. Chem. Chem. Phys. 2014, 16, 9760.
– reference: Z. Lu, W. Nowak, G. Lee, P. E. Marszalek, W. Yang, J. Am. Chem. Soc. 2004, 126, 9033.
– reference: S. Irle, A. J. Page, B. Saha, Y. Wang, K. R. S. Chandrakumar, Y. Nishimoto, H.-J. Qian, K. Morokuma, In Practical Aspects of Computational Chemistry II, J. Leszczynski, M. K. Shukla, Eds.; Springer: Dordrecht, 2012; pp. 103-172.
– reference: F. L. Gu, B. Kirtman, Y. Aoki, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 175-198.
– reference: M. Katouda, M. Kobayashi, H. Nakai, S. Nagase, J. Comput. Chem. 2011, 32, 2756.
– reference: A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Srivastava, Comput. Mater. Sci. 2007, 38, 642.
– reference: M. Arita, S. Arapan, D. R. Bowler, T. Miyazaki, J. Adv. Simul. Sci. Eng. 2014, 1, 87.
– reference: H. A. Witek, S. Irle, K. Morokuma, J. Chem. Phys. 2004, 121, 5163.
– reference: H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 2007, 111, 5685.
– reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2009, 131, 114108.
– reference: M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931.
– reference: D. G. Fedorov, K. Kitaura, The Fragment Molecular Orbital Method; CRC Press: Boca Raton, 2009.
– reference: F. H. Wallrapp, V. Guallar, WIREs Comput. Mol. Sci. 2011, 1, 315.
– reference: L. Jin, K. Liu, Y. Aoki, J. Mol. Model. 2015, 21, 117.
– reference: A. J. Page, F. Ding, S. Irle, K. Morokuma, Rep. Prog. Phys. 2015, 78, 036501.
– reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed.; Cambridge University Press: Cambridge, 1992.
– reference: S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085.
– reference: Y. Nishimoto, D. G. Fedorov, S. Irle, J. Chem. Theory Comput. 2014, 10, 4801.
– reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2013, 138, 044102.
– reference: M. Keçeli, H. Zhang, P. Zapol, D. A. Dixon, A. F. Wagner, J. Comput. Chem. 2016, 37, 448.
– reference: S. J. Stuart, A. B. Tutein, J. A. Harrison, J. Chem. Phys 2000, 112, 6472.
– reference: M. A. Collins, J. Chem. Phys. 2014, 141, 094108.
– reference: M. Kobayashi, T. Yoshikawa, H. Nakai, Chem. Phys. Lett. 2010, 500, 172.
– reference: T. J. Giese, H. Chen, T. Dissanayake, G. M. Giambaşu, H. Heldenbrand, M. Huang, E. R. Kuechler, T.-S. Lee, M. T. Panteva, B. K. Radak, D. M. York, J. Chem. Theory Comput. 2013, 9, 1417.
– reference: D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503.
– reference: D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.
– reference: T. Yoshikawa, H. Nakai, J. Comput. Chem. 2015, 36, 164.
– reference: D. W. Brenner, Phys. Rev. B 1990, 42, 9458.
– reference: H. A. Witek, K. Morokuma, J. Comput. Chem. 2004, 25, 1858.
– reference: V. Ganesh, R. K. Dongare, P. Balanarayan, S. R. Gadre, J. Chem. Phys. 2006, 125, 104109.
– reference: T. Yoshikawa, H. Nakai, Theor. Chem. Acc. 2015, 134, 53.
– reference: H. A. Witek, K. Morokuma, A. Stradomska, J. Chem. Phys. 2004, 121, 5171.
– reference: J. Tersoff, Phys. Rev. B 1988, 37, 6991.
– reference: V. Deev, M. A. Collins, J. Chem. Phys. 2005, 122, 154102.
– reference: H. Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, W. Yang, Proteins 2001, 44, 484.
– reference: A. P. Rahalkar, S. D. Yeole, V. Ganesh, S. R. Gadre, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G.Papadopoulos, P. G.Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 199-225.
– reference: K. Chenoweth, A. C. T. van Duin, W. A. Goddard, III, J. Phys. Chem. A 2008, 112, 1040.
– reference: M. Kobayashi, T. Taketsugu, Theor. Chem. Acc. 2015, 134, 107.
– reference: H. A. Witek, K. Morokuma, A. Stradomska, J. Theor. Comput. Chem. 2005, 4, 639.
– reference: M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr., J. Comput. Chem. 1993, 14, 1347.
– reference: T. Yoshikawa, M. Kobayashi, H. Nakai, Int. J. Quantum Chem. 2013, 113, 218.
– reference: A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 2001, 105, 9396.
– reference: M. Kobayashi, H. Nakai, In Linear-Scaling Techniques in Computational Chemistry and Physics, R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski, Eds.; Springer: Dordrecht, 2011; pp. 97-127.
– reference: M. Kobayashi, H. Nakai, J. Chem. Phys. 2008, 129, 044103.
– reference: T. Miyazaki, D. R. Bowler, R. Choudhury, M. J. Gillan, J. Chem. Phys. 2004, 121, 6186.
– reference: X.-P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891.
– reference: M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260.
– reference: T. Akama, M. Kobayashi, H. Nakai, J. Comput. Chem. 2007, 28, 2003.
– reference: A. Scemama, N. Renon, M. Rapacioli, J. Chem. Theory Comput. 2014, 10, 2344.
– reference: S. Li, W. Li, J. Ma, Acc. Chem. Res. 2014, 47, 2712.
– reference: T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 2011, 134, 124115.
– reference: M. Kobayashi, Y. Imamura, H. Nakai, J. Chem. Phys. 2007, 127, 074103.
– reference: W. Yang, T.-S. Lee, J. Chem. Phys. 1995, 103, 5674.
– reference: M. Kobayashi, H. Nakai, Phys. Chem. Chem. Phys. 2012, 14, 7629.
– volume: 58
  start-page: 7260
  year: 1998
  publication-title: Phys. Rev. B
– year: 2009
– volume: 112
  start-page: 6472
  year: 2000
  publication-title: J. Chem. Phys
– volume: 130
  start-page: 411
  year: 2011
  publication-title: Theor. Chem. Acc.
– volume: 134
  start-page: 107
  year: 2015
  publication-title: Theor. Chem. Acc.
– volume: 25
  start-page: 1858
  year: 2004
  publication-title: J. Comput. Chem.
– volume: 21
  start-page: 117
  year: 2015
  publication-title: J. Mol. Model.
– volume: 1
  start-page: 87
  year: 2014
  publication-title: J. Adv. Simul. Sci. Eng.
– volume: 75
  start-page: 036503
  year: 2012
  publication-title: Rep. Prog. Phys.
– volume: 500
  start-page: 172
  year: 2010
  publication-title: Chem. Phys. Lett
– volume: 121
  start-page: 6186
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: 642
  year: 2007
  publication-title: Comput. Mater. Sci.
– volume: 134
  start-page: 124115
  year: 2011
  publication-title: J. Chem. Phys.
– start-page: 103
  year: 2012
  end-page: 172
– volume: 126
  start-page: 9033
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 9760
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 141
  start-page: 094108
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 2003
  year: 2007
  publication-title: J. Comput. Chem.
– volume: 44
  start-page: 484
  year: 2001
  publication-title: Proteins
– volume: 7
  start-page: 931
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 138
  start-page: 044102
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 5171
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 074103
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 639
  year: 2005
  publication-title: J. Theor. Comput. Chem.
– volume: 47
  start-page: 10891
  year: 1993
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 1347
  year: 1993
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 2344
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 1
  start-page: 315
  year: 2011
  publication-title: WIREs Comput. Mol. Sci.
– volume: 131
  start-page: 114108
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 327
  year: 2012
  publication-title: WIREs Comput. Mol. Sci.
– volume: 37
  start-page: 448
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 4801
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 105
  start-page: 9396
  year: 2001
  publication-title: J. Phys. Chem. A
– volume: 111
  start-page: 5678
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 14
  start-page: 7629
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 1167
  year: 2005
  end-page: 1189
– volume: 111
  start-page: 5685
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 9
  start-page: 1417
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 218
  year: 2013
  publication-title: Int. J. Quantum Chem.
– volume: 32
  start-page: 2756
  year: 2011
  publication-title: J. Comput. Chem.
– volume: 134
  start-page: 53
  year: 2015
  publication-title: Theor. Chem. Acc.
– volume: 71
  start-page: 1085
  year: 1999
  publication-title: Rev. Mod. Phys.
– volume: 112
  start-page: 1040
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 103
  start-page: 5674
  year: 1995
  publication-title: J. Chem. Phys.
– year: 1992
– volume: 125
  start-page: 104109
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 78
  start-page: 036501
  year: 2015
  publication-title: Rep. Prog. Phys.
– volume: 129
  start-page: 044103
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 9458
  year: 1990
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 2712
  year: 2014
  publication-title: Acc. Chem. Res.
– start-page: 175
  year: 2011
  end-page: 198
– volume: 121
  start-page: 5163
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 154102
  year: 2005
  publication-title: J. Chem. Phys.
– start-page: 97
  year: 2011
  end-page: 127
– volume: 37
  start-page: 6991
  year: 1988
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 074207
  year: 2010
  publication-title: J. Phys.: Condens. Matter
– start-page: 199
  year: 2011
  end-page: 225
– volume: 36
  start-page: 164
  year: 2015
  publication-title: J. Comput. Chem
– volume: 134
  start-page: 034105
  year: 2011
  publication-title: J. Chem. Phys.
– start-page: 3
  year: 2012
  end-page: 24
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevB.47.10891
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevB.58.7260
– ident: e_1_2_8_38_1
  doi: 10.1007/s00214-015-1710-y
– ident: e_1_2_8_16_1
  doi: 10.1088/0034-4885/75/3/036503
– ident: e_1_2_8_8_1
  doi: 10.1002/wcms.27
– ident: e_1_2_8_24_1
  doi: 10.1007/978-90-481-2853-2_9
– volume: 21
  start-page: 117
  year: 2015
  ident: e_1_2_8_25_1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2666-5
– ident: e_1_2_8_37_1
  doi: 10.1063/1.4776228
– ident: e_1_2_8_47_1
  doi: 10.1021/ct500115v
– ident: e_1_2_8_9_1
  doi: 10.1002/wcms.85
– ident: e_1_2_8_21_1
  doi: 10.1063/1.3568010
– ident: e_1_2_8_49_1
  doi: 10.1002/jcc.24254
– ident: e_1_2_8_29_1
  doi: 10.1063/1.470549
– ident: e_1_2_8_28_1
  doi: 10.1021/ar500038z
– ident: e_1_2_8_42_1
  doi: 10.1021/jp070308d
– ident: e_1_2_8_23_1
  doi: 10.1063/1.2339019
– ident: e_1_2_8_48_1
  doi: 10.1021/ct500489d
– ident: e_1_2_8_57_1
  doi: 10.1021/jp070186p
– ident: e_1_2_8_55_1
  doi: 10.1016/B978-044451719-7/50084-6
– ident: e_1_2_8_39_1
  doi: 10.1063/1.2956490
– ident: e_1_2_8_53_1
  doi: 10.1021/ct3010134
– ident: e_1_2_8_26_1
  doi: 10.1063/1.1879792
– ident: e_1_2_8_30_1
  doi: 10.1007/978-90-481-2853-2_5
– ident: e_1_2_8_6_1
  doi: 10.1021/jp709896w
– ident: e_1_2_8_13_1
  doi: 10.1007/978-94-007-0923-2_5
– ident: e_1_2_8_35_1
  doi: 10.1063/1.2761878
– ident: e_1_2_8_50_1
  doi: 10.1002/jcc.21855
– ident: e_1_2_8_52_1
  doi: 10.1063/1.3524337
– ident: e_1_2_8_58_1
  doi: 10.1063/1.1775786
– ident: e_1_2_8_61_1
  doi: 10.1142/S0219633605001763
– ident: e_1_2_8_18_1
  doi: 10.1063/1.1787832
– ident: e_1_2_8_15_1
  doi: 10.1103/RevModPhys.71.1085
– ident: e_1_2_8_14_1
  doi: 10.1088/0034-4885/78/3/036501
– ident: e_1_2_8_46_1
  doi: 10.15748/jasse.1.87
– ident: e_1_2_8_20_1
  doi: 10.1201/9781420078497-3
– ident: e_1_2_8_45_1
  doi: 10.1088/0953-8984/22/7/074207
– ident: e_1_2_8_22_1
  doi: 10.1007/978-90-481-2853-2_10
– ident: e_1_2_8_27_1
  doi: 10.1063/1.4894185
– ident: e_1_2_8_4_1
  doi: 10.1063/1.481208
– ident: e_1_2_8_7_1
  doi: 10.1016/j.commatsci.2006.04.012
– ident: e_1_2_8_44_1
  doi: 10.1021/ja031940x
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevB.42.9458
– ident: e_1_2_8_60_1
  doi: 10.1002/jcc.20112
– volume: 36
  start-page: 164
  year: 2015
  ident: e_1_2_8_34_1
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.23782
– volume: 134
  start-page: 53
  year: 2015
  ident: e_1_2_8_51_1
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-015-1650-6
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevB.37.6991
– volume-title: Numerical Recipes in Fortran 77
  year: 1992
  ident: e_1_2_8_56_1
– ident: e_1_2_8_12_1
  doi: 10.1021/ct100684s
– ident: e_1_2_8_43_1
  doi: 10.1002/prot.1114
– ident: e_1_2_8_5_1
  doi: 10.1021/jp004368u
– ident: e_1_2_8_36_1
  doi: 10.1007/s00214-011-1008-7
– ident: e_1_2_8_1_1
  doi: 10.1017/CBO9780511609633
– ident: e_1_2_8_10_1
  doi: 10.1039/C3CP55239J
– start-page: 3
  volume-title: Molecular Dynamics—Theoretical Developments and Applications in Nanotechnology and Energy
  year: 2012
  ident: e_1_2_8_19_1
– ident: e_1_2_8_40_1
  doi: 10.1063/1.3211119
– volume: 500
  start-page: 172
  year: 2010
  ident: e_1_2_8_33_1
  publication-title: Chem. Phys. Lett
  doi: 10.1016/j.cplett.2010.10.005
– ident: e_1_2_8_59_1
  doi: 10.1063/1.1775787
– ident: e_1_2_8_54_1
  doi: 10.1002/jcc.540141112
– ident: e_1_2_8_32_1
  doi: 10.1002/jcc.20707
– ident: e_1_2_8_31_1
  doi: 10.1039/c2cp40153c
– ident: e_1_2_8_41_1
  doi: 10.1002/qua.24093
SSID ssj0003564
Score 2.4843864
Snippet The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively...
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1983
SubjectTerms Chemical reactions
Computer simulation
density-functional tight-binding method
Geometry
Interpolation
linear-scaling divide-and-conquer method
massively parallel computation
Optimization algorithms
quantum mechanical molecular dynamics
Quantum theory
Title Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation
URI https://api.istex.fr/ark:/67375/WNG-3J84LX7T-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24419
https://www.ncbi.nlm.nih.gov/pubmed/27317328
https://www.proquest.com/docview/1803180765
https://www.proquest.com/docview/1800401248
Volume 37
WOSCitedRecordID wos000379744200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELWWFgleuF8Cy8oghHjYsG3iJDY8oS4FraoKoa7om-XYLhSSdEkaxL7xCfwR_8KXMONc0EqLhMRLFCVj2cmMx2d8OUPIY4i4xlow7QepVT7jgvmCW-0nSnCluBIqdTyzs2Q-58uleLtDXnRnYRp-iH7CDXuG89fYwVVaHfwhDf2k9TMYm5DycxiA3bIBGR6-mx7PekccRg17FIAYn8fRuCMWGgUHfeEzw9EQ_-y387DmWejqxp7p1f9q9TVypYWc9GVjI9fJji1ukEuTLtPbTfJzAQq19AQTEJUVBRhLcYulxbkG-qWGf1_nNLd4RhhVSvMupS41TT77ilbrvM0DVtHNin6sP1jakERXz-khHvmyv77_UIWBK0Tg8NnlPjW4eX57Co9wdG0mJekWZwvgUbp25232KRSiOUB8cMvZKUWq8iyzGdUuHYWr8hY5nr5aTN74bWIHX4diLHwuIsNswHgaasNjE-hRyNPIGgPxWmKSeCTSWIEnUmxlgyBJjF6FysSMKxamWoW3yaDYFPYuoQHE2NoyXA3mLDIQkEG0H1uNNPyhZcIjTzv9St2ynmPyjUw2fM2BBI1IpxGPPOpFTxqqj_OEnjgj6SVU-Rn3xiWRfD9_LcMjzmbLZCFHHtntrEi2bqGSY44-FBoYeeRh_xq0jas0qrCb2smAYwXYxT1yp7G-vjLAmmNkV4Kvckb293bKo8nE3dz7d9H75DLAwdhtb4x2yWBb1vYBuai_btdVuUcuJEu-1_ax37ELL8U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZWLdJy4f-nsIBBCHHYsE3iJDbigrqUZSkVQl3Rm-XYLhSSdkkaxN54BN6Id-FJmHF-0EqLhMQlipKJ4mTG42_G9jeEPISIy9eCaS9IrfIYF8wT3GovUYIrxZVQqeOZnSTTKZ_Pxdst8qzdC1PzQ3QJN-wZzl9jB8eE9N4f1tBPWj-BwQk5P_sMzCjqkf7-u_HRpPPEYVTTRwGK8Xgc-S2z0DDY6x4-NR718dd-OwtsnsaubvAZX_y_Zl8iFxrQSZ_XVnKZbNnVFbI9amu9XSU_Z6BSS4-xBFFRUgCyFBdZWsw20C8V_P0qp7nFXcKoVJq3RXWpqSval7Rc5k0lsJKuF_Rj9cHSmia6fEr3cdOX_fX9h1oZOEIMDt9d7FKDy-c3J3AJx9c6LUk3mC-AS-nS7bjZpfAQzQHkg2POTiiSlWeZzah2BSncK6-Ro_GL2ejAa0o7eDoUvvC4iAyzAeNpqA2PTaCHIU8jawxEbIlJ4qFIYwW-SLGFDYIkMXoRKhMzrliYahVeJ73VemVvEhpAlK0tw_lgziIDIRnE-7HVSMQfWiYG5HGrYKkb3nMsv5HJmrE5kKAR6TQyIA860eOa7OMsoUfOSjoJVXzG1XFJJN9PX8rwkLPJPJnJ4YDstGYkG8dQSp-jF4UGRgNyv7sN2sZ5GrWy68rJgGsF4MUH5EZtft3LAG36yK8EX-Ws7O_tlIejkTu59e-i98j2wezNRE5eTV_fJucBHMZusWO0Q3qborJ3yDn9dbMsi7tNV_sNkscyzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELVWWwS8cL8UFjAIIR42bJM4iY14QS0Flqpaoa62b5Zju7uFNC1Ji9g3PoE_4l_4EmacC1ppkZB4iaJkLDuZ8fiML2cIeQoRl68F016QWuUxLpgnuNVeogRXiiuhUsczO0rGYz6dioMt8qo5C1PxQ7QTbtgznL_GDm5XZrb3hzX0k9YvYHBCzs8Oi0QM3bIz-Dg8HLWeOIwq-ihAMR6PI79hFuoFe23hM-NRB3_tt_PA5lns6gaf4dX_a_Y1cqUGnfR1ZSXXyZbNb5BL_SbX203ycwIqtXSFKYiKkgKQpbjJ0uJsA_2ygb-_WdCFxVPCqFS6aJLqUlNltC9pOV_UmcBKupzRk82xpRVNdPmSDvDQl_31_YfKDVwhBofvLnapwe3z61N4hONrNS1J1zhfAI_SuTtxs0uhEF0AyAfHnJ1SJCvPMptR7RJSuCpvkcPhm0n_nVendvB0KHzhcREZZgPG01AbHptA90KeRtYYiNgSk8Q9kcYKfJFiMxsESWL0LFQmZlyxMNUqvE2282Vu7xIaQJStLcP1YM4iAyEZxPux1UjEH1omuuR5o2Cpa95zTL-RyYqxOZCgEek00iVPWtFVRfZxntAzZyWthCo-4-64JJJH47cy3OdsNE0mstclO40ZydoxlNLn6EWhgVGXPG5fg7ZxnUbldrlxMuBaAXjxLrlTmV9bGaBNH_mV4Kuclf29nXK_33c39_5d9BG5eDAYytH78Yf75DJgw9jtdYx2yPa62NgH5IL-up6XxcO6p_0G1v4ySA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+pillars+for+achieving+quantum+mechanical+molecular+dynamics+simulations+of+huge+systems%3A+Divide%E2%80%90and%E2%80%90conquer%2C+density%E2%80%90functional+tight%E2%80%90binding%2C+and+massively+parallel+computation&rft.jtitle=Journal+of+computational+chemistry&rft.au=Nishizawa%2C+Hiroaki&rft.au=Nishimura%2C+Yoshifumi&rft.au=Kobayashi%2C+Masato&rft.au=Irle%2C+Stephan&rft.date=2016-08-05&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=37&rft.issue=21&rft.spage=1983&rft.epage=1992&rft_id=info:doi/10.1002%2Fjcc.24419&rft.externalDBID=10.1002%252Fjcc.24419&rft.externalDocID=JCC24419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon