Chaotic Salp Swarm Optimization-Based Energy-Aware VMP Technique for Cloud Data Centers
The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed...
Saved in:
| Published in: | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 9 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Hindawi
2022
John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 1687-5265, 1687-5273, 1687-5273 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed in large data middles to reduce energy consumption. The VMP is an NP-hard subject with infeasible optimum explanations even for tiny data middles, and it is dealt with using the Metaheuristic Optimization Algorithm, which is an experiential approach to optimization. With this in mind, this study introduces a novel energy-aware VMP technique for CDCs that is founded on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA) and is enhanced for energy efficiency (EAVMP-CSSA). The EAVMP-CSSA technique attempts to reduce CDC energy ingesting by dropping the quantity of active servers supporting virtual machines. The recommended EAVMP-CSSA strategy also aims to balance the resource operation of active servers (i.e., CPU, RAM, and Bandwidth), hence reducing waste and increasing efficiency. Furthermore, by combining the ideas of chaotic maps with the standard Salp Swarm Optimization Algorithm (SSA), the CSSA is intended to improve overall performance and reduce computational costs (SSA). A comprehensive range of experimental analyses are performed to ensure that the EAVMP-CSSA technique performs better, and the findings are compared to current VMP techniques. The EAVMP-CSSA approach achieves an effective outcome with a maximum service rate of 98.12%, whereas the Random, FFD, ACO, and AP-ACO procedures achieve a minimum service rate of 74.40%, 78.80%, 90.70%, and 96.31%, respectively. The experimental results demonstrate that the EAVMP-CSSA approach outperforms other assessment metrics. |
|---|---|
| AbstractList | The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed in large data middles to reduce energy consumption. The VMP is an NP-hard subject with infeasible optimum explanations even for tiny data middles, and it is dealt with using the Metaheuristic Optimization Algorithm, which is an experiential approach to optimization. With this in mind, this study introduces a novel energy-aware VMP technique for CDCs that is founded on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA) and is enhanced for energy efficiency (EAVMP-CSSA). The EAVMP-CSSA technique attempts to reduce CDC energy ingesting by dropping the quantity of active servers supporting virtual machines. The recommended EAVMP-CSSA strategy also aims to balance the resource operation of active servers (i.e., CPU, RAM, and Bandwidth), hence reducing waste and increasing efficiency. Furthermore, by combining the ideas of chaotic maps with the standard Salp Swarm Optimization Algorithm (SSA), the CSSA is intended to improve overall performance and reduce computational costs (SSA). A comprehensive range of experimental analyses are performed to ensure that the EAVMP-CSSA technique performs better, and the findings are compared to current VMP techniques. The EAVMP-CSSA approach achieves an effective outcome with a maximum service rate of 98.12%, whereas the Random, FFD, ACO, and AP-ACO procedures achieve a minimum service rate of 74.40%, 78.80%, 90.70%, and 96.31%, respectively. The experimental results demonstrate that the EAVMP-CSSA approach outperforms other assessment metrics. The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed in large data middles to reduce energy consumption. The VMP is an NP-hard subject with infeasible optimum explanations even for tiny data middles, and it is dealt with using the Metaheuristic Optimization Algorithm, which is an experiential approach to optimization. With this in mind, this study introduces a novel energy-aware VMP technique for CDCs that is founded on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA) and is enhanced for energy efficiency (EAVMP-CSSA). The EAVMP-CSSA technique attempts to reduce CDC energy ingesting by dropping the quantity of active servers supporting virtual machines. The recommended EAVMP-CSSA strategy also aims to balance the resource operation of active servers (i.e., CPU, RAM, and Bandwidth), hence reducing waste and increasing efficiency. Furthermore, by combining the ideas of chaotic maps with the standard Salp Swarm Optimization Algorithm (SSA), the CSSA is intended to improve overall performance and reduce computational costs (SSA). A comprehensive range of experimental analyses are performed to ensure that the EAVMP-CSSA technique performs better, and the findings are compared to current VMP techniques. The EAVMP-CSSA approach achieves an effective outcome with a maximum service rate of 98.12%, whereas the Random, FFD, ACO, and AP-ACO procedures achieve a minimum service rate of 74.40%, 78.80%, 90.70%, and 96.31%, respectively. The experimental results demonstrate that the EAVMP-CSSA approach outperforms other assessment metrics.The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed in large data middles to reduce energy consumption. The VMP is an NP-hard subject with infeasible optimum explanations even for tiny data middles, and it is dealt with using the Metaheuristic Optimization Algorithm, which is an experiential approach to optimization. With this in mind, this study introduces a novel energy-aware VMP technique for CDCs that is founded on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA) and is enhanced for energy efficiency (EAVMP-CSSA). The EAVMP-CSSA technique attempts to reduce CDC energy ingesting by dropping the quantity of active servers supporting virtual machines. The recommended EAVMP-CSSA strategy also aims to balance the resource operation of active servers (i.e., CPU, RAM, and Bandwidth), hence reducing waste and increasing efficiency. Furthermore, by combining the ideas of chaotic maps with the standard Salp Swarm Optimization Algorithm (SSA), the CSSA is intended to improve overall performance and reduce computational costs (SSA). A comprehensive range of experimental analyses are performed to ensure that the EAVMP-CSSA technique performs better, and the findings are compared to current VMP techniques. The EAVMP-CSSA approach achieves an effective outcome with a maximum service rate of 98.12%, whereas the Random, FFD, ACO, and AP-ACO procedures achieve a minimum service rate of 74.40%, 78.80%, 90.70%, and 96.31%, respectively. The experimental results demonstrate that the EAVMP-CSSA approach outperforms other assessment metrics. |
| Audience | Academic |
| Author | Velmurugan, S. Prashanthi, Vempaty Neelakandan, S. Alhassan Alolo, Abdul-Rasheed Akeji Harshavardhan, A. Parthiban, S. |
| AuthorAffiliation | 3 Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai, India 1 Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India 5 Department of Computer Science and Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India 2 Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India 4 Department of Marketing and Corporate Strategy, Tamale Technical University, Tamale, Ghana |
| AuthorAffiliation_xml | – name: 3 Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai, India – name: 2 Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India – name: 5 Department of Computer Science and Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India – name: 1 Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India – name: 4 Department of Marketing and Corporate Strategy, Tamale Technical University, Tamale, Ghana |
| Author_xml | – sequence: 1 givenname: S. surname: Parthiban fullname: Parthiban, S. organization: Department of Computer Science and EngineeringSaveetha School of EngineeringSaveetha Institute of Medical and Technical SciencesChennaiIndiasaveetha.com – sequence: 2 givenname: A. surname: Harshavardhan fullname: Harshavardhan, A. organization: Department of Computer Science and EngineeringVNR Vignana Jyothi Institute of Engineering and TechnologyHyderabadIndiavnrvjiet.ac.in – sequence: 3 givenname: S. surname: Neelakandan fullname: Neelakandan, S. organization: Department of Computer Science and EngineeringR.M.K. Engineering CollegeChennaiIndiarmkec.ac.in – sequence: 4 givenname: Vempaty surname: Prashanthi fullname: Prashanthi, Vempaty organization: Department of Computer Science and EngineeringVNR Vignana Jyothi Institute of Engineering and TechnologyHyderabadIndiavnrvjiet.ac.in – sequence: 5 givenname: Abdul-Rasheed Akeji orcidid: 0000-0001-6358-0063 surname: Alhassan Alolo fullname: Alhassan Alolo, Abdul-Rasheed Akeji organization: Department of Marketing and Corporate StrategyTamale Technical UniversityTamaleGhanatatu.edu.gh – sequence: 6 givenname: S. surname: Velmurugan fullname: Velmurugan, S. organization: Department of Computer Science and EngineeringVel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering CollegeChennaiIndiavelmultimedia.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35602619$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kdtrFDEUh4NU7EXffJaAL4KOzWWSTF6EdawXqFRo1ceQzSS7KTPJmsxY6l9vxt1WLSh5SOB8-c45_A7BXojBAvAYo5cYM3ZMECHHNS1H8HvgAPNGVIwIunf75mwfHOZ8iRATDJEHYJ8yjgjH8gB8bdc6jt7Ac91v4PmVTgM824x-8D_06GOoXutsO3gSbFpdV4tSt_DLx0_wwpp18N8mC11MsO3j1ME3etSwtWG0KT8E953us320u4_A57cnF-376vTs3Yd2cVoZKjGvOrYkzDSYidrUHRbIYNE5i5cIOSdchzExjaylZNZYJx2RjWPL2krqENW1pUfg1da7mZaD7UzpnnSvNskPOl2rqL36uxL8Wq3idyUxlkKQIni2E6RY1smjGnw2tu91sHHKinDekIJSXtCnd9DLOKVQ1pspwQlHjPymVrq3ygcXS18zS9VCoJpT0TQz9eTPuW8HvkmmAGQLmBRzTtYp48dfkRSd7xVGao5fzfGrXfzl04s7n268_8Cfb_G1D52-8v-nfwK-ULqL |
| CitedBy_id | crossref_primary_10_1016_j_seta_2023_103112 crossref_primary_10_1016_j_seta_2022_102696 crossref_primary_10_3390_su14137712 crossref_primary_10_3390_electronics11244178 crossref_primary_10_1155_2022_1703696 crossref_primary_10_1186_s13677_023_00442_6 crossref_primary_10_1186_s13677_023_00446_2 crossref_primary_10_1186_s13677_023_00401_1 crossref_primary_10_3390_app13010468 crossref_primary_10_1111_exsy_13362 crossref_primary_10_1038_s41598_025_09727_z crossref_primary_10_3390_su15107845 crossref_primary_10_1016_j_heliyon_2024_e37912 crossref_primary_10_1007_s41870_024_02109_0 |
| Cites_doi | 10.1007/s11036-020-01624-1 10.32604/iasc.2022.022209 10.1016/j.asej.2017.11.006 10.1016/j.compeleceng.2020.106866 10.1016/j.ijleo.2022.168789 10.1016/j.jpdc.2019.12.014 10.1109/TCC.2019.2911679 10.1002/dac.4747 10.1109/access.2019.2911914 10.4018/IJISP.2017040101 10.1016/j.eswa.2018.11.029 10.1007/978-3-030-15357-1_34 10.1016/j.infsof.2020.106390 10.1016/j.eswa.2020.113306 10.1109/sose.2015.30 10.1007/s10586-020-03187-y 10.1007/s12652-020-01937-9 10.3390/sym13020317 10.1016/j.ijleo.2021.168545 10.1109/ACCESS.2020.2970576 10.1016/j.jestch.2018.12.015 10.1007/s00779-018-1111-z 10.3390/sym13020268 10.1016/j.seta.2022.102244 10.1007/s00500-021-05896-x 10.1016/j.envres.2021.112574 10.1109/ICETECT.2011.5760293 10.1007/s10586-018-1769-z 10.1016/j.future.2020.08.036 10.1177/1063293x211031485 10.1109/ICCPEIC.2016.7557196 10.1186/s13673-019-0174-9 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 S. Parthiban et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 S. Parthiban et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 S. Parthiban et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 S. Parthiban et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 S. Parthiban et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 S. Parthiban et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM |
| DOI | 10.1155/2022/4343476 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Middle East & Africa Database (ProQuest) ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Sharma, Kapil |
| Editor_xml | – sequence: 1 givenname: Kapil surname: Sharma fullname: Sharma, Kapil |
| EndPage | 9 |
| ExternalDocumentID | PMC9119772 A704637882 35602619 10_1155_2022_4343476 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB 2UF C1A CNMHZ CVCKV EJD IL9 NPM UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c3916-d5b25c81574c4d170c17dfe1b00ff7fd112c894995ecef9f298f5b4e93f03a4e3 |
| IEDL.DBID | M7P |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Tue Nov 04 01:59:14 EST 2025 Sat Sep 27 20:32:51 EDT 2025 Sat Nov 29 14:24:57 EST 2025 Tue Nov 11 10:56:20 EST 2025 Wed Feb 19 02:24:41 EST 2025 Sat Nov 29 02:55:53 EST 2025 Tue Nov 18 22:33:49 EST 2025 Sun Jun 02 19:22:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 S. Parthiban et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3916-d5b25c81574c4d170c17dfe1b00ff7fd112c894995ecef9f298f5b4e93f03a4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Kapil Sharma |
| ORCID | 0000-0001-6358-0063 |
| OpenAccessLink | https://www.proquest.com/docview/2667626052?pq-origsite=%requestingapplication% |
| PMID | 35602619 |
| PQID | 2667626052 |
| PQPubID | 237303 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119772 proquest_miscellaneous_2668219736 proquest_journals_2667626052 gale_infotracmisc_A704637882 pubmed_primary_35602619 crossref_citationtrail_10_1155_2022_4343476 crossref_primary_10_1155_2022_4343476 hindawi_primary_10_1155_2022_4343476 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 26 27 28 29 D. Paulraj (25) 2020; 18 30 31 10 32 11 33 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – volume: 18 start-page: 1 issue: 4 year: 2020 ident: 25 article-title: A gradient boosted decision tree-based sentiment classification of twitter data publication-title: International Journal of Wavelets, Multiresolution and Information Processing – ident: 6 doi: 10.1007/s11036-020-01624-1 – ident: 26 doi: 10.32604/iasc.2022.022209 – ident: 1 doi: 10.1016/j.asej.2017.11.006 – ident: 20 doi: 10.1016/j.compeleceng.2020.106866 – ident: 30 doi: 10.1016/j.ijleo.2022.168789 – ident: 2 doi: 10.1016/j.jpdc.2019.12.014 – ident: 4 doi: 10.1109/TCC.2019.2911679 – ident: 12 doi: 10.1002/dac.4747 – ident: 17 doi: 10.1109/access.2019.2911914 – ident: 22 doi: 10.4018/IJISP.2017040101 – ident: 9 doi: 10.1016/j.eswa.2018.11.029 – ident: 23 doi: 10.1007/978-3-030-15357-1_34 – ident: 18 doi: 10.1016/j.infsof.2020.106390 – ident: 19 doi: 10.1016/j.eswa.2020.113306 – ident: 5 doi: 10.1109/sose.2015.30 – ident: 14 doi: 10.1007/s10586-020-03187-y – ident: 10 doi: 10.1007/s12652-020-01937-9 – ident: 11 doi: 10.3390/sym13020317 – ident: 32 doi: 10.1016/j.ijleo.2021.168545 – ident: 24 doi: 10.1109/ACCESS.2020.2970576 – ident: 21 doi: 10.1016/j.jestch.2018.12.015 – ident: 8 doi: 10.1007/s00779-018-1111-z – ident: 33 doi: 10.3390/sym13020268 – ident: 29 doi: 10.1016/j.seta.2022.102244 – ident: 7 doi: 10.1007/s00500-021-05896-x – ident: 31 doi: 10.1016/j.envres.2021.112574 – ident: 27 doi: 10.1109/ICETECT.2011.5760293 – ident: 15 doi: 10.1007/s10586-018-1769-z – ident: 13 doi: 10.1016/j.future.2020.08.036 – ident: 28 doi: 10.1177/1063293x211031485 – ident: 3 doi: 10.1109/ICCPEIC.2016.7557196 – ident: 16 doi: 10.1186/s13673-019-0174-9 |
| SSID | ssj0057502 |
| Score | 2.3676643 |
| Snippet | The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce... |
| SourceID | pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis Ant colony optimization Bandwidths Cloud computing Computer applications Computer centers Cost analysis Data centers Digital Age Energy Energy conservation Energy consumption Energy efficiency Energy management Heuristic methods India Mathematical optimization Methods Optimization Servers Virtual computer systems Virtual environments |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9owFLdGtUm7VGu7rWysciXayxSNxDF2jowWcSlDhW7cIuPYAgkC4mPV_vu95zho0E3rMfKLHeX5ffzs558JqQtpxhLwfwCxUgaxNeAHpbAB07hhyHSkjXKXTYheT45GSd-TJK2fbuFDtEN4Hn3BA5CxaFZIRXKs3LrvjkqHCwlHUVrYBHtBtveyvv3g3b3I4_3vqwki38fp3_LLwzLJP-JO5w059gkjbRUaPiEvTH5Kzlo5gOX5L3pNXQmnWxs_Iz_aE7UAOTpQsyUdPKrVnH4DnzD3hy2DrxCzMnrrzvsFLWg39Ptdnw5LIlcKKSxtzxbbjN6ojaK49gv54Vvy0LkdtruBvzkh0HiQNsj4OOJahlzEOs5C0dChyKwJwcasFTaDJEtLpKXhRhub2CiRlo9jkzDbYCo27B05yhe5OSc0kxxAjlY2MiYO8b5Jxm1oGTimuKGaUZV8Lv9qqj2tON5uMUsdvOA8RR2kXgdVcrWTXhZ0Gv-Qq6GCUrQy6E3DnNdpSyC9GWB2GLTuFfe_Xkqtpt4012mEVb2I4qCXy10zDoDlZrlZbJ2MBFcuGHTxvpgEu4EYbzrcWiVib3rsBJCwe78ln04ccXeCe7Yi-vC8r_9IXuNjsd5TI0eb1dZ8Ii_1z810vbpwJvAb4Fv8AA priority: 102 providerName: Hindawi Publishing |
| Title | Chaotic Salp Swarm Optimization-Based Energy-Aware VMP Technique for Cloud Data Centers |
| URI | https://dx.doi.org/10.1155/2022/4343476 https://www.ncbi.nlm.nih.gov/pubmed/35602619 https://www.proquest.com/docview/2667626052 https://www.proquest.com/docview/2668219736 https://pubmed.ncbi.nlm.nih.gov/PMC9119772 |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: M7P dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database (ProQuest) customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5265 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIv42PACqMy0uAFWWucuHaeUFc6DaGVaB3Q8RKljq1WapPSDyb-e-4cp2yIjwdeLEU-OYnO9-nz7wg5lMqMFMT_DGylYpE1oAeVtCzUeGAYaq5N5ppNyH5fDYdx4hNuS19WWetEp6jzUmOO_IhjMSY63_zN_CvDrlF4uupbaGyRHURJ4K50L6k1MXgiVc1hGwQJYeDrwnchMObnR3irMkK0kWsmySvmO2MMia8mv3M8f62fvGaQTu7976_cJ7veFaWdau88ILdM8ZDsdQoIw2ff6SvqikNd1n2PfO6OsxLo6CCbzungKlvM6AfQNjN_jZMdgzXMac_dJGQdmDf001lCL2qIWArOMe1Oy3VO32arjGJWGTzPR-TjSe-ie8p8Twam8Youy8WIC60CISMd5YFs6UDm1gQgvdZKm4P7phUC3gijjY0tj5UVo8jEoW2FWWTCx2S7KAuzT2iuBIRPOrPcmCjATpahsIENQeVFrazNG-R1zZZUe8By7JsxTV3gIkSKTEw9Exvk5YZ6XgF1_IHuADmcovzCahqkSacdicBpEqKNBjn0nP_XKjVrUy_0y_QnXxvkxWYaX4CFbIUp145GgZGQISzxpNpFmxeFou0i4gaRN_bXhgChwG_OFJOxgwSP8TRY8qd__6xn5C7-RJVBOiDbq8XaPCe39bfVZLloki05lG5UTbJz3Osn5_D0XrKmkyo3DmBMxBeYT96dJZfwdH46_AHGkiXa |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB6VAoIXrnIsFDBSywuymvWuY-8DQiFt1SptqNQAfVs2XluJlOyGHET9U_xGZvYILeJ46gPPHtl7fP5mxp4DYEtp29fo_3PUlZqHziIPauV4YOjCMDDC2KRoNqG6XX12Fp2swfc6F4bCKmtOLIg6zQ2dke8ICsYk41u8m3zl1DWKblfrFholLDr2fIku2-zt4S7-320h9vd67QNedRXghpJMeSr7QhrtSxWaMPVVw_gqddZH_DmnXIoGiNFUskVaY13kRKSd7Ic2ClwjSEIb4LzX4HoYaEX7qqN4zfxo-ZQxjk3cuFR2vg60l5LOGMQOZXGGVN3kggqsFMHNAbngy-HvDN1f4zUvKMD9u__bp7sHdypTm7XKvXEf1mz2ADZaWTLPx-fsNSuCX4tbhQ343B4kOcqx02Q0YafLZDpmH5BNx1WaKn-P2j5le0WmJG_huGWfjk9Yry6By9D4Z-1RvkjZbjJPGJ2ao2X9ED5eySs-gvUsz-wTYKmW6B6axAlrQ586dQbS-S5ASg8bSVN48KaGQWyqguzUF2QUF46ZlDGBJq5A48H2SnpSFiL5g9wmISomfsLZDLKFiVuKCsMp9KY82KqQ9q9ZaijFFanN4p848uDVapgWoEC9zOaLQkajElQBTvG4RO1qoUA2C4_fA3UJzysBKnV-eSQbDoqS5xHddivx9O-P9RJuHfSOj-Kjw27nGdymFypPyzZhfT5d2Odww3ybD2fTF8W-ZfDlqtH-Az6XeeM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUXXqUQKLBILRdkJV57s-sDQiFpRFUIkVqg4mI2610lUmKHPIj61_h1zPgRWsTj1APnHa3j-Nt57TczAHtS2YHC-N9DW6m80FnUg0o6LzB0YRgYbqzOh03IXk-dnkb9Dfhe1cIQrbLSibmiTjJDOfI6JzImOd-87kpaRL_TfTX96tEEKbpprcZpFBA5smcrDN_mLw87-K33Oe8enLTfeOWEAc9QwamXiAEXRvlChiZMfNkwvkyc9RGLzkmXoDNiFLVvEdZYFzkeKScGoY0C1wh0aAPc9wpclRhjEp2wLz5XVgC9oILv2MRDTC3oK9K9EJRv4HWq6Ayp08k5c1gahetDCsdXo985vb9yN88Zw-6t__lvvA03SxectYozcwc2bHoXtlupXmSTM_ac5aTY_LZhGz61hzpDOXasx1N2vNKzCXuPWnZSlq96r9ELSNhBXkHptXDdso_v-uykao3LMChg7XG2TFhHLzSjbDp63Pfgw6W84g5spllqHwBLlMCw0WjHrQ19muAZCOe7AFV92NBNXoMXFSRiUzZqp3kh4zgP2ISICUBxCaAa7K-lp0WDkj_I7RK6YtJbuJtBLWLilqSGcRKjrBrslaj71y4VrOJS2c3jn5iqwbP1Mj2ACHypzZa5jELjKAPc4n6B4PWDAtHMMwE1kBewvRagFugXV9LRMG-FHtEtuOQP__6znsIWgjx-e9g7egQ36H2KJNoubC5mS_sYrplvi9F89iQ_wgy-XDbYfwCf5oMH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+Salp+Swarm+Optimization-Based+Energy-Aware+VMP+Technique+for+Cloud+Data+Centers&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Parthiban%2C+S&rft.au=Harshavardhan%2C+A&rft.au=Neelakandan%2C+S&rft.au=Prashanthi%2C+Vempaty&rft.date=2022&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=4343476&rft_id=info:doi/10.1155%2F2022%2F4343476&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |