Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations

We present the first graphical processing unit (GPU) coprocessor‐enabled version of the Order‐N Electronic Total Energy Package (ONETEP) code for linear‐scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational chemistry Ročník 34; číslo 28; s. 2446 - 2459
Hlavní autori: Wilkinson, Karl, Skylaris, Chris-Kriton
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishing Ltd 30.10.2013
Wiley Subscription Services, Inc
Predmet:
ISSN:0192-8651, 1096-987X, 1096-987X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present the first graphical processing unit (GPU) coprocessor‐enabled version of the Order‐N Electronic Total Energy Package (ONETEP) code for linear‐scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom‐localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive‐based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high‐performance computing platforms.Copyright © 2013 Wiley Periodicals, Inc. The Order–N Electronic Total Energy Package (ONETEP) linear‐scaling quantum chemistry code is ported on GPU coprocessorbased architectures in a manner that is highly portable, while maintaining the full functionality of the code.
AbstractList We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms. [PUBLICATION ABSTRACT]
We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms.
We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms.We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms.
We present the first graphical processing unit (GPU) coprocessor‐enabled version of the Order‐N Electronic Total Energy Package (ONETEP) code for linear‐scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom‐localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive‐based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high‐performance computing platforms.Copyright © 2013 Wiley Periodicals, Inc.
We present the first graphical processing unit (GPU) coprocessor‐enabled version of the Order‐N Electronic Total Energy Package (ONETEP) code for linear‐scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom‐localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive‐based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high‐performance computing platforms.Copyright © 2013 Wiley Periodicals, Inc. The Order–N Electronic Total Energy Package (ONETEP) linear‐scaling quantum chemistry code is ported on GPU coprocessorbased architectures in a manner that is highly portable, while maintaining the full functionality of the code.
Author Skylaris, Chris-Kriton
Wilkinson, Karl
Author_xml – sequence: 1
  givenname: Karl
  surname: Wilkinson
  fullname: Wilkinson, Karl
  organization: School of Chemistry, University of Southampton, Southampton, SO17 1BJ, Highfield, United Kingdom
– sequence: 2
  givenname: Chris-Kriton
  surname: Skylaris
  fullname: Skylaris, Chris-Kriton
  email: c.skylaris@soton.ac.uk
  organization: School of Chemistry, University of Southampton, Southampton, SO17 1BJ, Highfield, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24038140$$D View this record in MEDLINE/PubMed
BookMark eNp90c9P2zAUB3BrAkFhHPgHkKVdtkPa59hxkuMUtWxTaYtUxG6W49jMXRp3dqLBf7_0FwckdrL0_Pk-Pb13gU4a12iErgkMCUA8Wik1jCkj8AENCOQ8yrP05wkaAMnjKOMJOUcXIawAgCacnaHzmAHNCIMBelg439rmCc9n4-V4gVuHn7zc_LJK1njjndIhbL-7xrZRKYOusHKHuvNhiMkQTyZLXLpn7Dbay9a6JnxEp0bWQV8d3kv0MBkvi2_RdH77vfg6jRTNCUTaGFAJz1WZ0phmiqUZJKoCwysKNOWJ0Tw1KmfAdJUrIyuQTJaGlVzGpDL0En3e9-0n-tPp0Iq1DUrXtWy064IgjGYJT_OY9fTTG7pynW_66XaK9IjSXt0cVFeudSU23q6lfxHHhfXgyx4o70Lw2rwSAmJ7DNEfQ-yO0dvRG6tsu1tQ66Wt_5f4a2v98n5r8aMojolon7Ch1c-vCel_C57SNBGPs1sRT8j9Au7uREH_AeGzp8w
CODEN JCCHDD
CitedBy_id crossref_primary_10_1016_j_cpc_2020_107314
crossref_primary_10_1039_C4FD90024C
crossref_primary_10_1016_j_cpc_2014_09_019
crossref_primary_10_1063_5_0260892
crossref_primary_10_1063_5_0004445
crossref_primary_10_1140_epjp_s13360_023_04732_5
Cites_doi 10.1021/ct1007247
10.1063/1.1613633
10.1021/ct800526s
10.1021/ct301130u
10.1103/RevModPhys.71.1085
10.1021/ct100584w
10.1145/882262.882364
10.1109/MC.2003.1220582
10.1002/jcc.20829
10.1145/1735688.1735697
10.1021/jp0776762
10.1016/S0010-4655(01)00248-X
10.1088/0034-4885/75/3/036503
10.1002/pssb.200541328
10.1021/ct9005079
10.1002/jcc.21815
10.1002/wcms.1101
10.1002/minf.201100042
10.1109/99.660313
10.1016/j.jmgm.2010.06.010
10.1016/j.cpc.2008.12.023
10.1103/PhysRevB.47.10891
10.1016/S0010-4655(02)00461-7
10.1103/PhysRevB.66.035119
10.1021/ct700268q
10.1016/j.cpc.2012.09.022
10.1063/1.3665893
10.1063/1.3166140
10.1103/PhysRevLett.76.3168
10.1088/0953-8984/20/29/294207
10.1145/1365490.1365500
10.1021/ct900275y
10.1145/1058129.1058148
10.1021/ct9003004
10.1021/ct300526w
10.1016/j.jcp.2008.01.047
10.1021/ct100701w
10.1063/1.470117
10.1073/pnas.0505436102
10.1063/1.1839852
10.1088/0305-4470/19/11/013
10.1016/j.cpc.2012.02.017
10.1021/ct200909j
10.1021/ct9000685
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Oct 30, 2013
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Oct 30, 2013
DBID BSCLL
AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.23410
DatabaseName Istex
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2459
ExternalDocumentID 3086583351
24038140
10_1002_jcc_23410
JCC23410
ark_67375_WNG_2F1QP0MM_C
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/I006613/1
– fundername: Royal Society for a University Research Fellowship
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
RWI
RWK
WRC
AAYXX
CITATION
O8X
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3910-eff0c569cb73238c47805cd0f6d303765fe67fc9404ed9cfad0a4abf4b6a21df3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324919200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 10:51:57 EDT 2025
Fri Jul 25 19:23:47 EDT 2025
Mon Jul 21 05:56:36 EDT 2025
Sat Nov 29 02:55:47 EST 2025
Tue Nov 18 22:25:14 EST 2025
Wed Jan 22 16:26:22 EST 2025
Tue Nov 11 03:32:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords quantum chemistry
heterogeneous computing
linear scaling
graphical processing units
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3910-eff0c569cb73238c47805cd0f6d303765fe67fc9404ed9cfad0a4abf4b6a21df3
Notes Engineering and Physical Sciences Research Council - No. EP/I006613/1
ark:/67375/WNG-2F1QP0MM-C
istex:9A8C26009D2B4FB2ED4982BCA6ED853C9766F436
ArticleID:JCC23410
Royal Society for a University Research Fellowship
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24038140
PQID 1438179233
PQPubID 48816
PageCount 14
ParticipantIDs proquest_miscellaneous_1438567924
proquest_journals_1438179233
pubmed_primary_24038140
crossref_primary_10_1002_jcc_23410
crossref_citationtrail_10_1002_jcc_23410
wiley_primary_10_1002_jcc_23410_JCC23410
istex_primary_ark_67375_WNG_2F1QP0MM_C
PublicationCentury 2000
PublicationDate 2013-10-30
30 October 2013
2013-Oct-30
20131030
PublicationDateYYYYMMDD 2013-10-30
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542.
J. E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, J. Mol. Graph. Model. 2010, 29, 116.
J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342.
M. J. Harvey, G. De Fabritiis, J. Chem. Theory Comput. 2009, 5, 2371.
C. -K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, M. C. Payne, Comput. Phys. Commun. 2001,3, 315-322.
N. D. M. Hine, P. D. Haynes, A. A. Mostofi, C. -K. Skylaris, M. C. Payne, Comput. Phys. Commun. 2009, 180, 1041.
X. -P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891.
J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, K. Schulten, J. Comput. Chem. 2007, 28, 2618.
C. -K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, M. C. Payne, Phys. Rev. B 2002, 66, 035119.
I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 2619.
L. Dagum, R. Menon, IEEE Comput. Sci. Eng. 1998, 5, 46-55.
W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, J. Chem. Theory Comput. 2011, 7, 1316.
C. -K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, J. Chem. Phys. 2005, 122, 084119.
A. A. Mostofi, C. -K. Skylaris, P. D. Haynes, M. C. Payne, Comput. Phys. Commun. 2002, 147, 788.
J. Nickolls, I. Buck, M. Garland, K. Skadron, Queue 2008, 6, 40.
U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, J. D. Owens, Computer 2003, 36, 54.
K. A. Wilkinson, P. Sherwood, M. F. Guest, K. J. Naidoo, J. Comp. Chem. 2011, 32, 2313.
P. D. Haynes, C. -K. Skylaris, A. A. Mostofi, M. C. Payne, J. Phys. Condens. Matter 2008, 20, 294207
L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, A. Aspuru-Guzik, J. Phys. Chem. A 2008, 112, 2049.
M. Hutchinson, M. Widom, Comput. Phys. Commun. 2012, 183, 1422.
E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. USA 2005, 102, 11635.
S. Le Grand, A. W. Götz, R. C. Walker, Comput. Phys. Commun. 2013, 184, 374.
A. Asadchev, M. S. Gordon, J. Chem. Theory Comput. 2012, 8, 4166.
J. E. Stone, D. Gohara, G. Shi, IEEE Des. Test Comput. 2010, 12, 66.
A. A. Mostofi, P. D. Haynes, C. -K. Skylaris, M. C. Payne, J. Chem. Phys. 2003, 119, 8842.
L. Genovese, M. Ospici, T. Deutsch, J. -F. Mehaut, A. Neelov, S. Goedecker, J. Chem. Phys. 2009, 131, 034103.
I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2008, 4, 222.
A. E. DePrince, J. R. Hammond, J. Chem. Theory Comput. 2011, 7, 1287.
N. Luehr, I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2011, 2011, 949.
M. J. Harvey, G. Giupponi, G. De Fabritiis, J. Chem. Theory Comput. 2009, 5, 1632.
S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085.
S. J. Fox, C. Pittock, T. Fox, C. S. Tautermann, N. Malcolm, C. -K. Skylaris, J. Chem. Phys. 2011, 135, 224107.
C. -K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, Phys. Stat. Sol. (b) 2006, 243, 973.
K. Bhaskaran-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. J. J. van Dam, E. Apr, K. Kowalski, J. Chem. Theory Comput. 2013, 9, 1949.
W. Kohn, Phys. Rev. Lett. 1996, 76, 3168.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 1004.
D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503.
M. Woo, J. Neider, T. Davis, D. Shreiner, OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2, 3rd ed.; Addison-Wesley Longman Publishing: Boston, MA, 1999.
A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, T. L. Windus, J. Chem. Theory Comput. 2010, 6, 696.
J. A. Baker, J. D. Hirst, Mol. Inform. 2011, 30, 498.
D. Baye, P. H. Heenen, J. Phys. A Math. Gen. 1986, 19, 2041-2060.
M. J. Harvey, G. De Fabritiis, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 734.
J. Bolz, I. Farmer, E. Grinspun, P. Schröoder, ACM Trans. Graph. 2003, 22, 917.
K. Fatahalian, J. Sugerman, P. Hanrahan, In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS '04; ACM: New York, 2004; pp. 133-137.
2010; 12
2012; 183
1993; 47
2011; 135
2003; 119
2009; 180
2010
2003; 36
2011; 30
2011; 32
2008; 227
1986; 19
2008; 6
2004
2013; 184
2008; 4
2009; 131
1996; 76
2011; 7
2012; 75
2013; 9
1999
2007; 28
2011; 2011
2012; 2
2005; 122
2010; 29
2005; 102
2002; 147
2002; 66
2001; 3
1995; 103
2009; 5
2008; 20
2008; 112
1999; 71
1998; 5
2010; 6
2006; 243
2003; 22
2012; 8
e_1_2_8_28_1
Stone J. E. (e_1_2_8_7_1) 2010; 12
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Skylaris C. ‐K. (e_1_2_8_49_1) 2001; 3
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Luehr N. (e_1_2_8_51_1) 2011; 2011
Wolfe M. (e_1_2_8_11_1) 2010
e_1_2_8_32_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Fatahalian K. (e_1_2_8_10_1) 2004
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Woo M. (e_1_2_8_8_1) 1999
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Kapasi U. J. (e_1_2_8_1_1) 2003; 36
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – reference: S. J. Fox, C. Pittock, T. Fox, C. S. Tautermann, N. Malcolm, C. -K. Skylaris, J. Chem. Phys. 2011, 135, 224107.
– reference: P. D. Haynes, C. -K. Skylaris, A. A. Mostofi, M. C. Payne, J. Phys. Condens. Matter 2008, 20, 294207
– reference: A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, T. L. Windus, J. Chem. Theory Comput. 2010, 6, 696.
– reference: I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 2619.
– reference: L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, A. Aspuru-Guzik, J. Phys. Chem. A 2008, 112, 2049.
– reference: J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342.
– reference: I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2008, 4, 222.
– reference: C. -K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, J. Chem. Phys. 2005, 122, 084119.
– reference: L. Dagum, R. Menon, IEEE Comput. Sci. Eng. 1998, 5, 46-55.
– reference: U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
– reference: N. D. M. Hine, P. D. Haynes, A. A. Mostofi, C. -K. Skylaris, M. C. Payne, Comput. Phys. Commun. 2009, 180, 1041.
– reference: J. Nickolls, I. Buck, M. Garland, K. Skadron, Queue 2008, 6, 40.
– reference: L. Genovese, M. Ospici, T. Deutsch, J. -F. Mehaut, A. Neelov, S. Goedecker, J. Chem. Phys. 2009, 131, 034103.
– reference: J. Bolz, I. Farmer, E. Grinspun, P. Schröoder, ACM Trans. Graph. 2003, 22, 917.
– reference: K. Bhaskaran-Nair, W. Ma, S. Krishnamoorthy, O. Villa, H. J. J. van Dam, E. Apr, K. Kowalski, J. Chem. Theory Comput. 2013, 9, 1949.
– reference: J. A. Baker, J. D. Hirst, Mol. Inform. 2011, 30, 498.
– reference: M. J. Harvey, G. Giupponi, G. De Fabritiis, J. Chem. Theory Comput. 2009, 5, 1632.
– reference: J. E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, J. Mol. Graph. Model. 2010, 29, 116.
– reference: W. Kohn, Phys. Rev. Lett. 1996, 76, 3168.
– reference: A. Asadchev, M. S. Gordon, J. Chem. Theory Comput. 2012, 8, 4166.
– reference: E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. USA 2005, 102, 11635.
– reference: A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542.
– reference: M. Woo, J. Neider, T. Davis, D. Shreiner, OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2, 3rd ed.; Addison-Wesley Longman Publishing: Boston, MA, 1999.
– reference: I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 1004.
– reference: M. Hutchinson, M. Widom, Comput. Phys. Commun. 2012, 183, 1422.
– reference: K. A. Wilkinson, P. Sherwood, M. F. Guest, K. J. Naidoo, J. Comp. Chem. 2011, 32, 2313.
– reference: K. Fatahalian, J. Sugerman, P. Hanrahan, In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS '04; ACM: New York, 2004; pp. 133-137.
– reference: A. E. DePrince, J. R. Hammond, J. Chem. Theory Comput. 2011, 7, 1287.
– reference: C. -K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Diéguez, M. C. Payne, Phys. Rev. B 2002, 66, 035119.
– reference: J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, K. Schulten, J. Comput. Chem. 2007, 28, 2618.
– reference: S. Goedecker, Rev. Mod. Phys. 1999, 71, 1085.
– reference: A. A. Mostofi, P. D. Haynes, C. -K. Skylaris, M. C. Payne, J. Chem. Phys. 2003, 119, 8842.
– reference: U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, J. D. Owens, Computer 2003, 36, 54.
– reference: J. E. Stone, D. Gohara, G. Shi, IEEE Des. Test Comput. 2010, 12, 66.
– reference: M. J. Harvey, G. De Fabritiis, J. Chem. Theory Comput. 2009, 5, 2371.
– reference: W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, J. Chem. Theory Comput. 2011, 7, 1316.
– reference: S. Le Grand, A. W. Götz, R. C. Walker, Comput. Phys. Commun. 2013, 184, 374.
– reference: C. -K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, M. C. Payne, Comput. Phys. Commun. 2001,3, 315-322.
– reference: A. A. Mostofi, C. -K. Skylaris, P. D. Haynes, M. C. Payne, Comput. Phys. Commun. 2002, 147, 788.
– reference: C. -K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, Phys. Stat. Sol. (b) 2006, 243, 973.
– reference: D. Baye, P. H. Heenen, J. Phys. A Math. Gen. 1986, 19, 2041-2060.
– reference: N. Luehr, I. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2011, 2011, 949.
– reference: X. -P. Li, R. W. Nunes, D. Vanderbilt, Phys. Rev. B 1993, 47, 10891.
– reference: D. R. Bowler, T. Miyazaki, Rep. Prog. Phys. 2012, 75, 036503.
– reference: M. J. Harvey, G. De Fabritiis, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 734.
– volume: 184
  start-page: 374
  year: 2013
  publication-title: Comput. Phys. Commun.
– volume: 8
  start-page: 4166
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 19
  start-page: 2041
  year: 1986
  end-page: 2060
  publication-title: J. Phys. A Math. Gen.
– volume: 36
  start-page: 54
  year: 2003
  publication-title: Computer
– volume: 7
  start-page: 1287
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 20
  start-page: 294207
  year: 2008
  publication-title: J. Phys. Condens. Matter
– volume: 3
  start-page: 315
  year: 2001
  end-page: 322
  publication-title: Comput. Phys. Commun.
– volume: 8
  start-page: 1542
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 147
  start-page: 788
  year: 2002
  publication-title: Comput. Phys. Commun.
– volume: 6
  start-page: 40
  year: 2008
  publication-title: Queue
– volume: 5
  start-page: 2619
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 122
  start-page: 084119
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1004
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 75
  start-page: 036503
  year: 2012
  publication-title: Rep. Prog. Phys.
– volume: 103
  start-page: 8577
  year: 1995
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 2049
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 22
  start-page: 917
  year: 2003
  publication-title: ACM Trans. Graph.
– volume: 2011
  start-page: 949
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 71
  start-page: 1085
  year: 1999
  publication-title: Rev. Mod. Phys.
– volume: 9
  start-page: 1949
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 28
  start-page: 2618
  year: 2007
  publication-title: J. Comput. Chem.
– volume: 119
  start-page: 8842
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 1316
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 131
  start-page: 034103
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 66
  year: 2010
  publication-title: IEEE Des. Test Comput.
– volume: 5
  start-page: 46
  year: 1998
  end-page: 55
  publication-title: IEEE Comput. Sci. Eng.
– volume: 183
  start-page: 1422
  year: 2012
  publication-title: Comput. Phys. Commun.
– volume: 32
  start-page: 2313
  year: 2011
  publication-title: J. Comp. Chem.
– start-page: 133
  year: 2004
  end-page: 137
– volume: 227
  start-page: 5342
  year: 2008
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 696
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 180
  start-page: 1041
  year: 2009
  publication-title: Comput. Phys. Commun.
– start-page: 43
  year: 2010
  end-page: 50
– volume: 243
  start-page: 973
  year: 2006
  publication-title: Phys. Stat. Sol. (b)
– volume: 4
  start-page: 222
  year: 2008
  publication-title: J. Chem. Theory Comput.
– volume: 76
  start-page: 3168
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 11635
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 10891
  year: 1993
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 734
  year: 2012
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 5
  start-page: 2371
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 66
  start-page: 035119
  year: 2002
  publication-title: Phys. Rev. B
– volume: 135
  start-page: 224107
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1632
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 30
  start-page: 498
  year: 2011
  publication-title: Mol. Inform.
– volume: 29
  start-page: 116
  year: 2010
  publication-title: J. Mol. Graph. Model.
– year: 1999
– ident: e_1_2_8_32_1
  doi: 10.1021/ct1007247
– ident: e_1_2_8_43_1
  doi: 10.1063/1.1613633
– ident: e_1_2_8_28_1
  doi: 10.1021/ct800526s
– ident: e_1_2_8_33_1
  doi: 10.1021/ct301130u
– volume: 12
  start-page: 66
  year: 2010
  ident: e_1_2_8_7_1
  publication-title: IEEE Des. Test Comput.
– ident: e_1_2_8_14_1
– ident: e_1_2_8_38_1
  doi: 10.1103/RevModPhys.71.1085
– ident: e_1_2_8_31_1
  doi: 10.1021/ct100584w
– ident: e_1_2_8_9_1
  doi: 10.1145/882262.882364
– volume: 36
  start-page: 54
  year: 2003
  ident: e_1_2_8_1_1
  publication-title: Computer
  doi: 10.1109/MC.2003.1220582
– ident: e_1_2_8_19_1
  doi: 10.1002/jcc.20829
– start-page: 43
  volume-title: Proceedings of the 3rd Workshop on General‐Purpose Computation on Graphics Processing Units, GPGPU '10
  year: 2010
  ident: e_1_2_8_11_1
  doi: 10.1145/1735688.1735697
– ident: e_1_2_8_30_1
  doi: 10.1021/jp0776762
– volume: 3
  start-page: 315
  year: 2001
  ident: e_1_2_8_49_1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(01)00248-X
– ident: e_1_2_8_39_1
  doi: 10.1088/0034-4885/75/3/036503
– ident: e_1_2_8_44_1
  doi: 10.1002/pssb.200541328
– ident: e_1_2_8_26_1
  doi: 10.1021/ct9005079
– ident: e_1_2_8_4_1
  doi: 10.1002/jcc.21815
– ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_17_1
  doi: 10.1002/wcms.1101
– ident: e_1_2_8_18_1
  doi: 10.1002/minf.201100042
– ident: e_1_2_8_13_1
  doi: 10.1109/99.660313
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jmgm.2010.06.010
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cpc.2008.12.023
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevB.47.10891
– ident: e_1_2_8_6_1
– ident: e_1_2_8_50_1
  doi: 10.1016/S0010-4655(02)00461-7
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevB.66.035119
– ident: e_1_2_8_3_1
  doi: 10.1021/ct700268q
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cpc.2012.09.022
– volume-title: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2
  year: 1999
  ident: e_1_2_8_8_1
– ident: e_1_2_8_37_1
  doi: 10.1063/1.3665893
– ident: e_1_2_8_35_1
  doi: 10.1063/1.3166140
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevLett.76.3168
– ident: e_1_2_8_48_1
  doi: 10.1088/0953-8984/20/29/294207
– ident: e_1_2_8_5_1
  doi: 10.1145/1365490.1365500
– ident: e_1_2_8_25_1
  doi: 10.1021/ct900275y
– start-page: 133
  volume-title: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS '04
  year: 2004
  ident: e_1_2_8_10_1
  doi: 10.1145/1058129.1058148
– ident: e_1_2_8_29_1
  doi: 10.1021/ct9003004
– ident: e_1_2_8_2_1
– ident: e_1_2_8_27_1
  doi: 10.1021/ct300526w
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jcp.2008.01.047
– volume: 2011
  start-page: 949
  year: 2011
  ident: e_1_2_8_51_1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100701w
– ident: e_1_2_8_20_1
  doi: 10.1063/1.470117
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.0505436102
– ident: e_1_2_8_36_1
  doi: 10.1063/1.1839852
– ident: e_1_2_8_46_1
  doi: 10.1088/0305-4470/19/11/013
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cpc.2012.02.017
– ident: e_1_2_8_21_1
  doi: 10.1021/ct200909j
– ident: e_1_2_8_24_1
  doi: 10.1021/ct9000685
SSID ssj0003564
Score 2.1942449
Snippet We present the first graphical processing unit (GPU) coprocessor‐enabled version of the Order‐N Electronic Total Energy Package (ONETEP) code for...
We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2446
SubjectTerms Algorithms
Fourier transforms
graphical processing units
heterogeneous computing
Integrals
linear scaling
quantum chemistry
Quantum theory
Software
Title Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations
URI https://api.istex.fr/ark:/67375/WNG-2F1QP0MM-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.23410
https://www.ncbi.nlm.nih.gov/pubmed/24038140
https://www.proquest.com/docview/1438179233
https://www.proquest.com/docview/1438567924
Volume 34
WOSCitedRecordID wos000324919200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLRK8MG6DsjEZhBAv6RLHsRPxhEIDQlspqGN9sxxfJC5qqqZFe-Qn8Bv3S2bHSdCkISHxFskninMu_r5c_B2AFwIrbIl3FCSKxAFJjSupOAuUkbHUuJRps8P7yzGbTtPFIpvtwOtuL4zXh-hfuLnKaNZrV-CirI_-iIZ-k3KM7Rpsn9eH2OYtGcDw7efi9LhfiOPEq0dZEhOkNIk6YaEQH_UnX4GjofPs-XVc8yp1bbCn2P2vWd-FOy3lRG98jtyDHb28D7fyrtPbAzhzv5NaCEMfp5P5ZIY2FWp0rF380MrvJHDDW1v-F79-O-BTSFbtSLWuxygao6KYo7I6R9VK-6yqH8JpMZnn74O24UIgY0sbAm1MKBOayZLFFsolcQ0PpAoNVRbpGE2MpszIjIREq0waoUJBRGlISQWOlIn3YLCslvoxIGqiksZSCaZLohjNtEjSWJo0MoZZljOCV53fuWzVyF1TjB_c6yhjbj3FG0-N4HlvuvISHNcZvWyC11uI9Xf3zxpL-Nn0HcdF9GkWnpzwfAQHXXR5W641dz3gI6ekaOf1rB-2UXBfT8RSV1tvk1BrREbwyGdFfzEnauikw-xdNcH_-zz5hzxvDp78u-k-3MauCYdDzPAABpv1Vj-Fm_Ln5mu9PoQbbJEetrl_CTplBIg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9RAFH4M3cJ4cV9aRy1FxEt6kkqlkoAXiR1H7Y6t9DhzKyq1gAudpheZoz_B3-gvsV42GRhB8BaoF1J565dK1fcAnkqqqQPegRdpFnossRhSYeppq0JlaKmS-oT3p2lcFMnpaTrfgxfdWZiGH6JfcMPIqPM1BjguSB_-YQ39otSYuiTsPtiHzLlRNIDhq4_58bTPxGHU0Ec5FOMlPAo6ZiGfHvY3n6tHQ1Tt2UVg8zx2rYtPfvX_pn0NrrSgk7xsvOQ67JnlDdjPul5vN-EEN5S6IkbeF5PFZE62FamZrNGCZNWcJcDhnUsAv378xNKniarakWq9GZNgTPJ8QcrqjFQr0_jV5hYc55NFduS1LRc8FTrg4BlrfRXxVJVx6Iq5YtjyQGnfcu1qXcwja3hsVcp8ZnSqrNS-ZLK0rOSSBtqGt2GwrJbmLhBug5KHSsvYlEzHPDUySkJlk8Da2OGcETzvFC9Uy0eObTG-iYZJmQqnKVFragRPetFVQ8JxkdCz2nq9hFx_xV1rcSROiteC5sGHuT-biWwEB515RRuwG4Fd4APkUnTzetwPOyvg_xO5NNWukYm4E2IjuNO4Rf8wpDVE8jD3VrX1_z5P8TbL6ot7_y76CPaPFrOpmL4p3t2HyxRbcmD99A9gsF3vzAO4pL5vP2_WD9sQ-A2tvweQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC1FGQRc2JcJARqEEBdP7N5sS1yQM2abmAFNSG4tuxeJRePRLFGO-YR8I19Ct9s2ihQkJG6Wuiy3q7rqPS_9CuBFiRW2xDsKmKIkoIlxKUXSQBlJpMaVTJod3l8ncVEkx8fpdAted3thvD5E_8LNZUZTr12C64Uye39UQ79LOcK2CNsH9gFlKbdpOdj_kh9O-kpMmJePsiwmSDiLOmWhEO_1J1_Ao4Fz7ellZPMid23AJ7_5f9O-BTda0one-FVyG7b0_A5cy7peb3fhyP1QakEMfSrGs_EUrWvUKFm7CKKF30vghje2APw6O3fQp5Cs25F6uRqhaITyfIaq-hTVC-3X1eoeHObjWfYuaFsuBJJY4hBoY0LJeCqrmFgwl9S1PJAqNFxZrIs5M5rHRqY0pFql0pQqLGlZGVrxEkfKkPuwPa_n-iEgbqKKE6nKWFdUxTzVJUuINElkTGx5zhBedY4XstUjd20xfgqvpIyF9ZRoPDWE573pwotwXGb0soleb1Euf7i_1mImjoq3AufR52l4cCCyIex24RVtwq6E6wIfOS1FO69n_bCNgvt-Us51vfE2jFsjOoQHfln0F3Oyhk48zN5VE_2_z1N8yLLmYOffTZ_C1el-Libvi4-P4Dp2HTkcfIa7sL1ebvRjuCJP1t9WyydtBvwGLd4HCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porting+ONETEP+to+graphical+processing+unit-based+coprocessors.+1.+FFT+box+operations&rft.jtitle=Journal+of+computational+chemistry&rft.au=Wilkinson%2C+Karl&rft.au=Skylaris%2C+Chris-Kriton&rft.date=2013-10-30&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=34&rft.issue=28&rft.spage=2446&rft.epage=2459&rft_id=info:doi/10.1002%2Fjcc.23410&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2F1QP0MM_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon