Multilevel Colonoscopy Histopathology Image Segmentation Using Particle Swarm Optimization Techniques
Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique. Multilevel thresholding i...
Uloženo v:
| Vydáno v: | SN computer science Ročník 4; číslo 5; s. 427 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.01.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique. Multilevel thresholding is considered an optimization problem. Particle swarm optimization (PSO) and its variants, darwinian particle swarm optimization (DPSO), and fractional order darwinian particle swarm optimization (FODPSO) are used to solve the optimization problem and they generate the threshold values. The threshold values obtained are used to segment the lesion regions from the images of the colonoscopy tissue data set. Segmented images containing the lesion regions are then postprocessed to remove unnecessary regions. Experimental results reveal that the FODPSO algorithm with Otsu’s discriminant criterion as the objective function achieves the best accuracy, Dice and Jaccard values of 0.89, 0.68 and 0.52, respectively, for the colonoscopy data set. The FODPSO algorithm also outperforms other optimization methods such as artificial bee colony and the firefly algorithms in terms of the accuracy, Dice and Jaccard values. |
|---|---|
| AbstractList | Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique. Multilevel thresholding is considered an optimization problem. Particle swarm optimization (PSO) and its variants, darwinian particle swarm optimization (DPSO), and fractional order darwinian particle swarm optimization (FODPSO) are used to solve the optimization problem and they generate the threshold values. The threshold values obtained are used to segment the lesion regions from the images of the colonoscopy tissue data set. Segmented images containing the lesion regions are then postprocessed to remove unnecessary regions. Experimental results reveal that the FODPSO algorithm with Otsu's discriminant criterion as the objective function achieves the best accuracy, Dice and Jaccard values of 0.89, 0.68 and 0.52, respectively, for the colonoscopy data set. The FODPSO algorithm also outperforms other optimization methods such as artificial bee colony and the firefly algorithms in terms of the accuracy, Dice and Jaccard values. Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique. Multilevel thresholding is considered an optimization problem. Particle swarm optimization (PSO) and its variants, darwinian particle swarm optimization (DPSO), and fractional order darwinian particle swarm optimization (FODPSO) are used to solve the optimization problem and they generate the threshold values. The threshold values obtained are used to segment the lesion regions from the images of the colonoscopy tissue data set. Segmented images containing the lesion regions are then postprocessed to remove unnecessary regions. Experimental results reveal that the FODPSO algorithm with Otsu's discriminant criterion as the objective function achieves the best accuracy, Dice and Jaccard values of 0.89, 0.68 and 0.52, respectively, for the colonoscopy data set. The FODPSO algorithm also outperforms other optimization methods such as artificial bee colony and the firefly algorithms in terms of the accuracy, Dice and Jaccard values.Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique. Multilevel thresholding is considered an optimization problem. Particle swarm optimization (PSO) and its variants, darwinian particle swarm optimization (DPSO), and fractional order darwinian particle swarm optimization (FODPSO) are used to solve the optimization problem and they generate the threshold values. The threshold values obtained are used to segment the lesion regions from the images of the colonoscopy tissue data set. Segmented images containing the lesion regions are then postprocessed to remove unnecessary regions. Experimental results reveal that the FODPSO algorithm with Otsu's discriminant criterion as the objective function achieves the best accuracy, Dice and Jaccard values of 0.89, 0.68 and 0.52, respectively, for the colonoscopy data set. The FODPSO algorithm also outperforms other optimization methods such as artificial bee colony and the firefly algorithms in terms of the accuracy, Dice and Jaccard values. |
| ArticleNumber | 427 |
| Author | Jothi, J. Angel Arul Kanadath, Anusree Urolagin, Siddhaling |
| Author_xml | – sequence: 1 givenname: Anusree surname: Kanadath fullname: Kanadath, Anusree organization: Department of Computer Science, Birla Institute of Science and Technology Pilani, Dubai Campus, Dubai International Academic City – sequence: 2 givenname: J. Angel Arul surname: Jothi fullname: Jothi, J. Angel Arul email: angeljothi@dubai.bits-pilani.ac.in organization: Department of Computer Science, Birla Institute of Science and Technology Pilani, Dubai Campus, Dubai International Academic City – sequence: 3 givenname: Siddhaling surname: Urolagin fullname: Urolagin, Siddhaling organization: Department of Computer Science, Birla Institute of Science and Technology Pilani, Dubai Campus, Dubai International Academic City |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37304839$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1TAUhC1UREvpC7BAkdiwCRz_JfEKoSuglYqKRLu2HMfJdeXYwU56dXl6XFJK6aIrWz7fjOdoXqIDH7xB6DWG9xig_pAYEbUogdASsMC83D1DR6SqcNkIqA8e3A_RSUrXAEA4MFbxF-iQ1hRYQ8URMt8WN1tnbowrNsEFH5IO0744tWkOk5q3-W3YF2ejGkzxwwyj8bOabfDFVbJ-KL6rOFvt8myn4lhcTLMd7a-VuDR66-3PxaRX6HmvXDInd-cxuvry-XJzWp5ffD3bfDovNRWwK3tu2rojjLCuJi1Wfd_loIJ10HeMtW0jaC9aoA2uGel4zzrCDQNOKl1VumP0GH1cfaelHU2nc9ionJyiHVXcy6Cs_H_i7VYO4UZiIIzTCrLDuzuHGG6Tz3K0SRvnlDdhSZI0hGPOWUMy-vYReh2W6PN-kgiCSVNh4Jl68zDSfZa_FWSArICOIaVo-nsEg7ytWq5Vy1y1_FO13GVR80ik7dpLXsu6p6V0lab8jx9M_Bf7CdVvgUzAOg |
| CitedBy_id | crossref_primary_10_1007_s41870_023_01606_y crossref_primary_10_1080_07357907_2025_2483302 crossref_primary_10_3390_act13070270 crossref_primary_10_1007_s11042_023_17768_7 crossref_primary_10_1007_s41870_024_01831_z crossref_primary_10_1007_s11831_024_10070_1 crossref_primary_10_1007_s12530_024_09614_4 crossref_primary_10_1007_s12293_025_00467_1 |
| Cites_doi | 10.1051/matecconf/20166302019 10.1117/1.1631315 10.21595/vp.2019.21054 10.1016/j.compbiomed.2021.104941 10.1016/j.petrol.2020.108204 10.1016/j.bspc.2021.103401 10.1016/0734-189X(85)90125-2 10.1016/j.eswa.2012.08.017 10.1109/ICEENG45378.2020.9171771 10.3389/fmed.2022.794126 10.1109/ACCESS.2019.2891632 10.1007/s11831-019-09366-4 10.5812/iranjradiol.69063 10.1007/s13042-019-01053-x 10.1007/978-3-030-20351-1_66 10.1016/j.eswa.2020.114159 10.1016/j.knosys.2021.107348 10.2139/ssrn.2693499 10.1016/j.asoc.2012.12.014 10.1186/s12860-022-00408-7 10.1016/j.amc.2006.07.026 10.1007/978-981-15-2071-6_17 10.1007/s11042-017-4363-0 10.1080/1206212X.2020.1726013 10.1109/ICNN.1995.488968 10.1080/1206212X.2006.11441811 10.1016/j.asoc.2016.02.030 10.16925/2357-6014.2019.03.01 10.1007/s10462-016-9494-6 10.1016/j.swevo.2021.100868 10.1007/s00521-021-06273-3 10.1007/978-981-15-1420-3_190 10.1007/s00500-012-0803-y 10.1109/ACCESS.2022.3142859 10.1007/s11760-012-0316-2 10.1007/978-3-319-33793-7_3 10.1016/j.cnsns.2013.08.022 10.1016/j.eswa.2021.115651 10.4018/IJSIR.302611 10.26493/978-961-7055-26-9.47-54 10.1016/j.tranon.2021.101174 10.1109/TSMC.1979.4310076 10.17485/ijst/2015/v8i22/79092 10.2991/ijcis.d.200625.001 10.1007/s00500-016-2474-6 10.1007/978-81-322-2135-7_88 10.1109/ACCESS.2021.3072336 10.1109/TGRS.2013.2260552 10.1109/IGARSS.2012.6351718 10.1007/s11042-022-12001-3 10.1080/00207160.2020.1817411 10.1007/978-3-319-19635-0 10.1007/s00521-019-04229-2 10.1016/j.compbiomed.2020.104129 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Sep 2023 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Sep 2023 |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s42979-023-01915-w |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | PMC10245360 37304839 10_1007_s42979_023_01915_w |
| Genre | Journal Article |
| GroupedDBID | 0R~ 2JN 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABHQN ABJNI ABMQK ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACSTC ACZOJ ADKFA ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AFQWF AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS ATHPR AYFIA BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS PHGZM PHGZT PQGLB PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX AFFHD CITATION KOV BSONS EJD NPM OK1 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c390w-f5eb7d2424d72b1affd73094d0fd44bb893f9b0381742d5f4d25e40526c66cd43 |
| IEDL.DBID | RSV |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Tue Nov 04 02:06:57 EST 2025 Thu Sep 04 18:55:03 EDT 2025 Wed Nov 05 14:47:13 EST 2025 Wed Feb 19 02:23:38 EST 2025 Sat Nov 29 08:01:49 EST 2025 Tue Nov 18 22:43:41 EST 2025 Mon Jul 21 06:07:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Image segmentation Histopathology Nature inspired algorithms Particle swarm optimization Thresholding |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390w-f5eb7d2424d72b1affd73094d0fd44bb893f9b0381742d5f4d25e40526c66cd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10245360 |
| PMID | 37304839 |
| PQID | 2921286105 |
| PQPubID | 6623307 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10245360 proquest_miscellaneous_2825155482 proquest_journals_2921286105 pubmed_primary_37304839 crossref_primary_10_1007_s42979_023_01915_w crossref_citationtrail_10_1007_s42979_023_01915_w springer_journals_10_1007_s42979_023_01915_w |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230101 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationTitleAlternate | SN Comput Sci |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | 1915_CR30 S Sayah (1915_CR45) 2013; 13 D Li (1915_CR33) 2019; 28 1915_CR29 M Mohammdian-khoshnoud (1915_CR35) 2022 B Niu (1915_CR36) 2007; 185 M Sezgin (1915_CR46) 2004; 13 1915_CR20 BF Wu (1915_CR54) 2006; 28 CH Chen (1915_CR10) 2014; 19 1915_CR24 1915_CR27 Y Xi (1915_CR55) 2021; 14 1915_CR3 1915_CR4 Y Zhang (1915_CR59) 2015; 2015 1915_CR7 N Otsu (1915_CR37) 1979; 9 1915_CR9 1915_CR40 1915_CR8 EH Houssein (1915_CR23) 2021; 63 RC Gonzalez (1915_CR18) 2001 1915_CR39 S Ray (1915_CR41) 2022; 13 EH Houssein (1915_CR22) 2021; 33 J Kapur (1915_CR28) 1985; 29 1915_CR31 1915_CR32 1915_CR34 M Couceiro (1915_CR12) 2012; 6 1915_CR50 Q Zhang (1915_CR58) 2021; 139 P Ghamisi (1915_CR17) 2014; 52 EH Houssein (1915_CR21) 2021; 185 EH Houssein (1915_CR25) 2021; 9 T Hayakawa (1915_CR19) 2019; 28 J Angel Arul Jothi (1915_CR5) 2015; 325 T Zhang (1915_CR60) 2022 J Angel Arul Jothi (1915_CR6) 2016; 46 H Phan (1915_CR38) 2020; 32 T Vaiyapuri (1915_CR51) 2020 R Agrawal (1915_CR2) 2019; 15 A Wagdy (1915_CR52) 2020 1915_CR48 1915_CR49 S Sapna (1915_CR44) 2020; 42 E Cuevas (1915_CR13) 2013; 40 M Salvi (1915_CR42) 2021; 128 D Wang (1915_CR53) 2018; 22 EH Houssein (1915_CR26) 2021; 229 L Yangyang (1915_CR57) 2012 L Abualigah (1915_CR1) 2022; 81 TM Shami (1915_CR47) 2022; 10 1915_CR11 1915_CR56 K Saneipour (1915_CR43) 2019 1915_CR14 1915_CR15 1915_CR16 |
| References_xml | – ident: 1915_CR20 doi: 10.1051/matecconf/20166302019 – volume: 13 start-page: 146 issue: 1 year: 2004 ident: 1915_CR46 publication-title: J Electron Imaging doi: 10.1117/1.1631315 – volume: 28 start-page: 93 year: 2019 ident: 1915_CR33 publication-title: Vibroeng Proc doi: 10.21595/vp.2019.21054 – ident: 1915_CR29 – volume: 2015 start-page: 1 year: 2015 ident: 1915_CR59 publication-title: Math Probl Eng – volume: 139 start-page: 941 issue: 104 year: 2021 ident: 1915_CR58 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104941 – ident: 1915_CR9 doi: 10.1016/j.petrol.2020.108204 – volume-title: Digital image processing year: 2001 ident: 1915_CR18 – ident: 1915_CR27 doi: 10.1016/j.bspc.2021.103401 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 1915_CR28 publication-title: Comput Vis Graph Image Process. doi: 10.1016/0734-189X(85)90125-2 – ident: 1915_CR50 – volume: 40 start-page: 1213 year: 2013 ident: 1915_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.08.017 – ident: 1915_CR48 doi: 10.1109/ICEENG45378.2020.9171771 – year: 2022 ident: 1915_CR60 publication-title: Front Med (Lausanne). doi: 10.3389/fmed.2022.794126 – ident: 1915_CR3 doi: 10.1109/ACCESS.2019.2891632 – volume: 28 start-page: 1 year: 2019 ident: 1915_CR19 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09366-4 – year: 2019 ident: 1915_CR43 publication-title: Iran J Radiol. doi: 10.5812/iranjradiol.69063 – year: 2020 ident: 1915_CR52 publication-title: Int J Mach Learn Cybern. doi: 10.1007/s13042-019-01053-x – ident: 1915_CR34 doi: 10.1007/978-3-030-20351-1_66 – ident: 1915_CR24 doi: 10.1016/j.eswa.2020.114159 – volume: 229 year: 2021 ident: 1915_CR26 publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2021.107348 – ident: 1915_CR39 doi: 10.2139/ssrn.2693499 – volume: 13 start-page: 1608 issue: 4 year: 2013 ident: 1915_CR45 publication-title: Appl Soft Comput. doi: 10.1016/j.asoc.2012.12.014 – year: 2022 ident: 1915_CR35 publication-title: BMC Mol Cell Biol. doi: 10.1186/s12860-022-00408-7 – volume: 185 start-page: 1050 issue: 2 year: 2007 ident: 1915_CR36 publication-title: Appl Math Comput. doi: 10.1016/j.amc.2006.07.026 – ident: 1915_CR30 doi: 10.1007/978-981-15-2071-6_17 – ident: 1915_CR7 doi: 10.1007/s11042-017-4363-0 – volume: 42 start-page: 622 issue: 6 year: 2020 ident: 1915_CR44 publication-title: Int J Comput Appl doi: 10.1080/1206212X.2020.1726013 – ident: 1915_CR32 doi: 10.1109/ICNN.1995.488968 – volume: 28 start-page: 259 issue: 3 year: 2006 ident: 1915_CR54 publication-title: Int J Comput Appl doi: 10.1080/1206212X.2006.11441811 – volume: 46 start-page: 652 year: 2016 ident: 1915_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.02.030 – volume: 15 start-page: 1 year: 2019 ident: 1915_CR2 publication-title: Ingeniería Solidaria doi: 10.16925/2357-6014.2019.03.01 – ident: 1915_CR8 doi: 10.1007/s10462-016-9494-6 – volume: 63 year: 2021 ident: 1915_CR23 publication-title: Swarm Evolut Comput. doi: 10.1016/j.swevo.2021.100868 – volume: 33 start-page: 16,899 year: 2021 ident: 1915_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06273-3 – ident: 1915_CR40 doi: 10.1007/978-981-15-1420-3_190 – year: 2012 ident: 1915_CR57 publication-title: Soft Comput. doi: 10.1007/s00500-012-0803-y – volume: 10 start-page: 10,031 year: 2022 ident: 1915_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3142859 – volume: 6 start-page: 343 year: 2012 ident: 1915_CR12 publication-title: SIViP doi: 10.1007/s11760-012-0316-2 – ident: 1915_CR4 doi: 10.1007/978-3-319-33793-7_3 – volume: 19 start-page: 914 issue: 4 year: 2014 ident: 1915_CR10 publication-title: Commun Nonlinear Sci Numer Simul. doi: 10.1016/j.cnsns.2013.08.022 – volume: 185 year: 2021 ident: 1915_CR21 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2021.115651 – volume: 13 start-page: 1 year: 2022 ident: 1915_CR41 publication-title: Int J Swarm Intell Res doi: 10.4018/IJSIR.302611 – ident: 1915_CR56 – ident: 1915_CR14 doi: 10.26493/978-961-7055-26-9.47-54 – volume: 14 issue: 10 year: 2021 ident: 1915_CR55 publication-title: Transl Oncol. doi: 10.1016/j.tranon.2021.101174 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 1915_CR37 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – ident: 1915_CR49 doi: 10.17485/ijst/2015/v8i22/79092 – year: 2020 ident: 1915_CR51 publication-title: Int J Comput Intell Syst. doi: 10.2991/ijcis.d.200625.001 – volume: 22 start-page: 387 year: 2018 ident: 1915_CR53 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 325 start-page: 835 year: 2015 ident: 1915_CR5 publication-title: Adv Intell Syst Comput doi: 10.1007/978-81-322-2135-7_88 – volume: 9 start-page: 56,066 year: 2021 ident: 1915_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072336 – volume: 52 start-page: 2382 issue: 5 year: 2014 ident: 1915_CR17 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2260552 – ident: 1915_CR16 doi: 10.1109/IGARSS.2012.6351718 – volume: 81 start-page: 16,707 issue: 12 year: 2022 ident: 1915_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12001-3 – ident: 1915_CR31 doi: 10.1080/00207160.2020.1817411 – ident: 1915_CR11 doi: 10.1007/978-3-319-19635-0 – ident: 1915_CR15 – volume: 32 start-page: 567 issue: 2 year: 2020 ident: 1915_CR38 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04229-2 – volume: 128 year: 2021 ident: 1915_CR42 publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2020.104129 |
| SSID | ssj0002504465 |
| Score | 2.2836115 |
| Snippet | Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 427 |
| SubjectTerms | Algorithms Automation Breast cancer Colonoscopy Colorectal cancer Computer Imaging Computer Science Computer Systems Organization and Communication Networks COVID-19 Data Structures and Information Theory Datasets Heuristic methods Histopathology Image processing Image segmentation Information Systems and Communication Service Lesions Medical imaging Methods Multilevel Optimization algorithms Optimization techniques Original Research Particle swarm optimization Pattern Recognition and Graphics Performance evaluation Software Engineering/Programming and Operating Systems Swarm intelligence Thyroid gland Vision |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xwcNeBogfyxiTkXgDiyZxGvsJoYpqSKhUakEVL5ETO9ukJu3abdX-e-5cJ1Wp6AtS3uwoce783cV39x3Ae4oNaTRTPAxjwYXIBdci1lwbGUuZS5O4lP9f39PBQE4maugP3JY-rbLBRAfUZlbQGfmnSCHISjT2yef5DaeuURRd9S00DuAxsSRQ64Zh8rs9YyF6LuG6SaIZirhSycTXzbjqOYTiVHE0Wvg_rcKEr7Zt047DuZs3-Vfw1Nmk_tP_Xc0zOPbeKPuyVp_n8MjWL8C6otwpZROxHmJjPaPSlQfmGEWog7E7iWffKoQiNrKXlS9fqpnLP2BDr41stNKLiv1AUKp8tScbN5Sxy5fws_913LvgvhsDL2LVWfEysXlqqJrEpFEe6rI0iA5KmE5pUMY5Oj6lyh3jn4hMUgoTJVYQnUzR7RZGxK_gsJ7V9gRYp1QF4obUNtXozuWya1MUFP5ZirTURSeAsJFDVniqcuqYMc1akmUnuwxllznZZasAPrT3zNdEHXtnnzVyyfymXWYboQTwrh3G7UYxFF3b2R3OoVJf1G0ZBfB6rQ3t42L8HgIdzgDklp60E4jKe3ukvr5ylN4hRcDjLq78Y6NSm_f69zJO9y_jDRxFa_XG6wwObxd39i08Ke5vr5eLc7dX_gD5_Bt_ priority: 102 providerName: ProQuest |
| Title | Multilevel Colonoscopy Histopathology Image Segmentation Using Particle Swarm Optimization Techniques |
| URI | https://link.springer.com/article/10.1007/s42979-023-01915-w https://www.ncbi.nlm.nih.gov/pubmed/37304839 https://www.proquest.com/docview/2921286105 https://www.proquest.com/docview/2825155482 https://pubmed.ncbi.nlm.nih.gov/PMC10245360 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4Nuoe9DPaLZUDlSbxtlprEiZ1HQCAQUxfRgqq9RE7sABJJUQNU--85u05Qx0DapChSZFtJ7PPdJXffdwA7JjYk0UxR3w8ZZSxnVLJQUqlEKEQuVGRT_s9_8OFQTCZJ6kBhTZvt3oYkrabuwG6oOXlC0cbg52_iR3S-Aj00d8IUbDgdnXd_VgwpF4sjh5D5-9BlK_TEtXyaIflHmNRan8O1_3vudXjrvE2yuxCPd_BK1-9hra3kQNzG_gDa4nCvTQIR2Ud1WE8NWuU3sSQipmix_flOjivUPmSkLyqHWKqJTTkgqRNAMprLWUV-oh6qHMCTjFuW2OYjnB0ejPePqCvAQIswGcxpGemcKwMgUTzIfVmWChVCwtSgVLisOfo6ZZJbkj8WqKhkKog0MwwyRRwXioWfYLWe1vozkEGZFKgqhNRcogeXi1hzXCX8mGS8lMXAA79dkKxw7OSmSMZ11vEq23nMcB4zO4_Z3INv3ZibBTfHi7232nXO3D5tsiBB0y3QhYw8-No14w4zYRNZ6-kd9jHoXhRnEXiwsRCL7nYhzgdDH9MDsSQwXQfD3r3cUl9dWhZv3wS9wxjf_HsrN4_P9fxrfPm37pvwJliIHh5bsHo7u9Pb8Lq4v71qZn1Y4RPRh97ewTA9xasTTvGcRr_6dks9AIStGvg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9swED4xhrS97IfYWDY2PGk8bdYax6nthwkhNkTVriBRUN8yJ3YYEk1ZC4v4p_Y37uz8QAWNNx4m5S1uEyfffWfn7r4D-OBiQxrdFA3DiFPOU041jzTVRkZSptLEPuX_eCCGQzkeq4Ml-NPUwri0yoYTPVGbaea-kX9mCklWorOPt85_Udc1ykVXmxYaFSz69qrELdv8S-8rvt9Nxna_jXb2aN1VgGa4vy9pHttUGFcVYQRLQ53nBlGuuOnkBu81RQeeq9Qr13Fm4pwbFlvuZFGybjczPML_fQAPeSSFs6u-oO03HScHxn33SnR7jCoVj-s6HV-th9QvFEUnift3Fca0XPSFtxa4t_M0bwRrvQ_cffq_Pb1n8KRebZPtyjyew5ItVsH6ouMzly1FdpD7i6krzbkiXjHFdWj2kQbSmyDVkkN7MqnLswri8yvIQW1t5LDUswnZR9Kd1NWsZNRI4s5fwNG9zOwlLBfTwr4C0slVhrwotRUal6up7FqBwMCdMxe5zjoBhM17T7Jait11BDlLWhFpj5UEsZJ4rCRlAB_b35xXQiR3jl5vcJDUpDRPrkEQwPv2NNKJixHpwk4vcYwrZUbblSyAtQp97eUifB4cF9QByAVctgOcVPnimeL0p5csD12EP-rizD81EL6-r39P4_Xd09iAR3uj74Nk0Bv238BjVpkWHuuwfDG7tG9hJft9cTqfvfN2SuDHfUP7Lx28d9c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqBAXHqWF8CiuxA0sNomTOEcErEBF25WWIm6RE9sFic2i3YUV_56x46RseUhVpdxiK_F4PDP2zPcZYM_khgS6Ker7IaOM5YwKFgoqJA85z7mMbMn_1UXS6fDr67T7AsVvq93rlGSFaTAsTeX48F7qwwb4hlY0SSn6G9wKp35EJ7Mwz0whvdmv966aUxZD0MXiyKFl3u467ZFehZmvqyX_SplaT9Re_v8xrMCSi0LJUaU2qzCjys-wXN_wQNyCXwNl8bl3prCIHKOZLAcGxfJELLmIuczYHsqT8z5aJdJTv_sOyVQSW4pAuk4xSW8ihn3yE-1T3wE_yWXNHjv6Ar_ap5fHZ9RdzECLMG1NqI5UnkgDLJFJkPtCa4mGImWypSVOd44xkE5zS_7HAhlpJoNIMcMsU8RxIVn4FebKQak2gLR0WqAJ4UIlAiO7nMcqwRnDTSZLtChaHvj15GSFYy03l2fcZQ3fspVjhnLMrByziQf7TZ_7irPjw9bb9Zxnbv2OsiBFl84xtIw8-N68xpVn0imiVIMHbGNQv6jmPPBgvVKR5nMhyoNh7OkBn1KepoFh9Z5-U97eWHZv3yTDwxhHflDr0J__en8Ym__WfBcWuift7OK882MLFoNKC_HZhrnx8EHtwKficXw7Gn6z6-kZ_BQibg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Colonoscopy+Histopathology+Image+Segmentation+Using+Particle+Swarm+Optimization+Techniques&rft.jtitle=SN+computer+science&rft.au=Kanadath%2C+Anusree&rft.au=Jothi%2C+J+Angel+Arul&rft.au=Urolagin%2C+Siddhaling&rft.date=2023-01-01&rft.eissn=2661-8907&rft.volume=4&rft.issue=5&rft.spage=427&rft_id=info:doi/10.1007%2Fs42979-023-01915-w&rft_id=info%3Apmid%2F37304839&rft.externalDocID=37304839 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |