The neighborhood role in the linear threshold rank on social networks
Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spre...
Uloženo v:
| Vydáno v: | Physica A Ročník 528; s. 121430 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.08.2019
|
| Témata: | |
| ISSN: | 0378-4371, 1873-2119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization.
•Linear Threshold Rank is a centrality measure to identify influential actors on a social network.•We generalize the LTR measure to expand the neighbors distance in the initial activation set.•We appraise the viability of the approach through different case studies.•Using neighbors at larger distance, the rankings distinguish better the influential actors.•The generalization is validated since the rankings for different levels are not highly correlated. |
|---|---|
| AbstractList | Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization
Peer Reviewed Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization. •Linear Threshold Rank is a centrality measure to identify influential actors on a social network.•We generalize the LTR measure to expand the neighbors distance in the initial activation set.•We appraise the viability of the approach through different case studies.•Using neighbors at larger distance, the rankings distinguish better the influential actors.•The generalization is validated since the rankings for different levels are not highly correlated. |
| ArticleNumber | 121430 |
| Author | Riquelme, Fabián Molinero, Xavier Gonzalez-Cantergiani, Pablo Serna, Maria |
| Author_xml | – sequence: 1 givenname: Fabián surname: Riquelme fullname: Riquelme, Fabián email: fabian.riquelme@uv.cl organization: Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, Chile – sequence: 2 givenname: Pablo surname: Gonzalez-Cantergiani fullname: Gonzalez-Cantergiani, Pablo email: gonzalezcantergiani@gmail.com organization: Independent Researcher – sequence: 3 givenname: Xavier surname: Molinero fullname: Molinero, Xavier email: xavier.molinero@upc.edu organization: Mathematics Department and Barcelona Graduate School of Mathematics, Universitat Politècnica de Catalunya, Spain – sequence: 4 givenname: Maria surname: Serna fullname: Serna, Maria email: mjserna@cs.upc.edu organization: Computer Science Department and Barcelona Graduate School of Mathematics, Universitat Politècnica de Catalunya, Spain |
| BookMark | eNqFkE1LAzEQhoNUsK3-Ai_7B3bNx-5mc_AgpX5AwUs9hzSZuGnXpCSr0n_vri0IHvQwzAwvzzA8MzTxwQNC1wQXBJP6Zlvs20NSBcVEFISSkuEzNCUNZzklREzQFDPe5CXj5ALNUtpijAlndIqW6xYyD-613YTYhmCyGDrInM_6IeicBxWHMUJqQzeEyu-y4LMUtFPdAPafIe7SJTq3qktwdepz9HK_XC8e89Xzw9PibpVrJnCfWyBiowU3jNSMC7oxVVWWwmrV0IYrBlTbmiktyoZTW1lulDElqS2rjBWNYHNEjnd1etcygoaoVS-Dcj_LWBRzKllNm3pk2ImJIaUIVu6je1PxIAmWoz25ld_25GhPHu0NlPhFader3gXfR-W6f9jbIwuDig8HUSbtwGswbviylya4P_kv586Ovw |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2024_111343 crossref_primary_10_1016_j_knosys_2022_109922 crossref_primary_10_1109_ACCESS_2025_3553732 crossref_primary_10_1016_j_cosrev_2020_100343 crossref_primary_10_1016_j_knosys_2020_106623 crossref_primary_10_32604_cmc_2022_021804 crossref_primary_10_1007_s12597_023_00662_z crossref_primary_10_3390_sym14030581 |
| Cites_doi | 10.1016/j.knosys.2017.10.029 10.1016/j.physa.2017.05.037 10.1038/nature14604 10.1007/BF02289026 10.1016/j.ejor.2012.11.027 10.1016/j.eswa.2014.02.038 10.1016/0378-8733(78)90021-7 10.1016/j.ejor.2014.11.006 10.1016/j.techfore.2006.11.006 10.1109/ACCESS.2018.2876801 10.1007/s13278-018-0493-2 10.1109/ACCESS.2019.2900708 10.1016/j.socnet.2011.04.001 10.1016/j.ipm.2016.04.003 10.1016/j.physa.2018.08.045 10.1086/226707 10.1016/j.artint.2014.06.004 10.1145/1217299.1217301 10.1287/mnsc.1040.0300 10.1016/j.socnet.2005.01.007 10.4086/toc.2015.v011a004 10.1287/mnsc.15.5.215 10.1145/1046456.1046462 10.1016/j.knosys.2013.01.017 10.1209/0295-5075/94/38001 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs Universitat Politècnica de Catalunya. Departament de Matemàtiques Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació – sequence: 3 fullname: Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs – sequence: 4 fullname: Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals |
| Copyright | 2019 Elsevier B.V. Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | AAYXX CITATION XX2 |
| DOI | 10.1016/j.physa.2019.121430 |
| DatabaseName | CrossRef Recercat |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2119 |
| ExternalDocumentID | oai_recercat_cat_2072_362869 10_1016_j_physa_2019_121430 S0378437119308349 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ 9DU AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AGQPQ AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG VOH WUQ XOL YYP ZY4 ~HD XX2 |
| ID | FETCH-LOGICAL-c390t-fe19bc97d3163792bd55449fca8287a3e2cf63ac94872f5f7dadd416f35df9893 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474682200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-4371 |
| IngestDate | Fri Nov 07 13:53:20 EST 2025 Sat Nov 29 02:47:46 EST 2025 Tue Nov 18 21:45:31 EST 2025 Fri Feb 23 02:33:05 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 91D30 05C22 Linear threshold model Centrality Social network 68R10 Spread of influence Neighborhood |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c390t-fe19bc97d3163792bd55449fca8287a3e2cf63ac94872f5f7dadd416f35df9893 |
| OpenAccessLink | https://recercat.cat/handle/2072/362869 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_362869 crossref_primary_10_1016_j_physa_2019_121430 crossref_citationtrail_10_1016_j_physa_2019_121430 elsevier_sciencedirect_doi_10_1016_j_physa_2019_121430 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-15 |
| PublicationDateYYYYMMDD | 2019-08-15 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Physica A |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Riquelme, Gonzalez-Cantergiani (b16) 2016; 52 Molinero, Riquelme, Serna (b3) 2015; 242 Zhang, Zhu, Wang, Zhao (b12) 2013; 42 Song, Tseng, Lin, Sun (b11) 2006 Morone, Makse (b14) 2015; 524 Wu, Shang, Zhou, Zhong, Feng, Qiang (b38) 2018; 512 Bass (b46) 2004; 50 Srinivasan, Srinivasa, Thulasidasan (b32) 2013 Conover, Ratkiewicz, Francisco, Gonçalves, Menczer, Flammini (b42) 2011 Gayo-Avello, Brenes, Fernández-Fernández, Fernández-Fernández, García-Suárez (b30) 2011; 94 Pal, Kundu, Murthy (b36) 2014; 130 Easley, Kleinberg (b1) 2010 Gómez, Figueira, Eusébio (b23) 2013; 226 Adamic, Adar (b10) 2005; 27 Bouguessa, Romdhane (b26) 2015; 6 Granovetter (b5) 1978; 83 Riquelme, Cantergiani, Molinero, Serna (b18) 2018; 140 Irfan, Ortiz (b28) 2014; 215 Wang, Han, Zhao (b17) 2017; 486 Katsimpras, Vogiatzis, Paliouras (b25) 2015 Li, Peng, Li, Sun, Li, Xu (b13) 2014; 41 Das, Samanta, Pal (b34) 2018; 8 Bass (b45) 1969; 15 Katz (b20) 1953; 18 Kempe, Kleinberg, Tardos (b21) 2005; vol. 3580 Anger, Kittl (b33) 2011 Zhu, Yang, Xuan, Man, Wang, Du, Guizani (b39) 2019; 7 Kempe, Kleinberg, Tardos (b4) 2015; 11 Noël, Riquelme, Mac Lean, Merino, Cechinel, Barcelos, Villarroel, Muñoz (b15) 2018; 6 Domingos, Richardson (b8) 2001 Freeman (b22) 1979; 1 Rossi, Ahmed (b40) 2015 Montangero, Furini (b24) 2015 Schelling (b6) 1978 Molinero, Riquelme, Serna (b29) 2014; vol. 291 Sun, Tang (b2) 2011 Phillips (b43) 2007; 74 Page, Brin, Motwani, Winograd (b19) 1999 Gruhl, Liben-Nowell, Guha, Tomkins (b9) 2004; 6 Kundu, Murthy, Pal (b35) 2011; vol. 6744 Gaye, Mendy, Ouya, Seck (b37) 2015 Pal, Counts (b31) 2011 Goldenberg, Libai, Muller (b7) 2001 Leskovec, Krevl (b41) 2017 del Pozo, Manuel, González-Arangüena, Owen (b27) 2011; 33 Leskovec, Kleinberg, Faloutsos (b44) 2007; 1 Katz (10.1016/j.physa.2019.121430_b20) 1953; 18 Freeman (10.1016/j.physa.2019.121430_b22) 1979; 1 Rossi (10.1016/j.physa.2019.121430_b40) 2015 Kempe (10.1016/j.physa.2019.121430_b21) 2005; vol. 3580 Montangero (10.1016/j.physa.2019.121430_b24) 2015 Bass (10.1016/j.physa.2019.121430_b45) 1969; 15 Noël (10.1016/j.physa.2019.121430_b15) 2018; 6 Kundu (10.1016/j.physa.2019.121430_b35) 2011; vol. 6744 Phillips (10.1016/j.physa.2019.121430_b43) 2007; 74 Anger (10.1016/j.physa.2019.121430_b33) 2011 Li (10.1016/j.physa.2019.121430_b13) 2014; 41 Gaye (10.1016/j.physa.2019.121430_b37) 2015 Wu (10.1016/j.physa.2019.121430_b38) 2018; 512 Leskovec (10.1016/j.physa.2019.121430_b41) 2017 Easley (10.1016/j.physa.2019.121430_b1) 2010 Conover (10.1016/j.physa.2019.121430_b42) 2011 Molinero (10.1016/j.physa.2019.121430_b3) 2015; 242 Goldenberg (10.1016/j.physa.2019.121430_b7) 2001 Riquelme (10.1016/j.physa.2019.121430_b16) 2016; 52 Das (10.1016/j.physa.2019.121430_b34) 2018; 8 Granovetter (10.1016/j.physa.2019.121430_b5) 1978; 83 Adamic (10.1016/j.physa.2019.121430_b10) 2005; 27 Page (10.1016/j.physa.2019.121430_b19) 1999 Sun (10.1016/j.physa.2019.121430_b2) 2011 Leskovec (10.1016/j.physa.2019.121430_b44) 2007; 1 Bass (10.1016/j.physa.2019.121430_b46) 2004; 50 Gruhl (10.1016/j.physa.2019.121430_b9) 2004; 6 Bouguessa (10.1016/j.physa.2019.121430_b26) 2015; 6 Katsimpras (10.1016/j.physa.2019.121430_b25) 2015 Irfan (10.1016/j.physa.2019.121430_b28) 2014; 215 del Pozo (10.1016/j.physa.2019.121430_b27) 2011; 33 Kempe (10.1016/j.physa.2019.121430_b4) 2015; 11 Molinero (10.1016/j.physa.2019.121430_b29) 2014; vol. 291 Pal (10.1016/j.physa.2019.121430_b31) 2011 Morone (10.1016/j.physa.2019.121430_b14) 2015; 524 Gayo-Avello (10.1016/j.physa.2019.121430_b30) 2011; 94 Domingos (10.1016/j.physa.2019.121430_b8) 2001 Riquelme (10.1016/j.physa.2019.121430_b18) 2018; 140 Srinivasan (10.1016/j.physa.2019.121430_b32) 2013 Zhang (10.1016/j.physa.2019.121430_b12) 2013; 42 Song (10.1016/j.physa.2019.121430_b11) 2006 Schelling (10.1016/j.physa.2019.121430_b6) 1978 Gómez (10.1016/j.physa.2019.121430_b23) 2013; 226 Wang (10.1016/j.physa.2019.121430_b17) 2017; 486 Pal (10.1016/j.physa.2019.121430_b36) 2014; 130 Zhu (10.1016/j.physa.2019.121430_b39) 2019; 7 |
| References_xml | – start-page: 57 year: 2001 end-page: 66 ident: b8 article-title: Mining the network value of customers publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 11 start-page: 105 year: 2015 end-page: 147 ident: b4 article-title: Maximizing the spread of influence through a social network publication-title: Theory Comput. – year: 1999 ident: b19 article-title: The pagerank citation ranking: Bringing order to the web – start-page: 31 year: 2011 ident: b33 article-title: Measuring influence on twitter publication-title: I-KNOW 2011, 11th International Conference on Knowledge Management and Knowledge Technologies – volume: 8 start-page: 13 year: 2018 ident: b34 article-title: Study on centrality measures in social networks: a survey publication-title: Social Netw. Anal. Min. – year: 2001 ident: b7 article-title: Using complex systems analysis to advance marketing theory development – year: 2010 ident: b1 article-title: Networks, Crowds, and Markets - Reasoning About a Highly Connected World – volume: 74 start-page: 715 year: 2007 end-page: 730 ident: b43 article-title: On publication-title: Technol. Forecast. Soc. Change – volume: 83 start-page: 1420 year: 1978 end-page: 1443 ident: b5 article-title: Threshold models of collective behavior publication-title: Am. J. Sociol. – start-page: 675 year: 2015 end-page: 680 ident: b37 article-title: New centrality measure in social networks based on independent Cascade (IC) model publication-title: 3rd International Conference on Future Internet of Things and Cloud – volume: 140 start-page: 92 year: 2018 end-page: 102 ident: b18 article-title: Centrality measure in social networks based on linear threshold model publication-title: Knowl.-Based Syst. – year: 2017 ident: b41 article-title: SNAP Datasets: Stanford large network dataset collection – start-page: 767 year: 2015 end-page: 772 ident: b24 article-title: Trank: Ranking twitter users according to specific topics publication-title: 12th Annual IEEE Consumer Communications and Networking Conference – volume: 94 start-page: 38001 year: 2011 ident: b30 article-title: De retibus socialibus et legibus momenti publication-title: Europhys. Lett. – volume: 242 start-page: 960 year: 2015 end-page: 974 ident: b3 article-title: Cooperation through social influence publication-title: European J. Oper. Res. – volume: vol. 291 start-page: 23 year: 2014 end-page: 30 ident: b29 article-title: Power indices of influence games and new centrality measures for agent societies and social networks publication-title: Ambient Intelligence - Software and Applications — 5th International Symposium on Ambient Intelligence – volume: 41 start-page: 5115 year: 2014 end-page: 5124 ident: b13 article-title: Social network user influence sense-making and dynamics prediction publication-title: Expert Syst. Appl. – volume: 52 start-page: 949 year: 2016 end-page: 975 ident: b16 article-title: Measuring user influence on Twitter: A survey publication-title: Inf. Process. Manage. – volume: 226 start-page: 354 year: 2013 end-page: 365 ident: b23 article-title: Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems publication-title: European J. Oper. Res. – volume: 6 start-page: 30:1 year: 2015 end-page: 30:23 ident: b26 article-title: Identifying authorities in online communities publication-title: ACM TIST – start-page: 13:1 year: 2013 end-page: 13:4 ident: b32 article-title: Exploring celebrity dynamics on twitter publication-title: Proceedings of the 5th IBM Collaborative Academia Research Exchange Workshop – start-page: 509 year: 2006 end-page: 516 ident: b11 article-title: Personalized recommendation driven by information flow publication-title: SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 6 start-page: 67783 year: 2018 end-page: 67798 ident: b15 article-title: Exploring collaborative writing of user stories with multimodal learning analytics: A case study on a software engineering course publication-title: IEEE Access – volume: 1 start-page: 2 year: 2007 ident: b44 article-title: Graph evolution: Densification and shrinking diameters publication-title: ACM Trans. Knowl. Discov. Data – start-page: 4292 year: 2015 end-page: 4293 ident: b40 article-title: The network data repository with interactive graph analytics and visualization publication-title: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence – volume: 50 start-page: 1833 year: 2004 end-page: 1840 ident: b46 article-title: Comments on “a new product growth for model consumer durables the bass model” publication-title: Manage. Sci. – volume: 15 start-page: 215 year: 1969 end-page: 227 ident: b45 article-title: A new product growth for model consumer durables publication-title: Manage. Sci. – start-page: 177 year: 2011 end-page: 214 ident: b2 article-title: A survey of models and algorithms for social influence analysis publication-title: Social Network Data Analytics – volume: vol. 3580 start-page: 1127 year: 2005 end-page: 1138 ident: b21 article-title: Influential nodes in a diffusion model for social networks publication-title: Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11–15, 2005, Proceedings – volume: 512 start-page: 1085 year: 2018 end-page: 1103 ident: b38 article-title: IMPC: Influence maximization based on multi-neighbor potential in community networks publication-title: Physica A – volume: vol. 6744 start-page: 242 year: 2011 end-page: 247 ident: b35 article-title: A new centrality measure for influence maximization in social networks publication-title: Pattern Recognition and Machine Intelligence - 4th International Conference, PReMI 2011, Moscow, Russia, June 27–July 1, 2011. Proceedings – volume: 18 start-page: 39 year: 1953 end-page: 43 ident: b20 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika – volume: 1 start-page: 215 year: 1979 end-page: 239 ident: b22 article-title: Centrality in social networks: Conceptual clarification publication-title: Social Networks – start-page: 89 year: 2011 end-page: 96 ident: b42 article-title: Political polarization on twitter publication-title: Proceedings of the Fifth International Conference on Weblogs and Social Media – year: 1978 ident: b6 article-title: Micromotives and Macrobehavior – volume: 27 start-page: 187 year: 2005 end-page: 203 ident: b10 article-title: How to search a social network publication-title: Social Networks – volume: 6 start-page: 43 year: 2004 end-page: 52 ident: b9 article-title: Information diffusion through blogspace publication-title: SIGKDD Explor. – volume: 42 start-page: 74 year: 2013 end-page: 84 ident: b12 article-title: Identifying influential nodes in complex networks with community structure publication-title: Knowl.-Based Syst. – start-page: 45 year: 2011 end-page: 54 ident: b31 article-title: Identifying topical authorities in microblogs publication-title: Proceedings of the Forth International Conference on Web Search and Web Data Mining – volume: 486 start-page: 242 year: 2017 end-page: 250 ident: b17 article-title: Identifying node spreading influence for tunable clustering coefficient networks publication-title: Physica A – volume: 215 start-page: 79 year: 2014 end-page: 119 ident: b28 article-title: On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach publication-title: Artificial Intelligence – volume: 7 start-page: 27272 year: 2019 end-page: 27287 ident: b39 article-title: Location-based seeds selection for influence blocking maximization in social networks publication-title: IEEE Access – volume: 524 start-page: 64 year: 2015 end-page: 68 ident: b14 article-title: Influence maximization in complex networks through optimal percolation publication-title: Nature – volume: 33 start-page: 191 year: 2011 end-page: 200 ident: b27 article-title: Centrality in directed social networks. a game theoretic approach publication-title: Social Networks – start-page: 787 year: 2015 end-page: 792 ident: b25 article-title: Determining influential users with supervised random walks publication-title: Proceedings of the 24th International Conference on World Wide Web Companion – volume: 130 start-page: 317 year: 2014 end-page: 342 ident: b36 article-title: Centrality measures, upper bound, and influence maximization in large scale directed social networks publication-title: Fund. Inform. – volume: vol. 3580 start-page: 1127 year: 2005 ident: 10.1016/j.physa.2019.121430_b21 article-title: Influential nodes in a diffusion model for social networks – volume: 140 start-page: 92 year: 2018 ident: 10.1016/j.physa.2019.121430_b18 article-title: Centrality measure in social networks based on linear threshold model publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.029 – volume: 486 start-page: 242 year: 2017 ident: 10.1016/j.physa.2019.121430_b17 article-title: Identifying node spreading influence for tunable clustering coefficient networks publication-title: Physica A doi: 10.1016/j.physa.2017.05.037 – year: 2010 ident: 10.1016/j.physa.2019.121430_b1 – volume: 524 start-page: 64 year: 2015 ident: 10.1016/j.physa.2019.121430_b14 article-title: Influence maximization in complex networks through optimal percolation publication-title: Nature doi: 10.1038/nature14604 – volume: 18 start-page: 39 issue: 1 year: 1953 ident: 10.1016/j.physa.2019.121430_b20 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – volume: 226 start-page: 354 issue: 2 year: 2013 ident: 10.1016/j.physa.2019.121430_b23 article-title: Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2012.11.027 – year: 2017 ident: 10.1016/j.physa.2019.121430_b41 – volume: 41 start-page: 5115 issue: 11 year: 2014 ident: 10.1016/j.physa.2019.121430_b13 article-title: Social network user influence sense-making and dynamics prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.02.038 – volume: 1 start-page: 215 issue: 3 year: 1979 ident: 10.1016/j.physa.2019.121430_b22 article-title: Centrality in social networks: Conceptual clarification publication-title: Social Networks doi: 10.1016/0378-8733(78)90021-7 – volume: 242 start-page: 960 issue: 3 year: 2015 ident: 10.1016/j.physa.2019.121430_b3 article-title: Cooperation through social influence publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2014.11.006 – start-page: 57 year: 2001 ident: 10.1016/j.physa.2019.121430_b8 article-title: Mining the network value of customers – volume: 74 start-page: 715 issue: 6 year: 2007 ident: 10.1016/j.physa.2019.121430_b43 article-title: On S-curves and tipping points publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2006.11.006 – volume: vol. 6744 start-page: 242 year: 2011 ident: 10.1016/j.physa.2019.121430_b35 article-title: A new centrality measure for influence maximization in social networks – volume: 6 start-page: 67783 year: 2018 ident: 10.1016/j.physa.2019.121430_b15 article-title: Exploring collaborative writing of user stories with multimodal learning analytics: A case study on a software engineering course publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876801 – volume: 8 start-page: 13 issue: 1 year: 2018 ident: 10.1016/j.physa.2019.121430_b34 article-title: Study on centrality measures in social networks: a survey publication-title: Social Netw. Anal. Min. doi: 10.1007/s13278-018-0493-2 – start-page: 509 year: 2006 ident: 10.1016/j.physa.2019.121430_b11 article-title: Personalized recommendation driven by information flow – start-page: 13:1 year: 2013 ident: 10.1016/j.physa.2019.121430_b32 article-title: Exploring celebrity dynamics on twitter – start-page: 4292 year: 2015 ident: 10.1016/j.physa.2019.121430_b40 article-title: The network data repository with interactive graph analytics and visualization – volume: 7 start-page: 27272 year: 2019 ident: 10.1016/j.physa.2019.121430_b39 article-title: Location-based seeds selection for influence blocking maximization in social networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900708 – volume: 33 start-page: 191 issue: 3 year: 2011 ident: 10.1016/j.physa.2019.121430_b27 article-title: Centrality in directed social networks. a game theoretic approach publication-title: Social Networks doi: 10.1016/j.socnet.2011.04.001 – start-page: 45 year: 2011 ident: 10.1016/j.physa.2019.121430_b31 article-title: Identifying topical authorities in microblogs – volume: 52 start-page: 949 issue: 5 year: 2016 ident: 10.1016/j.physa.2019.121430_b16 article-title: Measuring user influence on Twitter: A survey publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2016.04.003 – volume: 512 start-page: 1085 year: 2018 ident: 10.1016/j.physa.2019.121430_b38 article-title: IMPC: Influence maximization based on multi-neighbor potential in community networks publication-title: Physica A doi: 10.1016/j.physa.2018.08.045 – volume: 83 start-page: 1420 issue: 6 year: 1978 ident: 10.1016/j.physa.2019.121430_b5 article-title: Threshold models of collective behavior publication-title: Am. J. Sociol. doi: 10.1086/226707 – volume: 6 start-page: 30:1 issue: 3 year: 2015 ident: 10.1016/j.physa.2019.121430_b26 article-title: Identifying authorities in online communities publication-title: ACM TIST – volume: 130 start-page: 317 issue: 3 year: 2014 ident: 10.1016/j.physa.2019.121430_b36 article-title: Centrality measures, upper bound, and influence maximization in large scale directed social networks publication-title: Fund. Inform. – year: 2001 ident: 10.1016/j.physa.2019.121430_b7 – volume: 215 start-page: 79 year: 2014 ident: 10.1016/j.physa.2019.121430_b28 article-title: On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach publication-title: Artificial Intelligence doi: 10.1016/j.artint.2014.06.004 – volume: 1 start-page: 2 issue: 1 year: 2007 ident: 10.1016/j.physa.2019.121430_b44 article-title: Graph evolution: Densification and shrinking diameters publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/1217299.1217301 – volume: 50 start-page: 1833 issue: 12-Supplement year: 2004 ident: 10.1016/j.physa.2019.121430_b46 article-title: Comments on “a new product growth for model consumer durables the bass model” publication-title: Manage. Sci. doi: 10.1287/mnsc.1040.0300 – volume: 27 start-page: 187 issue: 3 year: 2005 ident: 10.1016/j.physa.2019.121430_b10 article-title: How to search a social network publication-title: Social Networks doi: 10.1016/j.socnet.2005.01.007 – volume: vol. 291 start-page: 23 year: 2014 ident: 10.1016/j.physa.2019.121430_b29 article-title: Power indices of influence games and new centrality measures for agent societies and social networks – volume: 11 start-page: 105 year: 2015 ident: 10.1016/j.physa.2019.121430_b4 article-title: Maximizing the spread of influence through a social network publication-title: Theory Comput. doi: 10.4086/toc.2015.v011a004 – year: 1978 ident: 10.1016/j.physa.2019.121430_b6 – start-page: 89 year: 2011 ident: 10.1016/j.physa.2019.121430_b42 article-title: Political polarization on twitter – start-page: 31 year: 2011 ident: 10.1016/j.physa.2019.121430_b33 article-title: Measuring influence on twitter – volume: 15 start-page: 215 issue: 5 year: 1969 ident: 10.1016/j.physa.2019.121430_b45 article-title: A new product growth for model consumer durables publication-title: Manage. Sci. doi: 10.1287/mnsc.15.5.215 – volume: 6 start-page: 43 issue: 2 year: 2004 ident: 10.1016/j.physa.2019.121430_b9 article-title: Information diffusion through blogspace publication-title: SIGKDD Explor. doi: 10.1145/1046456.1046462 – volume: 42 start-page: 74 year: 2013 ident: 10.1016/j.physa.2019.121430_b12 article-title: Identifying influential nodes in complex networks with community structure publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.01.017 – start-page: 787 year: 2015 ident: 10.1016/j.physa.2019.121430_b25 article-title: Determining influential users with supervised random walks – year: 1999 ident: 10.1016/j.physa.2019.121430_b19 – start-page: 177 year: 2011 ident: 10.1016/j.physa.2019.121430_b2 article-title: A survey of models and algorithms for social influence analysis – start-page: 767 year: 2015 ident: 10.1016/j.physa.2019.121430_b24 article-title: Trank: Ranking twitter users according to specific topics – start-page: 675 year: 2015 ident: 10.1016/j.physa.2019.121430_b37 article-title: New centrality measure in social networks based on independent Cascade (IC) model – volume: 94 start-page: 38001 issue: 3 year: 2011 ident: 10.1016/j.physa.2019.121430_b30 article-title: De retibus socialibus et legibus momenti publication-title: Europhys. Lett. doi: 10.1209/0295-5075/94/38001 |
| SSID | ssj0001732 |
| Score | 2.3442843 |
| Snippet | Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on... |
| SourceID | csuc crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 121430 |
| SubjectTerms | 05 Combinatorics 05C Graph theory 68 Computer science 68R Discrete mathematics in relation to computer science 91 Game theory, economics, social and behavioral sciences 91D Mathematical sociology Centrality Classificació AMS Influència social Investigació operativa Linear threshold model Matemàtiques i estadística Mathematical models Models matemàtics Neighborhood Social influence Social network Social networks Spread of influence Teoria de jocs Xarxes socials Àrees temàtiques de la UPC |
| Title | The neighborhood role in the linear threshold rank on social networks |
| URI | https://dx.doi.org/10.1016/j.physa.2019.121430 https://recercat.cat/handle/2072/362869 |
| Volume | 528 |
| WOSCitedRecordID | wos000474682200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagA4mXadxEYUN-4AnIlNhNHT9OU8dFME1oSH2zHMdGnSp3ajo07ddzTuy4HaCKPfDQqE0T18r31f58fC6EvGGy0rmxTVYYhwsUZzNdFyazFW-4kKIsTJcy_4s4Pa2mU3kW3YrarpyA8L66vpaX_xVqOAdgY-jsHeBOjcIJeA-gwxFgh-M_A-_R4AnodjmLOwfC6M6IolKjXyGssnHj6R3WbMcNg2g798ErvN3UrGcByrXV8xvmfJ2H8uonup51m-1FYtmHhb-BaecmO-5Q-zELZaNArNbzRQIYiwXZEGQz1Tg5J1uPjXFqX3VwgU5WCQyEqrIQl9lHY8HqdMRDeZV-pC1jHHgYKwsGWi3_6zAeLAoXh2jdweRQhTxcX307afZvk1lyMey91y5U14jCRlRo5D7ZYaKUMIzvHH2aTD-nmbsQPOw6xb73Wao6f8A_-nJLyQxMe2U2BM2GSDnfI7txdUGPAisek3vWPyEPA4DtUzIBbtBNblDkBp15CtyggRs0cYMiN-jC08AN2nPjGfl-Mjk__pjFOhqZ4TJfZc4WsjZSNBzEt5CsbkBDjqQzGqsdaG6ZcWOujYTFK3OlEw1MeiDUHS8bJ0HQPicDv_D2BaHC8lLD17bCJEEMtOKYCZlzbhyrmpEeEtY_E2ViknmsdTJXW_AYkvfppsuQY2X75W_xYStQBHZp9EphhvT0AV8sF0xxDLqWQzLuIVFRUwatqIBr237l5d069Yo8Wv8N9slgtbyyB-SB-bmatcvXkWi_AE75l_U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neighborhood+role+in+the+linear+threshold+rank+on+social+networks&rft.jtitle=Physica+A&rft.au=Riquelme%2C+Fabi%C3%A1n&rft.au=Gonzalez-Cantergiani%2C+Pablo&rft.au=Molinero%2C+Xavier&rft.au=Serna%2C+Maria&rft.date=2019-08-15&rft.issn=0378-4371&rft.volume=528&rft.spage=121430&rft_id=info:doi/10.1016%2Fj.physa.2019.121430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_121430 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |