The neighborhood role in the linear threshold rank on social networks

Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica A Ročník 528; s. 121430
Hlavní autoři: Riquelme, Fabián, Gonzalez-Cantergiani, Pablo, Molinero, Xavier, Serna, Maria
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier B.V 15.08.2019
Témata:
ISSN:0378-4371, 1873-2119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization. •Linear Threshold Rank is a centrality measure to identify influential actors on a social network.•We generalize the LTR measure to expand the neighbors distance in the initial activation set.•We appraise the viability of the approach through different case studies.•Using neighbors at larger distance, the rankings distinguish better the influential actors.•The generalization is validated since the rankings for different levels are not highly correlated.
AbstractList Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization Peer Reviewed
Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on topological criteria, have been proposed and studied. In recent years new centrality measures have been defined inspired by the two main influence spread models, namely, the Independent Cascade Model (IC-model) and the Linear Threshold Model (LT-model). The Linear Threshold Rank (LTR) is defined as the total number of influenced nodes when the initial activation set is formed by a node and its immediate neighbors. It has been shown that LTR allows to rank influential actors in a more distinguishable way than other measures like the PageRank, the Katz centrality, or the Independent Cascade Rank. In this paper we propose a generalized LTR measure that explore the sensitivity of the original LTR, with respect to the distance of the neighbors included in the initial activation set. We appraise the viability of the approach through different case studies. Our results show that by using neighbors at larger distance, we obtain rankings that distinguish better the influential actors. However, the best differentiating ranks correspond to medium distances. Our experiments also show that the rankings obtained for the different levels of neighborhood are not highly correlated, which validates the measure generalization. •Linear Threshold Rank is a centrality measure to identify influential actors on a social network.•We generalize the LTR measure to expand the neighbors distance in the initial activation set.•We appraise the viability of the approach through different case studies.•Using neighbors at larger distance, the rankings distinguish better the influential actors.•The generalization is validated since the rankings for different levels are not highly correlated.
ArticleNumber 121430
Author Riquelme, Fabián
Molinero, Xavier
Gonzalez-Cantergiani, Pablo
Serna, Maria
Author_xml – sequence: 1
  givenname: Fabián
  surname: Riquelme
  fullname: Riquelme, Fabián
  email: fabian.riquelme@uv.cl
  organization: Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, Chile
– sequence: 2
  givenname: Pablo
  surname: Gonzalez-Cantergiani
  fullname: Gonzalez-Cantergiani, Pablo
  email: gonzalezcantergiani@gmail.com
  organization: Independent Researcher
– sequence: 3
  givenname: Xavier
  surname: Molinero
  fullname: Molinero, Xavier
  email: xavier.molinero@upc.edu
  organization: Mathematics Department and Barcelona Graduate School of Mathematics, Universitat Politècnica de Catalunya, Spain
– sequence: 4
  givenname: Maria
  surname: Serna
  fullname: Serna, Maria
  email: mjserna@cs.upc.edu
  organization: Computer Science Department and Barcelona Graduate School of Mathematics, Universitat Politècnica de Catalunya, Spain
BookMark eNqFkE1LAzEQhoNUsK3-Ai_7B3bNx-5mc_AgpX5AwUs9hzSZuGnXpCSr0n_vri0IHvQwzAwvzzA8MzTxwQNC1wQXBJP6Zlvs20NSBcVEFISSkuEzNCUNZzklREzQFDPe5CXj5ALNUtpijAlndIqW6xYyD-613YTYhmCyGDrInM_6IeicBxWHMUJqQzeEyu-y4LMUtFPdAPafIe7SJTq3qktwdepz9HK_XC8e89Xzw9PibpVrJnCfWyBiowU3jNSMC7oxVVWWwmrV0IYrBlTbmiktyoZTW1lulDElqS2rjBWNYHNEjnd1etcygoaoVS-Dcj_LWBRzKllNm3pk2ImJIaUIVu6je1PxIAmWoz25ld_25GhPHu0NlPhFader3gXfR-W6f9jbIwuDig8HUSbtwGswbviylya4P_kv586Ovw
CitedBy_id crossref_primary_10_1016_j_asoc_2024_111343
crossref_primary_10_1016_j_knosys_2022_109922
crossref_primary_10_1109_ACCESS_2025_3553732
crossref_primary_10_1016_j_cosrev_2020_100343
crossref_primary_10_1016_j_knosys_2020_106623
crossref_primary_10_32604_cmc_2022_021804
crossref_primary_10_1007_s12597_023_00662_z
crossref_primary_10_3390_sym14030581
Cites_doi 10.1016/j.knosys.2017.10.029
10.1016/j.physa.2017.05.037
10.1038/nature14604
10.1007/BF02289026
10.1016/j.ejor.2012.11.027
10.1016/j.eswa.2014.02.038
10.1016/0378-8733(78)90021-7
10.1016/j.ejor.2014.11.006
10.1016/j.techfore.2006.11.006
10.1109/ACCESS.2018.2876801
10.1007/s13278-018-0493-2
10.1109/ACCESS.2019.2900708
10.1016/j.socnet.2011.04.001
10.1016/j.ipm.2016.04.003
10.1016/j.physa.2018.08.045
10.1086/226707
10.1016/j.artint.2014.06.004
10.1145/1217299.1217301
10.1287/mnsc.1040.0300
10.1016/j.socnet.2005.01.007
10.4086/toc.2015.v011a004
10.1287/mnsc.15.5.215
10.1145/1046456.1046462
10.1016/j.knosys.2013.01.017
10.1209/0295-5075/94/38001
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
– sequence: 4
  fullname: Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
Copyright 2019 Elsevier B.V.
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
XX2
DOI 10.1016/j.physa.2019.121430
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID oai_recercat_cat_2072_362869
10_1016_j_physa_2019_121430
S0378437119308349
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
XX2
ID FETCH-LOGICAL-c390t-fe19bc97d3163792bd55449fca8287a3e2cf63ac94872f5f7dadd416f35df9893
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474682200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Fri Nov 07 13:53:20 EST 2025
Sat Nov 29 02:47:46 EST 2025
Tue Nov 18 21:45:31 EST 2025
Fri Feb 23 02:33:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 91D30
05C22
Linear threshold model
Centrality
Social network
68R10
Spread of influence
Neighborhood
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-fe19bc97d3163792bd55449fca8287a3e2cf63ac94872f5f7dadd416f35df9893
OpenAccessLink https://recercat.cat/handle/2072/362869
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_362869
crossref_primary_10_1016_j_physa_2019_121430
crossref_citationtrail_10_1016_j_physa_2019_121430
elsevier_sciencedirect_doi_10_1016_j_physa_2019_121430
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Riquelme, Gonzalez-Cantergiani (b16) 2016; 52
Molinero, Riquelme, Serna (b3) 2015; 242
Zhang, Zhu, Wang, Zhao (b12) 2013; 42
Song, Tseng, Lin, Sun (b11) 2006
Morone, Makse (b14) 2015; 524
Wu, Shang, Zhou, Zhong, Feng, Qiang (b38) 2018; 512
Bass (b46) 2004; 50
Srinivasan, Srinivasa, Thulasidasan (b32) 2013
Conover, Ratkiewicz, Francisco, Gonçalves, Menczer, Flammini (b42) 2011
Gayo-Avello, Brenes, Fernández-Fernández, Fernández-Fernández, García-Suárez (b30) 2011; 94
Pal, Kundu, Murthy (b36) 2014; 130
Easley, Kleinberg (b1) 2010
Gómez, Figueira, Eusébio (b23) 2013; 226
Adamic, Adar (b10) 2005; 27
Bouguessa, Romdhane (b26) 2015; 6
Granovetter (b5) 1978; 83
Riquelme, Cantergiani, Molinero, Serna (b18) 2018; 140
Irfan, Ortiz (b28) 2014; 215
Wang, Han, Zhao (b17) 2017; 486
Katsimpras, Vogiatzis, Paliouras (b25) 2015
Li, Peng, Li, Sun, Li, Xu (b13) 2014; 41
Das, Samanta, Pal (b34) 2018; 8
Bass (b45) 1969; 15
Katz (b20) 1953; 18
Kempe, Kleinberg, Tardos (b21) 2005; vol. 3580
Anger, Kittl (b33) 2011
Zhu, Yang, Xuan, Man, Wang, Du, Guizani (b39) 2019; 7
Kempe, Kleinberg, Tardos (b4) 2015; 11
Noël, Riquelme, Mac Lean, Merino, Cechinel, Barcelos, Villarroel, Muñoz (b15) 2018; 6
Domingos, Richardson (b8) 2001
Freeman (b22) 1979; 1
Rossi, Ahmed (b40) 2015
Montangero, Furini (b24) 2015
Schelling (b6) 1978
Molinero, Riquelme, Serna (b29) 2014; vol. 291
Sun, Tang (b2) 2011
Phillips (b43) 2007; 74
Page, Brin, Motwani, Winograd (b19) 1999
Gruhl, Liben-Nowell, Guha, Tomkins (b9) 2004; 6
Kundu, Murthy, Pal (b35) 2011; vol. 6744
Gaye, Mendy, Ouya, Seck (b37) 2015
Pal, Counts (b31) 2011
Goldenberg, Libai, Muller (b7) 2001
Leskovec, Krevl (b41) 2017
del Pozo, Manuel, González-Arangüena, Owen (b27) 2011; 33
Leskovec, Kleinberg, Faloutsos (b44) 2007; 1
Katz (10.1016/j.physa.2019.121430_b20) 1953; 18
Freeman (10.1016/j.physa.2019.121430_b22) 1979; 1
Rossi (10.1016/j.physa.2019.121430_b40) 2015
Kempe (10.1016/j.physa.2019.121430_b21) 2005; vol. 3580
Montangero (10.1016/j.physa.2019.121430_b24) 2015
Bass (10.1016/j.physa.2019.121430_b45) 1969; 15
Noël (10.1016/j.physa.2019.121430_b15) 2018; 6
Kundu (10.1016/j.physa.2019.121430_b35) 2011; vol. 6744
Phillips (10.1016/j.physa.2019.121430_b43) 2007; 74
Anger (10.1016/j.physa.2019.121430_b33) 2011
Li (10.1016/j.physa.2019.121430_b13) 2014; 41
Gaye (10.1016/j.physa.2019.121430_b37) 2015
Wu (10.1016/j.physa.2019.121430_b38) 2018; 512
Leskovec (10.1016/j.physa.2019.121430_b41) 2017
Easley (10.1016/j.physa.2019.121430_b1) 2010
Conover (10.1016/j.physa.2019.121430_b42) 2011
Molinero (10.1016/j.physa.2019.121430_b3) 2015; 242
Goldenberg (10.1016/j.physa.2019.121430_b7) 2001
Riquelme (10.1016/j.physa.2019.121430_b16) 2016; 52
Das (10.1016/j.physa.2019.121430_b34) 2018; 8
Granovetter (10.1016/j.physa.2019.121430_b5) 1978; 83
Adamic (10.1016/j.physa.2019.121430_b10) 2005; 27
Page (10.1016/j.physa.2019.121430_b19) 1999
Sun (10.1016/j.physa.2019.121430_b2) 2011
Leskovec (10.1016/j.physa.2019.121430_b44) 2007; 1
Bass (10.1016/j.physa.2019.121430_b46) 2004; 50
Gruhl (10.1016/j.physa.2019.121430_b9) 2004; 6
Bouguessa (10.1016/j.physa.2019.121430_b26) 2015; 6
Katsimpras (10.1016/j.physa.2019.121430_b25) 2015
Irfan (10.1016/j.physa.2019.121430_b28) 2014; 215
del Pozo (10.1016/j.physa.2019.121430_b27) 2011; 33
Kempe (10.1016/j.physa.2019.121430_b4) 2015; 11
Molinero (10.1016/j.physa.2019.121430_b29) 2014; vol. 291
Pal (10.1016/j.physa.2019.121430_b31) 2011
Morone (10.1016/j.physa.2019.121430_b14) 2015; 524
Gayo-Avello (10.1016/j.physa.2019.121430_b30) 2011; 94
Domingos (10.1016/j.physa.2019.121430_b8) 2001
Riquelme (10.1016/j.physa.2019.121430_b18) 2018; 140
Srinivasan (10.1016/j.physa.2019.121430_b32) 2013
Zhang (10.1016/j.physa.2019.121430_b12) 2013; 42
Song (10.1016/j.physa.2019.121430_b11) 2006
Schelling (10.1016/j.physa.2019.121430_b6) 1978
Gómez (10.1016/j.physa.2019.121430_b23) 2013; 226
Wang (10.1016/j.physa.2019.121430_b17) 2017; 486
Pal (10.1016/j.physa.2019.121430_b36) 2014; 130
Zhu (10.1016/j.physa.2019.121430_b39) 2019; 7
References_xml – start-page: 57
  year: 2001
  end-page: 66
  ident: b8
  article-title: Mining the network value of customers
  publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 11
  start-page: 105
  year: 2015
  end-page: 147
  ident: b4
  article-title: Maximizing the spread of influence through a social network
  publication-title: Theory Comput.
– year: 1999
  ident: b19
  article-title: The pagerank citation ranking: Bringing order to the web
– start-page: 31
  year: 2011
  ident: b33
  article-title: Measuring influence on twitter
  publication-title: I-KNOW 2011, 11th International Conference on Knowledge Management and Knowledge Technologies
– volume: 8
  start-page: 13
  year: 2018
  ident: b34
  article-title: Study on centrality measures in social networks: a survey
  publication-title: Social Netw. Anal. Min.
– year: 2001
  ident: b7
  article-title: Using complex systems analysis to advance marketing theory development
– year: 2010
  ident: b1
  article-title: Networks, Crowds, and Markets - Reasoning About a Highly Connected World
– volume: 74
  start-page: 715
  year: 2007
  end-page: 730
  ident: b43
  article-title: On
  publication-title: Technol. Forecast. Soc. Change
– volume: 83
  start-page: 1420
  year: 1978
  end-page: 1443
  ident: b5
  article-title: Threshold models of collective behavior
  publication-title: Am. J. Sociol.
– start-page: 675
  year: 2015
  end-page: 680
  ident: b37
  article-title: New centrality measure in social networks based on independent Cascade (IC) model
  publication-title: 3rd International Conference on Future Internet of Things and Cloud
– volume: 140
  start-page: 92
  year: 2018
  end-page: 102
  ident: b18
  article-title: Centrality measure in social networks based on linear threshold model
  publication-title: Knowl.-Based Syst.
– year: 2017
  ident: b41
  article-title: SNAP Datasets: Stanford large network dataset collection
– start-page: 767
  year: 2015
  end-page: 772
  ident: b24
  article-title: Trank: Ranking twitter users according to specific topics
  publication-title: 12th Annual IEEE Consumer Communications and Networking Conference
– volume: 94
  start-page: 38001
  year: 2011
  ident: b30
  article-title: De retibus socialibus et legibus momenti
  publication-title: Europhys. Lett.
– volume: 242
  start-page: 960
  year: 2015
  end-page: 974
  ident: b3
  article-title: Cooperation through social influence
  publication-title: European J. Oper. Res.
– volume: vol. 291
  start-page: 23
  year: 2014
  end-page: 30
  ident: b29
  article-title: Power indices of influence games and new centrality measures for agent societies and social networks
  publication-title: Ambient Intelligence - Software and Applications — 5th International Symposium on Ambient Intelligence
– volume: 41
  start-page: 5115
  year: 2014
  end-page: 5124
  ident: b13
  article-title: Social network user influence sense-making and dynamics prediction
  publication-title: Expert Syst. Appl.
– volume: 52
  start-page: 949
  year: 2016
  end-page: 975
  ident: b16
  article-title: Measuring user influence on Twitter: A survey
  publication-title: Inf. Process. Manage.
– volume: 226
  start-page: 354
  year: 2013
  end-page: 365
  ident: b23
  article-title: Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems
  publication-title: European J. Oper. Res.
– volume: 6
  start-page: 30:1
  year: 2015
  end-page: 30:23
  ident: b26
  article-title: Identifying authorities in online communities
  publication-title: ACM TIST
– start-page: 13:1
  year: 2013
  end-page: 13:4
  ident: b32
  article-title: Exploring celebrity dynamics on twitter
  publication-title: Proceedings of the 5th IBM Collaborative Academia Research Exchange Workshop
– start-page: 509
  year: 2006
  end-page: 516
  ident: b11
  article-title: Personalized recommendation driven by information flow
  publication-title: SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 6
  start-page: 67783
  year: 2018
  end-page: 67798
  ident: b15
  article-title: Exploring collaborative writing of user stories with multimodal learning analytics: A case study on a software engineering course
  publication-title: IEEE Access
– volume: 1
  start-page: 2
  year: 2007
  ident: b44
  article-title: Graph evolution: Densification and shrinking diameters
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 4292
  year: 2015
  end-page: 4293
  ident: b40
  article-title: The network data repository with interactive graph analytics and visualization
  publication-title: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
– volume: 50
  start-page: 1833
  year: 2004
  end-page: 1840
  ident: b46
  article-title: Comments on “a new product growth for model consumer durables the bass model”
  publication-title: Manage. Sci.
– volume: 15
  start-page: 215
  year: 1969
  end-page: 227
  ident: b45
  article-title: A new product growth for model consumer durables
  publication-title: Manage. Sci.
– start-page: 177
  year: 2011
  end-page: 214
  ident: b2
  article-title: A survey of models and algorithms for social influence analysis
  publication-title: Social Network Data Analytics
– volume: vol. 3580
  start-page: 1127
  year: 2005
  end-page: 1138
  ident: b21
  article-title: Influential nodes in a diffusion model for social networks
  publication-title: Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11–15, 2005, Proceedings
– volume: 512
  start-page: 1085
  year: 2018
  end-page: 1103
  ident: b38
  article-title: IMPC: Influence maximization based on multi-neighbor potential in community networks
  publication-title: Physica A
– volume: vol. 6744
  start-page: 242
  year: 2011
  end-page: 247
  ident: b35
  article-title: A new centrality measure for influence maximization in social networks
  publication-title: Pattern Recognition and Machine Intelligence - 4th International Conference, PReMI 2011, Moscow, Russia, June 27–July 1, 2011. Proceedings
– volume: 18
  start-page: 39
  year: 1953
  end-page: 43
  ident: b20
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
– volume: 1
  start-page: 215
  year: 1979
  end-page: 239
  ident: b22
  article-title: Centrality in social networks: Conceptual clarification
  publication-title: Social Networks
– start-page: 89
  year: 2011
  end-page: 96
  ident: b42
  article-title: Political polarization on twitter
  publication-title: Proceedings of the Fifth International Conference on Weblogs and Social Media
– year: 1978
  ident: b6
  article-title: Micromotives and Macrobehavior
– volume: 27
  start-page: 187
  year: 2005
  end-page: 203
  ident: b10
  article-title: How to search a social network
  publication-title: Social Networks
– volume: 6
  start-page: 43
  year: 2004
  end-page: 52
  ident: b9
  article-title: Information diffusion through blogspace
  publication-title: SIGKDD Explor.
– volume: 42
  start-page: 74
  year: 2013
  end-page: 84
  ident: b12
  article-title: Identifying influential nodes in complex networks with community structure
  publication-title: Knowl.-Based Syst.
– start-page: 45
  year: 2011
  end-page: 54
  ident: b31
  article-title: Identifying topical authorities in microblogs
  publication-title: Proceedings of the Forth International Conference on Web Search and Web Data Mining
– volume: 486
  start-page: 242
  year: 2017
  end-page: 250
  ident: b17
  article-title: Identifying node spreading influence for tunable clustering coefficient networks
  publication-title: Physica A
– volume: 215
  start-page: 79
  year: 2014
  end-page: 119
  ident: b28
  article-title: On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach
  publication-title: Artificial Intelligence
– volume: 7
  start-page: 27272
  year: 2019
  end-page: 27287
  ident: b39
  article-title: Location-based seeds selection for influence blocking maximization in social networks
  publication-title: IEEE Access
– volume: 524
  start-page: 64
  year: 2015
  end-page: 68
  ident: b14
  article-title: Influence maximization in complex networks through optimal percolation
  publication-title: Nature
– volume: 33
  start-page: 191
  year: 2011
  end-page: 200
  ident: b27
  article-title: Centrality in directed social networks. a game theoretic approach
  publication-title: Social Networks
– start-page: 787
  year: 2015
  end-page: 792
  ident: b25
  article-title: Determining influential users with supervised random walks
  publication-title: Proceedings of the 24th International Conference on World Wide Web Companion
– volume: 130
  start-page: 317
  year: 2014
  end-page: 342
  ident: b36
  article-title: Centrality measures, upper bound, and influence maximization in large scale directed social networks
  publication-title: Fund. Inform.
– volume: vol. 3580
  start-page: 1127
  year: 2005
  ident: 10.1016/j.physa.2019.121430_b21
  article-title: Influential nodes in a diffusion model for social networks
– volume: 140
  start-page: 92
  year: 2018
  ident: 10.1016/j.physa.2019.121430_b18
  article-title: Centrality measure in social networks based on linear threshold model
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.029
– volume: 486
  start-page: 242
  year: 2017
  ident: 10.1016/j.physa.2019.121430_b17
  article-title: Identifying node spreading influence for tunable clustering coefficient networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.05.037
– year: 2010
  ident: 10.1016/j.physa.2019.121430_b1
– volume: 524
  start-page: 64
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b14
  article-title: Influence maximization in complex networks through optimal percolation
  publication-title: Nature
  doi: 10.1038/nature14604
– volume: 18
  start-page: 39
  issue: 1
  year: 1953
  ident: 10.1016/j.physa.2019.121430_b20
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 226
  start-page: 354
  issue: 2
  year: 2013
  ident: 10.1016/j.physa.2019.121430_b23
  article-title: Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2012.11.027
– year: 2017
  ident: 10.1016/j.physa.2019.121430_b41
– volume: 41
  start-page: 5115
  issue: 11
  year: 2014
  ident: 10.1016/j.physa.2019.121430_b13
  article-title: Social network user influence sense-making and dynamics prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.02.038
– volume: 1
  start-page: 215
  issue: 3
  year: 1979
  ident: 10.1016/j.physa.2019.121430_b22
  article-title: Centrality in social networks: Conceptual clarification
  publication-title: Social Networks
  doi: 10.1016/0378-8733(78)90021-7
– volume: 242
  start-page: 960
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b3
  article-title: Cooperation through social influence
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.006
– start-page: 57
  year: 2001
  ident: 10.1016/j.physa.2019.121430_b8
  article-title: Mining the network value of customers
– volume: 74
  start-page: 715
  issue: 6
  year: 2007
  ident: 10.1016/j.physa.2019.121430_b43
  article-title: On S-curves and tipping points
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2006.11.006
– volume: vol. 6744
  start-page: 242
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b35
  article-title: A new centrality measure for influence maximization in social networks
– volume: 6
  start-page: 67783
  year: 2018
  ident: 10.1016/j.physa.2019.121430_b15
  article-title: Exploring collaborative writing of user stories with multimodal learning analytics: A case study on a software engineering course
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876801
– volume: 8
  start-page: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.physa.2019.121430_b34
  article-title: Study on centrality measures in social networks: a survey
  publication-title: Social Netw. Anal. Min.
  doi: 10.1007/s13278-018-0493-2
– start-page: 509
  year: 2006
  ident: 10.1016/j.physa.2019.121430_b11
  article-title: Personalized recommendation driven by information flow
– start-page: 13:1
  year: 2013
  ident: 10.1016/j.physa.2019.121430_b32
  article-title: Exploring celebrity dynamics on twitter
– start-page: 4292
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b40
  article-title: The network data repository with interactive graph analytics and visualization
– volume: 7
  start-page: 27272
  year: 2019
  ident: 10.1016/j.physa.2019.121430_b39
  article-title: Location-based seeds selection for influence blocking maximization in social networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900708
– volume: 33
  start-page: 191
  issue: 3
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b27
  article-title: Centrality in directed social networks. a game theoretic approach
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2011.04.001
– start-page: 45
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b31
  article-title: Identifying topical authorities in microblogs
– volume: 52
  start-page: 949
  issue: 5
  year: 2016
  ident: 10.1016/j.physa.2019.121430_b16
  article-title: Measuring user influence on Twitter: A survey
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2016.04.003
– volume: 512
  start-page: 1085
  year: 2018
  ident: 10.1016/j.physa.2019.121430_b38
  article-title: IMPC: Influence maximization based on multi-neighbor potential in community networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.08.045
– volume: 83
  start-page: 1420
  issue: 6
  year: 1978
  ident: 10.1016/j.physa.2019.121430_b5
  article-title: Threshold models of collective behavior
  publication-title: Am. J. Sociol.
  doi: 10.1086/226707
– volume: 6
  start-page: 30:1
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b26
  article-title: Identifying authorities in online communities
  publication-title: ACM TIST
– volume: 130
  start-page: 317
  issue: 3
  year: 2014
  ident: 10.1016/j.physa.2019.121430_b36
  article-title: Centrality measures, upper bound, and influence maximization in large scale directed social networks
  publication-title: Fund. Inform.
– year: 2001
  ident: 10.1016/j.physa.2019.121430_b7
– volume: 215
  start-page: 79
  year: 2014
  ident: 10.1016/j.physa.2019.121430_b28
  article-title: On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2014.06.004
– volume: 1
  start-page: 2
  issue: 1
  year: 2007
  ident: 10.1016/j.physa.2019.121430_b44
  article-title: Graph evolution: Densification and shrinking diameters
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1217299.1217301
– volume: 50
  start-page: 1833
  issue: 12-Supplement
  year: 2004
  ident: 10.1016/j.physa.2019.121430_b46
  article-title: Comments on “a new product growth for model consumer durables the bass model”
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.1040.0300
– volume: 27
  start-page: 187
  issue: 3
  year: 2005
  ident: 10.1016/j.physa.2019.121430_b10
  article-title: How to search a social network
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2005.01.007
– volume: vol. 291
  start-page: 23
  year: 2014
  ident: 10.1016/j.physa.2019.121430_b29
  article-title: Power indices of influence games and new centrality measures for agent societies and social networks
– volume: 11
  start-page: 105
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b4
  article-title: Maximizing the spread of influence through a social network
  publication-title: Theory Comput.
  doi: 10.4086/toc.2015.v011a004
– year: 1978
  ident: 10.1016/j.physa.2019.121430_b6
– start-page: 89
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b42
  article-title: Political polarization on twitter
– start-page: 31
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b33
  article-title: Measuring influence on twitter
– volume: 15
  start-page: 215
  issue: 5
  year: 1969
  ident: 10.1016/j.physa.2019.121430_b45
  article-title: A new product growth for model consumer durables
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.15.5.215
– volume: 6
  start-page: 43
  issue: 2
  year: 2004
  ident: 10.1016/j.physa.2019.121430_b9
  article-title: Information diffusion through blogspace
  publication-title: SIGKDD Explor.
  doi: 10.1145/1046456.1046462
– volume: 42
  start-page: 74
  year: 2013
  ident: 10.1016/j.physa.2019.121430_b12
  article-title: Identifying influential nodes in complex networks with community structure
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.01.017
– start-page: 787
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b25
  article-title: Determining influential users with supervised random walks
– year: 1999
  ident: 10.1016/j.physa.2019.121430_b19
– start-page: 177
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b2
  article-title: A survey of models and algorithms for social influence analysis
– start-page: 767
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b24
  article-title: Trank: Ranking twitter users according to specific topics
– start-page: 675
  year: 2015
  ident: 10.1016/j.physa.2019.121430_b37
  article-title: New centrality measure in social networks based on independent Cascade (IC) model
– volume: 94
  start-page: 38001
  issue: 3
  year: 2011
  ident: 10.1016/j.physa.2019.121430_b30
  article-title: De retibus socialibus et legibus momenti
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/94/38001
SSID ssj0001732
Score 2.3442843
Snippet Centrality and influence spread are two of the most studied concepts in social network analysis. Several centrality measures, most of them, based on...
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 121430
SubjectTerms 05 Combinatorics
05C Graph theory
68 Computer science
68R Discrete mathematics in relation to computer science
91 Game theory, economics, social and behavioral sciences
91D Mathematical sociology
Centrality
Classificació AMS
Influència social
Investigació operativa
Linear threshold model
Matemàtiques i estadística
Mathematical models
Models matemàtics
Neighborhood
Social influence
Social network
Social networks
Spread of influence
Teoria de jocs
Xarxes socials
Àrees temàtiques de la UPC
Title The neighborhood role in the linear threshold rank on social networks
URI https://dx.doi.org/10.1016/j.physa.2019.121430
https://recercat.cat/handle/2072/362869
Volume 528
WOSCitedRecordID wos000474682200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagA4mXadxEYUN-4AnIlNhNHT9OU8dFME1oSH2zHMdGnSp3ajo07ddzTuy4HaCKPfDQqE0T18r31f58fC6EvGGy0rmxTVYYhwsUZzNdFyazFW-4kKIsTJcy_4s4Pa2mU3kW3YrarpyA8L66vpaX_xVqOAdgY-jsHeBOjcIJeA-gwxFgh-M_A-_R4AnodjmLOwfC6M6IolKjXyGssnHj6R3WbMcNg2g798ErvN3UrGcByrXV8xvmfJ2H8uonup51m-1FYtmHhb-BaecmO-5Q-zELZaNArNbzRQIYiwXZEGQz1Tg5J1uPjXFqX3VwgU5WCQyEqrIQl9lHY8HqdMRDeZV-pC1jHHgYKwsGWi3_6zAeLAoXh2jdweRQhTxcX307afZvk1lyMey91y5U14jCRlRo5D7ZYaKUMIzvHH2aTD-nmbsQPOw6xb73Wao6f8A_-nJLyQxMe2U2BM2GSDnfI7txdUGPAisek3vWPyEPA4DtUzIBbtBNblDkBp15CtyggRs0cYMiN-jC08AN2nPjGfl-Mjk__pjFOhqZ4TJfZc4WsjZSNBzEt5CsbkBDjqQzGqsdaG6ZcWOujYTFK3OlEw1MeiDUHS8bJ0HQPicDv_D2BaHC8lLD17bCJEEMtOKYCZlzbhyrmpEeEtY_E2ViknmsdTJXW_AYkvfppsuQY2X75W_xYStQBHZp9EphhvT0AV8sF0xxDLqWQzLuIVFRUwatqIBr237l5d069Yo8Wv8N9slgtbyyB-SB-bmatcvXkWi_AE75l_U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neighborhood+role+in+the+linear+threshold+rank+on+social+networks&rft.jtitle=Physica+A&rft.au=Riquelme%2C+Fabi%C3%A1n&rft.au=Gonzalez-Cantergiani%2C+Pablo&rft.au=Molinero%2C+Xavier&rft.au=Serna%2C+Maria&rft.date=2019-08-15&rft.issn=0378-4371&rft.volume=528&rft.spage=121430&rft_id=info:doi/10.1016%2Fj.physa.2019.121430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_121430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon