Assuring the safety of rechargeable energy storage systems in electric vehicles

Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in term...

Full description

Saved in:
Bibliographic Details
Published in:Journal of systems architecture Vol. 154; p. 103218
Main Authors: Muram, Faiz Ul, Pop, Paul, Javed, Muhammad Atif
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2024
Subjects:
ISSN:1383-7621, 1873-6165
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in terms of electric driving range and quick acceleration. Despite their advantages, lithium-ion batteries also have limitations. These include the potential for thermal runaway, which can lead to safety hazards if not properly managed, such as outgassing, fire, and explosion that in turn cause significant property damage and fatalities. Published studies on road vehicles have not adequately considered the safety assurance of rechargeable energy storage systems in accordance with ISO 26262 standard. Accordingly in this paper, we focus on the safety assurance of a battery management system (BMS) that prevents thermal runaway and keeps lithium-ion batteries safe in electric vehicles. To this end, the safety life cycle process is performed. At first, the potential hazards that lead to thermal runaway impacting the functions of electric vehicles have been identified and safety goals related to means for preventing and controlling hazards are formulated. Next, the functional safety requirements are derived from each safety goal, and subsequently technical safety requirements are derived. To demonstrate the acceptable safety of electric vehicles using the BMS strategy, the safety cases are developed from the functional safety activities. The safety contracts are derived from battery specifications and chemistry and are associated with safety cases that provide the means for performing necessary adaptations at the operational phase. We leveraged a simulation for performing the verification and validation as well as finetuning of the BMS strategy. Simulation data is gathered, and the critical parameters are monitored to determine safety violations, control actions are triggered to resolve them, and safety cases are updated to reflect the current system safety.
AbstractList Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in terms of electric driving range and quick acceleration. Despite their advantages, lithium-ion batteries also have limitations. These include the potential for thermal runaway, which can lead to safety hazards if not properly managed, such as outgassing, fire, and explosion that in turn cause significant property damage and fatalities. Published studies on road vehicles have not adequately considered the safety assurance of rechargeable energy storage systems in accordance with ISO 26262 standard. Accordingly in this paper, we focus on the safety assurance of a battery management system (BMS) that prevents thermal runaway and keeps lithium-ion batteries safe in electric vehicles. To this end, the safety life cycle process is performed. At first, the potential hazards that lead to thermal runaway impacting the functions of electric vehicles have been identified and safety goals related to means for preventing and controlling hazards are formulated. Next, the functional safety requirements are derived from each safety goal, and subsequently technical safety requirements are derived. To demonstrate the acceptable safety of electric vehicles using the BMS strategy, the safety cases are developed from the functional safety activities. The safety contracts are derived from battery specifications and chemistry and are associated with safety cases that provide the means for performing necessary adaptations at the operational phase. We leveraged a simulation for performing the verification and validation as well as finetuning of the BMS strategy. Simulation data is gathered, and the critical parameters are monitored to determine safety violations, control actions are triggered to resolve them, and safety cases are updated to reflect the current system safety.
ArticleNumber 103218
Author Pop, Paul
Javed, Muhammad Atif
Muram, Faiz Ul
Author_xml – sequence: 1
  givenname: Faiz Ul
  surname: Muram
  fullname: Muram, Faiz Ul
  email: faiz.ulmuram@lnu.se
  organization: Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden
– sequence: 2
  givenname: Paul
  surname: Pop
  fullname: Pop, Paul
  email: paupo@dtu.dk
  organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
– sequence: 3
  givenname: Muhammad Atif
  surname: Javed
  fullname: Javed, Muhammad Atif
  email: atifmuhammad.javed@amaris.com
  organization: Amaris Consulting, Göteborg, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843$$DView record from Swedish Publication Index (Linnéuniversitetet)
BookMark eNqFkLtOwzAUhj0UibbwBgx-gRRfcmVAqspVqtQFWC3HPkldpXZlu0V5e1IFMTDAdKSj7_uHb4Ym1llA6IaSBSU0v90tQh-kVwtGWDq8OKPlBE0pL3lS5IxeolkIO0JIllE2RZtlCEdvbIvjFnCQDcQeuwZ7UFvpW5B1Bxgs-LbHITov24HqQ4R9wMZi6EBFbxQ-wdaoDsIVumhkF-D6-87R-9Pj2-olWW-eX1fLdaJ4RWLSMOB1pmtdMqkLnqdAIWe51ilvJPA8Z7pqaCEzmjW0rCooqGKppLJUOi9qxucoGXfDJxyOtTh4s5e-F04a8WA-lsL5VnT2KCinZcoHPh155V0IHpofgxJxDid2YgwnzuHEGG7Q7n5pykQZjbPRS9P9J9-PMgwhTga8CMqAVaDNkDcK7czfA18-xpH-
CitedBy_id crossref_primary_10_1016_j_est_2025_116073
crossref_primary_10_1177_01445987251348052
crossref_primary_10_1177_14727978251326120
crossref_primary_10_1016_j_apsusc_2024_161821
crossref_primary_10_1051_e3sconf_202457302010
crossref_primary_10_1109_ACCESS_2025_3555969
Cites_doi 10.1016/j.sysarc.2021.102309
10.1016/j.sysarc.2022.102781
10.1016/j.sysarc.2023.103036
10.3390/en14216942
10.1016/j.mattod.2014.10.040
10.1016/j.psep.2023.06.023
10.1007/s10694-020-01038-1
10.1016/j.jpowsour.2013.11.103
10.1016/j.jechem.2020.10.017
10.1016/j.jpowsour.2016.08.133
10.1016/j.sysarc.2020.101914
10.1109/TR.2014.2335995
10.1016/j.jss.2024.112034
10.3390/pr11082345
10.1016/j.applthermaleng.2022.118418
10.1016/j.apenergy.2022.119229
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
DOI 10.1016/j.sysarc.2024.103218
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Linnéuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Linnéuniversitetet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai_DiVA_org_lnu_131843
10_1016_j_sysarc_2024_103218
S1383762124001553
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
U5U
UHS
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
ID FETCH-LOGICAL-c390t-f2e3b5dbd82ad7364e1e626dd43fae3662d9f17a515f1899e71c24a1a8cd67b23
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-7621
1873-6165
IngestDate Tue Nov 04 16:50:40 EST 2025
Sat Nov 29 01:35:59 EST 2025
Tue Nov 18 22:30:36 EST 2025
Sat Sep 14 18:11:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Trade-offs
Thermal runaway
Battery management system
Safety
Reliability
Safety cases
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-f2e3b5dbd82ad7364e1e626dd43fae3662d9f17a515f1899e71c24a1a8cd67b23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843
ParticipantIDs swepub_primary_oai_DiVA_org_lnu_131843
crossref_primary_10_1016_j_sysarc_2024_103218
crossref_citationtrail_10_1016_j_sysarc_2024_103218
elsevier_sciencedirect_doi_10_1016_j_sysarc_2024_103218
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of systems architecture
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stephens, Shawcross, Stout, Sullivan, Saunders, Risser, Sayre (b18) 2017
Object Management Group (OMG) (b19) 2022
Sljivo, Gallina, Carlson, Hansson, Puri (b29) 2018
Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (b1) 2021; 59
Yin, Liu, Cong (b6) 2023; 11
The Assurance Case Working Group (ACWG) (b15) 2021
Wile (b5) 2023
Javed, Muram, Punnekkat, Hansson (b12) 2021; 121
Underwriter Laboratories Inc. (UL) (b16) 2020
International Organization for Standardization (ISO), ISO 26262: 2018-Road Vehicles-Functional Safety, International Standard, 2018.
Marcos, Garmendia, Crego, Cortajarena (b28) 2021; 14
Wei, Foster, Mei, Yan, Yang, Habli, O’Halloran, Tudor, Kelly, Nemouchi (b31) 2024; 213
Bisschop, Willstrand, Amon, Rosengren (b26) 2020; 56
N.T.S. Board, Safety Risks to Emergency Responders from Lithium-Ion Battery Fires in Electric Vehicles, Safety Report NTSB/SR-20/01, 2020,.
Kanwal, Muram, Javed (b22) 2024; 146
Denney, Pai (b13) 2014; 63
Underwriter Laboratories Inc. (UL) (b17) 2020
Hong, Wang, Qu, Zhou, Shan, Zhang, Hou (b10) 2022; 321
Nitta, Wu, Lee, Yushin (b2) 2015; 18
Javed, Muram, Hansson, Punnekkat, Thane (b23) 2021; 114
Shah, Chalise, Jain (b8) 2016; 330
Muram, Gallina, Rodriguez (b30) 2018
Muram, Javed (b24) 2023; 134
Goriparti, Miele, De Angelis, Di Fabrizio, Proietti Zaccaria, Capiglia (b3) 2014; 257
NHTSA (b7) 2023
Ayche, Daboussy, Aglzim (b25) 2018
Wang, Xu, Zhao, Wang, Jin, Li, Sheng, Li, Du, Xu, Feng (b9) 2022; 211
Bisschop, Willstrand, Amon, Rosengren (b11) 2019
Muram, Javed, Punnekkat (b21) 2019
Bu, Wu, Li, Pei (b27) 2023; 176
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, GB/T 39086-2020, Functional Safety Requirements and Testing Methods for Battery Management System of Electric Vehicle, 2020.
Javed (10.1016/j.sysarc.2024.103218_b23) 2021; 114
Nitta (10.1016/j.sysarc.2024.103218_b2) 2015; 18
10.1016/j.sysarc.2024.103218_b14
Underwriter Laboratories Inc. (UL) (10.1016/j.sysarc.2024.103218_b16) 2020
Wei (10.1016/j.sysarc.2024.103218_b31) 2024; 213
Stephens (10.1016/j.sysarc.2024.103218_b18) 2017
Bisschop (10.1016/j.sysarc.2024.103218_b26) 2020; 56
Sljivo (10.1016/j.sysarc.2024.103218_b29) 2018
Goriparti (10.1016/j.sysarc.2024.103218_b3) 2014; 257
Wang (10.1016/j.sysarc.2024.103218_b9) 2022; 211
Javed (10.1016/j.sysarc.2024.103218_b12) 2021; 121
Kanwal (10.1016/j.sysarc.2024.103218_b22) 2024; 146
Muram (10.1016/j.sysarc.2024.103218_b24) 2023; 134
Shah (10.1016/j.sysarc.2024.103218_b8) 2016; 330
Bu (10.1016/j.sysarc.2024.103218_b27) 2023; 176
NHTSA (10.1016/j.sysarc.2024.103218_b7) 2023
Wile (10.1016/j.sysarc.2024.103218_b5) 2023
Object Management Group (OMG) (10.1016/j.sysarc.2024.103218_b19) 2022
Chen (10.1016/j.sysarc.2024.103218_b1) 2021; 59
Muram (10.1016/j.sysarc.2024.103218_b21) 2019
Marcos (10.1016/j.sysarc.2024.103218_b28) 2021; 14
10.1016/j.sysarc.2024.103218_b4
Yin (10.1016/j.sysarc.2024.103218_b6) 2023; 11
Ayche (10.1016/j.sysarc.2024.103218_b25) 2018
Hong (10.1016/j.sysarc.2024.103218_b10) 2022; 321
Denney (10.1016/j.sysarc.2024.103218_b13) 2014; 63
The Assurance Case Working Group (ACWG) (10.1016/j.sysarc.2024.103218_b15) 2021
Bisschop (10.1016/j.sysarc.2024.103218_b11) 2019
10.1016/j.sysarc.2024.103218_b20
Underwriter Laboratories Inc. (UL) (10.1016/j.sysarc.2024.103218_b17) 2020
Muram (10.1016/j.sysarc.2024.103218_b30) 2018
References_xml – start-page: 16
  year: 2018
  end-page: 22
  ident: b25
  article-title: Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle
  publication-title: 2018 Third International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing, EBECEGC 2018, Beirut, Lebanon, April 25-27, 2018
– volume: 63
  start-page: 830
  year: 2014
  end-page: 849
  ident: b13
  article-title: Automating the assembly of aviation safety cases
  publication-title: IEEE Trans. Reliab.
– year: 2021
  ident: b15
  article-title: Goal Structuring Notation Community Standard Version 3
– volume: 14
  year: 2021
  ident: b28
  article-title: Functional safety BMS design methodology for automotive lithium-based batteries
  publication-title: Energies
– start-page: 65
  year: 2018
  end-page: 73
  ident: b30
  article-title: Preventing omission of key evidence fallacy in process-based argumentations
  publication-title: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), Portugal, September 4-7
– volume: 213
  year: 2024
  ident: b31
  article-title: ACCESS: Assurance case centric engineering of safety–critical systems
  publication-title: J. Syst. Softw.
– start-page: 19
  year: 2018
  end-page: 33
  ident: b29
  article-title: Tool-supported safety-relevant component reuse: From specification to argumentation
  publication-title: 23rd International Conference on Reliable Software Technologies (Ada-Europe ’18), Lisbon, Portugal, June 18-22
– year: 2020
  ident: b16
  article-title: UL 1642: Standard for safety for lithium batteries
– year: 2022
  ident: b19
  article-title: Structured Assurance Case Metamodel (SACM), Version 2.2
– volume: 59
  start-page: 83
  year: 2021
  end-page: 99
  ident: b1
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J. Energy Chem.
– volume: 211
  year: 2022
  ident: b9
  article-title: An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
  publication-title: Appl. Therm. Eng.
– volume: 121
  year: 2021
  ident: b12
  article-title: Safe and secure platooning of automated guided vehicles in industry 4.0
  publication-title: J. Syst. Archit.
– year: 2020
  ident: b17
  article-title: UL 2580: Safety requirements for vehicle power batteries
– reference: State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, GB/T 39086-2020, Functional Safety Requirements and Testing Methods for Battery Management System of Electric Vehicle, 2020.
– volume: 56
  start-page: 2671
  year: 2020
  end-page: 2694
  ident: b26
  article-title: Handling lithium-ion batteries in electric vehicles: Preventing and recovering from hazardous events
  publication-title: Fire Technol.
– volume: 321
  year: 2022
  ident: b10
  article-title: Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles
  publication-title: Appl. Energy
– year: 2023
  ident: b7
  article-title: Part 573 safety recall report, 23V-168
– volume: 330
  start-page: 167
  year: 2016
  end-page: 174
  ident: b8
  article-title: Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells
  publication-title: J. Power Sources
– volume: 146
  year: 2024
  ident: b22
  article-title: Systematic review on contract-based safety assurance and guidance for future research
  publication-title: J. Syst. Archit.
– year: 2019
  ident: b11
  article-title: Fire Safety of Lithium-Ion Batteries in Road Vehicles
– volume: 176
  start-page: 627
  year: 2023
  end-page: 640
  ident: b27
  article-title: Operational risk analysis of a containerized lithium-ion battery energy storage system based on STPA and fuzzy evaluation
  publication-title: Process Saf. Environ. Prot.
– volume: 18
  start-page: 252
  year: 2015
  end-page: 264
  ident: b2
  article-title: Li-ion battery materials: present and future
  publication-title: Mater. Today
– reference: N.T.S. Board, Safety Risks to Emergency Responders from Lithium-Ion Battery Fires in Electric Vehicles, Safety Report NTSB/SR-20/01, 2020,.
– year: 2017
  ident: b18
  article-title: Lithium-ion Battery Safety Issues for Electric and Plug-In Hybrid Vehicle
– volume: 134
  year: 2023
  ident: b24
  article-title: ATTEST: Automating the review and update of assurance case arguments
  publication-title: J. Syst. Archit.
– start-page: 394
  year: 2019
  end-page: 401
  ident: b21
  article-title: System of systems hazard analysis using HAZOP and FTA for advanced quarry production
  publication-title: 4th International Conference on System Reliability and Safety, ICSRS 2019, Rome, Italy, November 20-22, 2019
– volume: 257
  start-page: 421
  year: 2014
  end-page: 443
  ident: b3
  article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries
  publication-title: J. Power Sources
– volume: 11
  year: 2023
  ident: b6
  article-title: Review of thermal runaway monitoring, warning and protection technologies for lithium-ion batteries
  publication-title: Processes
– volume: 114
  year: 2021
  ident: b23
  article-title: Towards dynamic safety assurance for Industry 4.0
  publication-title: J. Syst. Archit.
– year: 2023
  ident: b5
  article-title: Car battery ’spontaneously’ catches fire on California freeway
– reference: International Organization for Standardization (ISO), ISO 26262: 2018-Road Vehicles-Functional Safety, International Standard, 2018.
– volume: 121
  year: 2021
  ident: 10.1016/j.sysarc.2024.103218_b12
  article-title: Safe and secure platooning of automated guided vehicles in industry 4.0
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2021.102309
– year: 2020
  ident: 10.1016/j.sysarc.2024.103218_b16
– volume: 134
  year: 2023
  ident: 10.1016/j.sysarc.2024.103218_b24
  article-title: ATTEST: Automating the review and update of assurance case arguments
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2022.102781
– volume: 146
  year: 2024
  ident: 10.1016/j.sysarc.2024.103218_b22
  article-title: Systematic review on contract-based safety assurance and guidance for future research
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2023.103036
– year: 2020
  ident: 10.1016/j.sysarc.2024.103218_b17
– year: 2017
  ident: 10.1016/j.sysarc.2024.103218_b18
– volume: 14
  issue: 21
  year: 2021
  ident: 10.1016/j.sysarc.2024.103218_b28
  article-title: Functional safety BMS design methodology for automotive lithium-based batteries
  publication-title: Energies
  doi: 10.3390/en14216942
– year: 2023
  ident: 10.1016/j.sysarc.2024.103218_b7
– volume: 18
  start-page: 252
  issue: 5
  year: 2015
  ident: 10.1016/j.sysarc.2024.103218_b2
  article-title: Li-ion battery materials: present and future
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.10.040
– year: 2022
  ident: 10.1016/j.sysarc.2024.103218_b19
– volume: 176
  start-page: 627
  year: 2023
  ident: 10.1016/j.sysarc.2024.103218_b27
  article-title: Operational risk analysis of a containerized lithium-ion battery energy storage system based on STPA and fuzzy evaluation
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.06.023
– volume: 56
  start-page: 2671
  year: 2020
  ident: 10.1016/j.sysarc.2024.103218_b26
  article-title: Handling lithium-ion batteries in electric vehicles: Preventing and recovering from hazardous events
  publication-title: Fire Technol.
  doi: 10.1007/s10694-020-01038-1
– year: 2021
  ident: 10.1016/j.sysarc.2024.103218_b15
– ident: 10.1016/j.sysarc.2024.103218_b20
– start-page: 16
  year: 2018
  ident: 10.1016/j.sysarc.2024.103218_b25
  article-title: Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle
– volume: 257
  start-page: 421
  year: 2014
  ident: 10.1016/j.sysarc.2024.103218_b3
  article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.103
– start-page: 394
  year: 2019
  ident: 10.1016/j.sysarc.2024.103218_b21
  article-title: System of systems hazard analysis using HAZOP and FTA for advanced quarry production
– volume: 59
  start-page: 83
  year: 2021
  ident: 10.1016/j.sysarc.2024.103218_b1
  article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.10.017
– ident: 10.1016/j.sysarc.2024.103218_b14
– volume: 330
  start-page: 167
  year: 2016
  ident: 10.1016/j.sysarc.2024.103218_b8
  article-title: Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.133
– year: 2019
  ident: 10.1016/j.sysarc.2024.103218_b11
– volume: 114
  year: 2021
  ident: 10.1016/j.sysarc.2024.103218_b23
  article-title: Towards dynamic safety assurance for Industry 4.0
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2020.101914
– volume: 63
  start-page: 830
  issue: 4
  year: 2014
  ident: 10.1016/j.sysarc.2024.103218_b13
  article-title: Automating the assembly of aviation safety cases
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2014.2335995
– volume: 213
  year: 2024
  ident: 10.1016/j.sysarc.2024.103218_b31
  article-title: ACCESS: Assurance case centric engineering of safety–critical systems
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2024.112034
– year: 2023
  ident: 10.1016/j.sysarc.2024.103218_b5
– volume: 11
  issue: 8
  year: 2023
  ident: 10.1016/j.sysarc.2024.103218_b6
  article-title: Review of thermal runaway monitoring, warning and protection technologies for lithium-ion batteries
  publication-title: Processes
  doi: 10.3390/pr11082345
– volume: 211
  year: 2022
  ident: 10.1016/j.sysarc.2024.103218_b9
  article-title: An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118418
– volume: 321
  year: 2022
  ident: 10.1016/j.sysarc.2024.103218_b10
  article-title: Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119229
– start-page: 65
  year: 2018
  ident: 10.1016/j.sysarc.2024.103218_b30
  article-title: Preventing omission of key evidence fallacy in process-based argumentations
– start-page: 19
  year: 2018
  ident: 10.1016/j.sysarc.2024.103218_b29
  article-title: Tool-supported safety-relevant component reuse: From specification to argumentation
– ident: 10.1016/j.sysarc.2024.103218_b4
SSID ssj0005512
Score 2.3966198
Snippet Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103218
SubjectTerms Battery management system
Computer and Information Sciences Computer Science
Data- och informationsvetenskap
Lithium-ion battery
Reliability
Safety
Safety cases
Thermal runaway
Trade-offs
Title Assuring the safety of rechargeable energy storage systems in electric vehicles
URI https://dx.doi.org/10.1016/j.sysarc.2024.103218
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843
Volume 154
WOSCitedRecordID wos001267756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1873-6165
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005512
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa6KGXlr4EfSAfql5WWa0TJ06OqxYEqKUcAO3NcuxJCYLsal9C_HrGcZwNIEo59BKtotjx5vsyGdvfzBDyVRuTohedBMBZHvAoVIFixSDIDXDFDddxLcY8_SkOD9PRKDtqNtpndTkBUVXp1VU2-a9Q4zkE24bOPgHutlM8gb8RdDwi7Hj8J-DxgbvQQ-tSzlQBTnOBls0mRYI6VApcxJ9VRlrNjkvnXCtjXVmcUveWcFYr5h7wXn2T7kZEBzxHs11VXvdOWg3H0XhyV4x4oJZutfXX4kxdXirTG87LorsUEfJWa-WtJ053A7Su7JZ5jXnHQNr8fc7g3rPdbhnhvI9_AMfetzfory6_nSr7ziesFRZ6zdq5dL1I24t0vTwn66GIMzR968P9ndHBSgkUu01xP3ofYVnLAO-P5kEPpptqtnZPjjfIqwYZOnR8eEOeQfWWvPY1O2hjwt-R354eFOlBHT3ouKBdelBHD9rQgzZY07Kinh7U0-M9OdndOf6-FzRFNQIdZYN5UIQQ5bHJTRoqI6KEAwOc1BrDo0JBlCShyQomFPq5BcPJOAimQ66YSrVJRB5GH8haNa5gk1BINCQs0bFNu8dVnA8AAOfbQmXGFDnfIpF_UFI3Gedt4ZML-TeYtkjQtpq4jCuPXC88BrLxGp03KJFYj7T85iBr72Nzrf8oT4dyPP0jL6qFZJGth_TxiUP6RF6uXo_PZG0-XcAX8kIv5-Vsut3Q7wb73KFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assuring+the+safety+of+rechargeable+energy+storage+systems+in+electric+vehicles&rft.jtitle=Journal+of+systems+architecture&rft.au=Muram%2C+Faiz+Ul&rft.au=Pop%2C+Paul&rft.au=Javed%2C+Muhammad+Atif&rft.date=2024-09-01&rft.issn=1383-7621&rft.volume=154&rft.spage=103218&rft_id=info:doi/10.1016%2Fj.sysarc.2024.103218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysarc_2024_103218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon