Assuring the safety of rechargeable energy storage systems in electric vehicles
Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in term...
Gespeichert in:
| Veröffentlicht in: | Journal of systems architecture Jg. 154; S. 103218 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2024
|
| Schlagworte: | |
| ISSN: | 1383-7621, 1873-6165 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in terms of electric driving range and quick acceleration. Despite their advantages, lithium-ion batteries also have limitations. These include the potential for thermal runaway, which can lead to safety hazards if not properly managed, such as outgassing, fire, and explosion that in turn cause significant property damage and fatalities. Published studies on road vehicles have not adequately considered the safety assurance of rechargeable energy storage systems in accordance with ISO 26262 standard. Accordingly in this paper, we focus on the safety assurance of a battery management system (BMS) that prevents thermal runaway and keeps lithium-ion batteries safe in electric vehicles. To this end, the safety life cycle process is performed. At first, the potential hazards that lead to thermal runaway impacting the functions of electric vehicles have been identified and safety goals related to means for preventing and controlling hazards are formulated. Next, the functional safety requirements are derived from each safety goal, and subsequently technical safety requirements are derived. To demonstrate the acceptable safety of electric vehicles using the BMS strategy, the safety cases are developed from the functional safety activities. The safety contracts are derived from battery specifications and chemistry and are associated with safety cases that provide the means for performing necessary adaptations at the operational phase. We leveraged a simulation for performing the verification and validation as well as finetuning of the BMS strategy. Simulation data is gathered, and the critical parameters are monitored to determine safety violations, control actions are triggered to resolve them, and safety cases are updated to reflect the current system safety. |
|---|---|
| AbstractList | Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and environmental sustainability. They play a crucial role in electric vehicles and significantly impact their performance, particularly in terms of electric driving range and quick acceleration. Despite their advantages, lithium-ion batteries also have limitations. These include the potential for thermal runaway, which can lead to safety hazards if not properly managed, such as outgassing, fire, and explosion that in turn cause significant property damage and fatalities. Published studies on road vehicles have not adequately considered the safety assurance of rechargeable energy storage systems in accordance with ISO 26262 standard. Accordingly in this paper, we focus on the safety assurance of a battery management system (BMS) that prevents thermal runaway and keeps lithium-ion batteries safe in electric vehicles. To this end, the safety life cycle process is performed. At first, the potential hazards that lead to thermal runaway impacting the functions of electric vehicles have been identified and safety goals related to means for preventing and controlling hazards are formulated. Next, the functional safety requirements are derived from each safety goal, and subsequently technical safety requirements are derived. To demonstrate the acceptable safety of electric vehicles using the BMS strategy, the safety cases are developed from the functional safety activities. The safety contracts are derived from battery specifications and chemistry and are associated with safety cases that provide the means for performing necessary adaptations at the operational phase. We leveraged a simulation for performing the verification and validation as well as finetuning of the BMS strategy. Simulation data is gathered, and the critical parameters are monitored to determine safety violations, control actions are triggered to resolve them, and safety cases are updated to reflect the current system safety. |
| ArticleNumber | 103218 |
| Author | Pop, Paul Javed, Muhammad Atif Muram, Faiz Ul |
| Author_xml | – sequence: 1 givenname: Faiz Ul surname: Muram fullname: Muram, Faiz Ul email: faiz.ulmuram@lnu.se organization: Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden – sequence: 2 givenname: Paul surname: Pop fullname: Pop, Paul email: paupo@dtu.dk organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark – sequence: 3 givenname: Muhammad Atif surname: Javed fullname: Javed, Muhammad Atif email: atifmuhammad.javed@amaris.com organization: Amaris Consulting, Göteborg, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843$$DView record from Swedish Publication Index (Linnéuniversitetet) |
| BookMark | eNqFkLtOwzAUhj0UibbwBgx-gRRfcmVAqspVqtQFWC3HPkldpXZlu0V5e1IFMTDAdKSj7_uHb4Ym1llA6IaSBSU0v90tQh-kVwtGWDq8OKPlBE0pL3lS5IxeolkIO0JIllE2RZtlCEdvbIvjFnCQDcQeuwZ7UFvpW5B1Bxgs-LbHITov24HqQ4R9wMZi6EBFbxQ-wdaoDsIVumhkF-D6-87R-9Pj2-olWW-eX1fLdaJ4RWLSMOB1pmtdMqkLnqdAIWe51ilvJPA8Z7pqaCEzmjW0rCooqGKppLJUOi9qxucoGXfDJxyOtTh4s5e-F04a8WA-lsL5VnT2KCinZcoHPh155V0IHpofgxJxDid2YgwnzuHEGG7Q7n5pykQZjbPRS9P9J9-PMgwhTga8CMqAVaDNkDcK7czfA18-xpH- |
| CitedBy_id | crossref_primary_10_1016_j_est_2025_116073 crossref_primary_10_1177_01445987251348052 crossref_primary_10_1177_14727978251326120 crossref_primary_10_1016_j_apsusc_2024_161821 crossref_primary_10_1051_e3sconf_202457302010 crossref_primary_10_1109_ACCESS_2025_3555969 |
| Cites_doi | 10.1016/j.sysarc.2021.102309 10.1016/j.sysarc.2022.102781 10.1016/j.sysarc.2023.103036 10.3390/en14216942 10.1016/j.mattod.2014.10.040 10.1016/j.psep.2023.06.023 10.1007/s10694-020-01038-1 10.1016/j.jpowsour.2013.11.103 10.1016/j.jechem.2020.10.017 10.1016/j.jpowsour.2016.08.133 10.1016/j.sysarc.2020.101914 10.1109/TR.2014.2335995 10.1016/j.jss.2024.112034 10.3390/pr11082345 10.1016/j.applthermaleng.2022.118418 10.1016/j.apenergy.2022.119229 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTPV AGRUY AOWAS D8T D92 ZZAVC |
| DOI | 10.1016/j.sysarc.2024.103218 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SWEPUB Linnéuniversitetet full text SwePub Articles SWEPUB Freely available online SWEPUB Linnéuniversitetet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | oai_DiVA_org_lnu_131843 10_1016_j_sysarc_2024_103218 S1383762124001553 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 U5U UHS ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ADTPV AGRUY AOWAS D8T D92 ZZAVC |
| ID | FETCH-LOGICAL-c390t-f2e3b5dbd82ad7364e1e626dd43fae3662d9f17a515f1899e71c24a1a8cd67b23 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-7621 1873-6165 |
| IngestDate | Tue Nov 04 16:50:40 EST 2025 Sat Nov 29 01:35:59 EST 2025 Tue Nov 18 22:30:36 EST 2025 Sat Sep 14 18:11:02 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery Trade-offs Thermal runaway Battery management system Safety Reliability Safety cases |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c390t-f2e3b5dbd82ad7364e1e626dd43fae3662d9f17a515f1899e71c24a1a8cd67b23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_lnu_131843 crossref_primary_10_1016_j_sysarc_2024_103218 crossref_citationtrail_10_1016_j_sysarc_2024_103218 elsevier_sciencedirect_doi_10_1016_j_sysarc_2024_103218 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of systems architecture |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Stephens, Shawcross, Stout, Sullivan, Saunders, Risser, Sayre (b18) 2017 Object Management Group (OMG) (b19) 2022 Sljivo, Gallina, Carlson, Hansson, Puri (b29) 2018 Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (b1) 2021; 59 Yin, Liu, Cong (b6) 2023; 11 The Assurance Case Working Group (ACWG) (b15) 2021 Wile (b5) 2023 Javed, Muram, Punnekkat, Hansson (b12) 2021; 121 Underwriter Laboratories Inc. (UL) (b16) 2020 International Organization for Standardization (ISO), ISO 26262: 2018-Road Vehicles-Functional Safety, International Standard, 2018. Marcos, Garmendia, Crego, Cortajarena (b28) 2021; 14 Wei, Foster, Mei, Yan, Yang, Habli, O’Halloran, Tudor, Kelly, Nemouchi (b31) 2024; 213 Bisschop, Willstrand, Amon, Rosengren (b26) 2020; 56 N.T.S. Board, Safety Risks to Emergency Responders from Lithium-Ion Battery Fires in Electric Vehicles, Safety Report NTSB/SR-20/01, 2020,. Kanwal, Muram, Javed (b22) 2024; 146 Denney, Pai (b13) 2014; 63 Underwriter Laboratories Inc. (UL) (b17) 2020 Hong, Wang, Qu, Zhou, Shan, Zhang, Hou (b10) 2022; 321 Nitta, Wu, Lee, Yushin (b2) 2015; 18 Javed, Muram, Hansson, Punnekkat, Thane (b23) 2021; 114 Shah, Chalise, Jain (b8) 2016; 330 Muram, Gallina, Rodriguez (b30) 2018 Muram, Javed (b24) 2023; 134 Goriparti, Miele, De Angelis, Di Fabrizio, Proietti Zaccaria, Capiglia (b3) 2014; 257 NHTSA (b7) 2023 Ayche, Daboussy, Aglzim (b25) 2018 Wang, Xu, Zhao, Wang, Jin, Li, Sheng, Li, Du, Xu, Feng (b9) 2022; 211 Bisschop, Willstrand, Amon, Rosengren (b11) 2019 Muram, Javed, Punnekkat (b21) 2019 Bu, Wu, Li, Pei (b27) 2023; 176 State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, GB/T 39086-2020, Functional Safety Requirements and Testing Methods for Battery Management System of Electric Vehicle, 2020. Javed (10.1016/j.sysarc.2024.103218_b23) 2021; 114 Nitta (10.1016/j.sysarc.2024.103218_b2) 2015; 18 10.1016/j.sysarc.2024.103218_b14 Underwriter Laboratories Inc. (UL) (10.1016/j.sysarc.2024.103218_b16) 2020 Wei (10.1016/j.sysarc.2024.103218_b31) 2024; 213 Stephens (10.1016/j.sysarc.2024.103218_b18) 2017 Bisschop (10.1016/j.sysarc.2024.103218_b26) 2020; 56 Sljivo (10.1016/j.sysarc.2024.103218_b29) 2018 Goriparti (10.1016/j.sysarc.2024.103218_b3) 2014; 257 Wang (10.1016/j.sysarc.2024.103218_b9) 2022; 211 Javed (10.1016/j.sysarc.2024.103218_b12) 2021; 121 Kanwal (10.1016/j.sysarc.2024.103218_b22) 2024; 146 Muram (10.1016/j.sysarc.2024.103218_b24) 2023; 134 Shah (10.1016/j.sysarc.2024.103218_b8) 2016; 330 Bu (10.1016/j.sysarc.2024.103218_b27) 2023; 176 NHTSA (10.1016/j.sysarc.2024.103218_b7) 2023 Wile (10.1016/j.sysarc.2024.103218_b5) 2023 Object Management Group (OMG) (10.1016/j.sysarc.2024.103218_b19) 2022 Chen (10.1016/j.sysarc.2024.103218_b1) 2021; 59 Muram (10.1016/j.sysarc.2024.103218_b21) 2019 Marcos (10.1016/j.sysarc.2024.103218_b28) 2021; 14 10.1016/j.sysarc.2024.103218_b4 Yin (10.1016/j.sysarc.2024.103218_b6) 2023; 11 Ayche (10.1016/j.sysarc.2024.103218_b25) 2018 Hong (10.1016/j.sysarc.2024.103218_b10) 2022; 321 Denney (10.1016/j.sysarc.2024.103218_b13) 2014; 63 The Assurance Case Working Group (ACWG) (10.1016/j.sysarc.2024.103218_b15) 2021 Bisschop (10.1016/j.sysarc.2024.103218_b11) 2019 10.1016/j.sysarc.2024.103218_b20 Underwriter Laboratories Inc. (UL) (10.1016/j.sysarc.2024.103218_b17) 2020 Muram (10.1016/j.sysarc.2024.103218_b30) 2018 |
| References_xml | – start-page: 16 year: 2018 end-page: 22 ident: b25 article-title: Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle publication-title: 2018 Third International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing, EBECEGC 2018, Beirut, Lebanon, April 25-27, 2018 – volume: 63 start-page: 830 year: 2014 end-page: 849 ident: b13 article-title: Automating the assembly of aviation safety cases publication-title: IEEE Trans. Reliab. – year: 2021 ident: b15 article-title: Goal Structuring Notation Community Standard Version 3 – volume: 14 year: 2021 ident: b28 article-title: Functional safety BMS design methodology for automotive lithium-based batteries publication-title: Energies – start-page: 65 year: 2018 end-page: 73 ident: b30 article-title: Preventing omission of key evidence fallacy in process-based argumentations publication-title: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), Portugal, September 4-7 – volume: 213 year: 2024 ident: b31 article-title: ACCESS: Assurance case centric engineering of safety–critical systems publication-title: J. Syst. Softw. – start-page: 19 year: 2018 end-page: 33 ident: b29 article-title: Tool-supported safety-relevant component reuse: From specification to argumentation publication-title: 23rd International Conference on Reliable Software Technologies (Ada-Europe ’18), Lisbon, Portugal, June 18-22 – year: 2020 ident: b16 article-title: UL 1642: Standard for safety for lithium batteries – year: 2022 ident: b19 article-title: Structured Assurance Case Metamodel (SACM), Version 2.2 – volume: 59 start-page: 83 year: 2021 end-page: 99 ident: b1 article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards publication-title: J. Energy Chem. – volume: 211 year: 2022 ident: b9 article-title: An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries publication-title: Appl. Therm. Eng. – volume: 121 year: 2021 ident: b12 article-title: Safe and secure platooning of automated guided vehicles in industry 4.0 publication-title: J. Syst. Archit. – year: 2020 ident: b17 article-title: UL 2580: Safety requirements for vehicle power batteries – reference: State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, GB/T 39086-2020, Functional Safety Requirements and Testing Methods for Battery Management System of Electric Vehicle, 2020. – volume: 56 start-page: 2671 year: 2020 end-page: 2694 ident: b26 article-title: Handling lithium-ion batteries in electric vehicles: Preventing and recovering from hazardous events publication-title: Fire Technol. – volume: 321 year: 2022 ident: b10 article-title: Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles publication-title: Appl. Energy – year: 2023 ident: b7 article-title: Part 573 safety recall report, 23V-168 – volume: 330 start-page: 167 year: 2016 end-page: 174 ident: b8 article-title: Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells publication-title: J. Power Sources – volume: 146 year: 2024 ident: b22 article-title: Systematic review on contract-based safety assurance and guidance for future research publication-title: J. Syst. Archit. – year: 2019 ident: b11 article-title: Fire Safety of Lithium-Ion Batteries in Road Vehicles – volume: 176 start-page: 627 year: 2023 end-page: 640 ident: b27 article-title: Operational risk analysis of a containerized lithium-ion battery energy storage system based on STPA and fuzzy evaluation publication-title: Process Saf. Environ. Prot. – volume: 18 start-page: 252 year: 2015 end-page: 264 ident: b2 article-title: Li-ion battery materials: present and future publication-title: Mater. Today – reference: N.T.S. Board, Safety Risks to Emergency Responders from Lithium-Ion Battery Fires in Electric Vehicles, Safety Report NTSB/SR-20/01, 2020,. – year: 2017 ident: b18 article-title: Lithium-ion Battery Safety Issues for Electric and Plug-In Hybrid Vehicle – volume: 134 year: 2023 ident: b24 article-title: ATTEST: Automating the review and update of assurance case arguments publication-title: J. Syst. Archit. – start-page: 394 year: 2019 end-page: 401 ident: b21 article-title: System of systems hazard analysis using HAZOP and FTA for advanced quarry production publication-title: 4th International Conference on System Reliability and Safety, ICSRS 2019, Rome, Italy, November 20-22, 2019 – volume: 257 start-page: 421 year: 2014 end-page: 443 ident: b3 article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries publication-title: J. Power Sources – volume: 11 year: 2023 ident: b6 article-title: Review of thermal runaway monitoring, warning and protection technologies for lithium-ion batteries publication-title: Processes – volume: 114 year: 2021 ident: b23 article-title: Towards dynamic safety assurance for Industry 4.0 publication-title: J. Syst. Archit. – year: 2023 ident: b5 article-title: Car battery ’spontaneously’ catches fire on California freeway – reference: International Organization for Standardization (ISO), ISO 26262: 2018-Road Vehicles-Functional Safety, International Standard, 2018. – volume: 121 year: 2021 ident: 10.1016/j.sysarc.2024.103218_b12 article-title: Safe and secure platooning of automated guided vehicles in industry 4.0 publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2021.102309 – year: 2020 ident: 10.1016/j.sysarc.2024.103218_b16 – volume: 134 year: 2023 ident: 10.1016/j.sysarc.2024.103218_b24 article-title: ATTEST: Automating the review and update of assurance case arguments publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2022.102781 – volume: 146 year: 2024 ident: 10.1016/j.sysarc.2024.103218_b22 article-title: Systematic review on contract-based safety assurance and guidance for future research publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2023.103036 – year: 2020 ident: 10.1016/j.sysarc.2024.103218_b17 – year: 2017 ident: 10.1016/j.sysarc.2024.103218_b18 – volume: 14 issue: 21 year: 2021 ident: 10.1016/j.sysarc.2024.103218_b28 article-title: Functional safety BMS design methodology for automotive lithium-based batteries publication-title: Energies doi: 10.3390/en14216942 – year: 2023 ident: 10.1016/j.sysarc.2024.103218_b7 – volume: 18 start-page: 252 issue: 5 year: 2015 ident: 10.1016/j.sysarc.2024.103218_b2 article-title: Li-ion battery materials: present and future publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.040 – year: 2022 ident: 10.1016/j.sysarc.2024.103218_b19 – volume: 176 start-page: 627 year: 2023 ident: 10.1016/j.sysarc.2024.103218_b27 article-title: Operational risk analysis of a containerized lithium-ion battery energy storage system based on STPA and fuzzy evaluation publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.06.023 – volume: 56 start-page: 2671 year: 2020 ident: 10.1016/j.sysarc.2024.103218_b26 article-title: Handling lithium-ion batteries in electric vehicles: Preventing and recovering from hazardous events publication-title: Fire Technol. doi: 10.1007/s10694-020-01038-1 – year: 2021 ident: 10.1016/j.sysarc.2024.103218_b15 – ident: 10.1016/j.sysarc.2024.103218_b20 – start-page: 16 year: 2018 ident: 10.1016/j.sysarc.2024.103218_b25 article-title: Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle – volume: 257 start-page: 421 year: 2014 ident: 10.1016/j.sysarc.2024.103218_b3 article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.103 – start-page: 394 year: 2019 ident: 10.1016/j.sysarc.2024.103218_b21 article-title: System of systems hazard analysis using HAZOP and FTA for advanced quarry production – volume: 59 start-page: 83 year: 2021 ident: 10.1016/j.sysarc.2024.103218_b1 article-title: A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.10.017 – ident: 10.1016/j.sysarc.2024.103218_b14 – volume: 330 start-page: 167 year: 2016 ident: 10.1016/j.sysarc.2024.103218_b8 article-title: Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.133 – year: 2019 ident: 10.1016/j.sysarc.2024.103218_b11 – volume: 114 year: 2021 ident: 10.1016/j.sysarc.2024.103218_b23 article-title: Towards dynamic safety assurance for Industry 4.0 publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2020.101914 – volume: 63 start-page: 830 issue: 4 year: 2014 ident: 10.1016/j.sysarc.2024.103218_b13 article-title: Automating the assembly of aviation safety cases publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2014.2335995 – volume: 213 year: 2024 ident: 10.1016/j.sysarc.2024.103218_b31 article-title: ACCESS: Assurance case centric engineering of safety–critical systems publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2024.112034 – year: 2023 ident: 10.1016/j.sysarc.2024.103218_b5 – volume: 11 issue: 8 year: 2023 ident: 10.1016/j.sysarc.2024.103218_b6 article-title: Review of thermal runaway monitoring, warning and protection technologies for lithium-ion batteries publication-title: Processes doi: 10.3390/pr11082345 – volume: 211 year: 2022 ident: 10.1016/j.sysarc.2024.103218_b9 article-title: An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118418 – volume: 321 year: 2022 ident: 10.1016/j.sysarc.2024.103218_b10 article-title: Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119229 – start-page: 65 year: 2018 ident: 10.1016/j.sysarc.2024.103218_b30 article-title: Preventing omission of key evidence fallacy in process-based argumentations – start-page: 19 year: 2018 ident: 10.1016/j.sysarc.2024.103218_b29 article-title: Tool-supported safety-relevant component reuse: From specification to argumentation – ident: 10.1016/j.sysarc.2024.103218_b4 |
| SSID | ssj0005512 |
| Score | 2.3966198 |
| Snippet | Energy storage systems, especially lithium-ion batteries have gained significant attention and interest due to their potential in storing electrical energy and... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 103218 |
| SubjectTerms | Battery management system Computer and Information Sciences Computer Science Data- och informationsvetenskap Lithium-ion battery Reliability Safety Safety cases Thermal runaway Trade-offs |
| Title | Assuring the safety of rechargeable energy storage systems in electric vehicles |
| URI | https://dx.doi.org/10.1016/j.sysarc.2024.103218 https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-131843 |
| Volume | 154 |
| WOSCitedRecordID | wos001267756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1873-6165 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005512 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85APiskrVxM46Oa6gFVRQKtGivVmOH22qNrvalyp-PeOMnaasqgISl2g3u7aTmS-jGeebGULeVRpwUyieZMLlCa8gYC24zwKB0EDlhoFFbLuWfBEHB8V4XB6GHpvztp2AaJri8rKc_ldVwzlQtk-d_Qt1d5PCCfgMSocjqB2Of6R4EDimHnqXcq6cRc4FWDZfFMm2qVIWM_48M9JzdrCcc8uMxbY4tR6s7GnLmLvBe41D-i8iespDmO2p-ufguONwHE6mv5MR99UKd1u_Lk_VxYUyg9Gidv2tiIx3XKuwP7aWI9OaVIiBEzC56TWbi5Wj1-w3biWcbcNNwPVv-0V8WYAs2OjrlbG_-6n9zJ4H6_sf3SWbmchLMG6bo8-74_0rrk-Or73jpcQcypbot77WjT5Kv5hs64AcPSIPguzpCDX-mNyxzRPyMHbloMFIPyXfIgAoAIAiAOjE0T4AKAKABgDQoE1aNzQCgEYAPCPHe7tHHz4loW1Golm5s0hcZlmVm8oUmTKCDblNLYStxnDmlGXDYWZK55_ENHcphNtWpDrjKlWFNkNRZew52WgmjX1BqOMm1wx-LQXj4CqqstQpcwK-auZ2zBZhUVBSh5ryvrXJuYzkwTOJ4pVevBLFu0WSbtQUa6rc8n8RdSCDX4j-ngTY3DLyPaqsW8dXU_9Y_xjJyexEnjdLmTLf8ejlPy_xity_ehRek43FbGnfkHt6tajns7cBiL8AhrqZBg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assuring+the+safety+of+rechargeable+energy+storage+systems+in+electric+vehicles&rft.jtitle=Journal+of+systems+architecture&rft.au=Muram%2C+Faiz+Ul&rft.au=Pop%2C+Paul&rft.au=Javed%2C+Muhammad+Atif&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1383-7621&rft.volume=154&rft_id=info:doi/10.1016%2Fj.sysarc.2024.103218&rft.externalDocID=S1383762124001553 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon |