Homolytic fracture of inorganic crystalline materials enhances the mechano-chemical degradation of polypropylene

Mechano-chemistry can depolymerize plastics to their monomers. The conversion of polyolefins, however, suffers from low chain cleavage rates and the low stability of radical intermediates. Therefore, insights into the degradation mechanism are crucial to obtain higher yields. Herein, we promote the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical science (Cambridge) Ročník 16; číslo 36; s. 16511 - 16521
Hlavní autoři: Hergesell, Adrian H, Popp, Stephan, Meena, Raghavendra, Ospina Guarin, Viviana M, Seitzinger, Claire L, Sievers, Carsten, Li, Guanna, Vollmer, Ina
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Royal Society of Chemistry 17.09.2025
The Royal Society of Chemistry
Témata:
ISSN:2041-6520, 2041-6539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mechano-chemistry can depolymerize plastics to their monomers. The conversion of polyolefins, however, suffers from low chain cleavage rates and the low stability of radical intermediates. Therefore, insights into the degradation mechanism are crucial to obtain higher yields. Herein, we promote the mechano-chemical degradation of polypropylene by milling with sand as an additive, which increases depolymerization yields by a factor of 25. Fracture of sand crystals causes homolytic cleavage of Si–O bonds resulting in unpaired surface electrons, which possess radical reactivity and can initiate degradation reactions of polypropylene, ultimately resulting in smaller hydrocarbons. We show that this mechanism based on surface radicals dominates over alternative pathways based on locally increased temperature or surface roughening of grinding spheres. While inorganic materials, such as glass fiber in composites, are typically unwanted in (chemical) recycling scenarios, we show that they can be exploited to drive mechano-chemical depolymerization. Our study illustrates that control over the radical-based degradation mechanism during the mechano-chemical conversion of polyolefins is key to increase yields and technological viability. The fracture of sand and quartz during ball milling generates surface radicals. These highly reactive species can be used to initiate the mechano-chemical radical depolymerization of polypropylene.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-6520
2041-6539
DOI:10.1039/d5sc03348a