Stochastic simulations of the Schnakenberg model with spatial inhomogeneities using reactive multiparticle collision dynamics

A numerically efficient globally averaged number density approach is used to simulate a reaction-diffusion system using a particle-based stochastic simulation algorithm called reactive multiparticle collision (RMPC) dynamics. Constant diffusivity of the particles is achieved through a time-varying r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 4; číslo 6; s. 1805 - 1823
Hlavní autoři: Sayyidmousavi, Alireza, Rohlf, Katrin
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2019
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A numerically efficient globally averaged number density approach is used to simulate a reaction-diffusion system using a particle-based stochastic simulation algorithm called reactive multiparticle collision (RMPC) dynamics. Constant diffusivity of the particles is achieved through a time-varying rotation angle (also called collision angle). Variation in the diffusion coefficient between two different chemical species is achieved in one of two ways: (i) using a different kBT/m value for one species compared to the other, or (ii) using the same kBT/m value for both species, but using a different probability to free-stream for one species compared to another. For smaller diffusivities and larger spatial inhomogeneities, bath particles were necessary for the model to agree with the PDE solution. The latter approach was further used without a bath, and shown to be capable of producing Turing patterns after long simulation times. The significance of our work is that RMPC can serve as a feasible simulation tool for both short and long-term simulations, can handle spatial inhomogeneities, can model a fairly large range of diffusivities in a reaction-diffusion scenario, and is capable of producing Turing patterns. An advantage of this method includes more detailed system information in feasible simulation times.
AbstractList A numerically efficient globally averaged number density approach is used to simulate a reaction-diffusion system using a particle-based stochastic simulation algorithm called reactive multiparticle collision (RMPC) dynamics. Constant diffusivity of the particles is achieved through a time-varying rotation angle (also called collision angle). Variation in the diffusion coefficient between two different chemical species is achieved in one of two ways: (i) using a different kBT/m value for one species compared to the other, or (ii) using the same kBT/m value for both species, but using a different probability to free-stream for one species compared to another. For smaller diffusivities and larger spatial inhomogeneities, bath particles were necessary for the model to agree with the PDE solution. The latter approach was further used without a bath, and shown to be capable of producing Turing patterns after long simulation times. The significance of our work is that RMPC can serve as a feasible simulation tool for both short and long-term simulations, can handle spatial inhomogeneities, can model a fairly large range of diffusivities in a reaction-diffusion scenario, and is capable of producing Turing patterns. An advantage of this method includes more detailed system information in feasible simulation times.
Author Rohlf, Katrin
Sayyidmousavi, Alireza
Author_xml – sequence: 1
  givenname: Alireza
  surname: Sayyidmousavi
  fullname: Sayyidmousavi, Alireza
– sequence: 2
  givenname: Katrin
  surname: Rohlf
  fullname: Rohlf, Katrin
BookMark eNp1kU1rGzEQhkVJoanje4_6A3b0tVrrGELbBAw9JDkL7WjWK2dXMpLckkP_e9eJKSXQ0wwz8z4zzPuZXMQUkZAvnK2lkep6cnVYC8bNWq_5hjUfyKVQrVxps9lc_JN_IstS9owxwYUSrbokvx9qgsGVGoCWMB1HV0OKhaae1gHpAwzRPWPsMO_olDyO9FeoAy2Hec6NNMQhTWmHEUMNWOixhLijGR3U8BPpzKvh4PJMH5FCGsdQZjz1L9FNAcoV-di7seDyHBfk6dvXx9u71fbH9_vbm-0KpGF1hZ577X2jeqEVIAfT6Y610KBjpjGdMlK2TIueoYCOezCq5d5zZtjc90ouyP0b1ye3t4ccJpdfbHLBvhZS3tnzkZYJIRqp1byuVQ6UcWbTKm4MgpIazMxibyzIqZSM_V8eZ_bkhj25YU9uWG1PbswS_U4Cob4-umYXxv8L_wDKBpUn
CitedBy_id crossref_primary_10_1063_5_0245376
crossref_primary_10_1063_5_0223361
Cites_doi 10.1007/s10910-008-9373-8
10.1007/s00285-011-0412-x
10.1093/bioinformatics/bti431
10.1021/j100540a008
10.1137/15M1030509
10.1016/j.apm.2011.12.041
10.1007/s11538-014-0044-6
10.1016/j.jcp.2009.09.030
10.1063/1.481289
10.1006/jcph.1996.0168
10.1098/rsif.2011.0574
10.1063/1.1690244
10.1007/BF00277392
10.3390/e16010418
10.1088/1478-3967/1/3/001
10.1021/la200272x
10.1137/110832148
10.1063/1.478857
10.1137/15M1030662
10.1021/jp052701u
10.1016/j.cpc.2008.01.027
10.1137/040605060
10.1063/1.1378322
10.1007/s10237-012-0454-z
ContentType Journal Article
CorporateAuthor Department of Mathematics, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
CorporateAuthor_xml – name: Department of Mathematics, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2019.6.1805
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1823
ExternalDocumentID oai_doaj_org_article_02225364dd574ac49a9874199ec436c9
10_3934_math_2019_6_1805
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c390t-ed1d6dd54f264ce1c9b6b07c5ea0959b49337062f0e2cb1dc9471dd1090095d43
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680830800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:30:28 EDT 2025
Sat Nov 29 06:04:13 EST 2025
Tue Nov 18 22:13:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-ed1d6dd54f264ce1c9b6b07c5ea0959b49337062f0e2cb1dc9471dd1090095d43
OpenAccessLink https://doaj.org/article/02225364dd574ac49a9874199ec436c9
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_02225364dd574ac49a9874199ec436c9
crossref_primary_10_3934_math_2019_6_1805
crossref_citationtrail_10_3934_math_2019_6_1805
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle AIMS mathematics
PublicationYear 2019
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References K. Rohlf (26)
D. T. Gillespie (2)
27
28
S. Bedkihal, J. C. Kumaradas, K. Rohlf (29)
D. A. Garzon-Alvarado, C. H. Galeano, J. M. Mantilla (40)
M. B. Flegg, S. J. Chapman, R. Erban (10)
T. Akhter, K. Rohlf (30)
L. Ferm, A. Hellander, P. Lotstedt (6)
A. Hellander, S. Hellander, P. Lotstedt (11)
A. Malevanets, R. Kapral (22)
A. Stundzia, C. Lumsden (3)
K. Tucci, R. Kapral (24)
31
K. Rohlf, S. Fraser, R. Kapral (25)
32
Y. Cao, R. Erban (19)
33
12
34
D. T. Gillespie (1)
S. Isaacson, C. Peskin (4)
35
V. Mortazavi, M. Nosonovsky (39)
J. Wei, M. Winter (41)
36
15
37
16
38
A. Malevanets, R. Kapral (21)
S. S. Andrews, D. Bray (14)
M. B. Flegg (20)
H. G. Othmer, S. R. Dunbar, W. Alt (18)
J. Hattne, D. Fange, J. Elf (13)
K. Tucci, R. Kapral (23)
5
7
8
S. J. Chapman, R. Erban, S. A. Isaacson (17)
9
References_xml – ident: 8
  article-title: i>An adaptive tau-leaping method for stochastic systems with slow and fast dynamics</i
– ident: 26
  article-title: i>Stochastic phase-space description for reactions that change particle numbers</i
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-008-9373-8
– ident: 41
  article-title: i>Flow-distributed spikes for Schnakenberg kinetics</i
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-011-0412-x
– ident: 9
  article-title: i>Spatially extended hybrid methods: A review</i
– ident: 13
  article-title: i>Stochastic reaction-diffusion simulation with MesoRD</i
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti431
– ident: 1
  article-title: i>Exact stochastic simulation of coupled chemical reactions</i
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100540a008
– ident: 20
  article-title: i>Smoluchowski reaction kinetics for reactions of any order</i
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/15M1030509
– ident: 5
  article-title: i>Noise-induced min phenotypes in E. coli</i
– ident: 40
  article-title: i>Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: A first example</i
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.12.041
– ident: 19
  article-title: i>Stochastic Turing patterns: Analysis of compartment-based approaches</i
  publication-title: B. Math. Biol.
  doi: 10.1007/s11538-014-0044-6
– ident: 6
  article-title: i>An adaptive algorithm for simulation of stochastic reaction-diffusion processes</i
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.09.030
– ident: 34
  article-title: i>Stochastic rotation dynamics: II. Transport coefficients, numerics, and long-time tails</i
– ident: 35
  article-title: i>Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques</i
– ident: 22
  article-title: i>Solute molecular dynamics in a mesoscale solvent</i
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481289
– ident: 3
  article-title: i>Stochastic simulation of coupled reaction-diffusion processes</i
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0168
– ident: 10
  article-title: i>The two regime method for optimizing stochastic reaction-diffusion simulations</i
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2011.0574
– ident: 23
  article-title: i>Mesoscopic model for diffusion influenced reaction dynamics</i
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1690244
– ident: 12
  article-title: i>Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations</i
– ident: 33
  article-title: i>Stochastic rotation dynamics: I. Formalis
– ident: 18
  article-title: i>Models of dispersal in biological systems</i
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00277392
– ident: 16
  article-title: i>Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics</i
– ident: 30
  article-title: i>Quantifying compressibility and slip in multiparticle collision (MPC) flow through a local constriction</i
  publication-title: Entropy
  doi: 10.3390/e16010418
– ident: 14
  article-title: i>Stochastic simulation of chemical reactions with spatial resolution and single molecule detail</i
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3967/1/3/001
– ident: 37
  article-title: i>Multiparticle collision dynamics for diffusion-influenced signaling pathways</i
– ident: 28
  article-title: i>Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics</i
– ident: 39
  article-title: i>Friction-induced pattern formation and Turing systems</i
  publication-title: Langmuir
  doi: 10.1021/la200272x
– ident: 36
  article-title: i>Dynamic correlations in stochastic rotation dynamics</i
– ident: 32
  article-title: i>Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow</i
– ident: 11
  article-title: i>Coupled mesoscopic and microscopic simulation of stochastic reaction-diffusion processes in mixed dimensions</i
  publication-title: Multiscale Model. Sim.
  doi: 10.1137/110832148
– ident: 21
  article-title: i>Mesoscopic model for solvent dynamics</i
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478857
– ident: 17
  article-title: i>Reactive boundary conditions as limits of interaction potentials for Brownian and Langevin dynamics</i
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/15M1030662
– ident: 24
  article-title: i>Mesoscopic multiparticle collision dynamics of reaction-diffusion fronts</i
  publication-title: J. Chem. Phys. B
  doi: 10.1021/jp052701u
– ident: 25
  article-title: i>Reactive multiparticle collision dynamics</i
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.01.027
– ident: 38
  article-title: i>Reactive multi-particle collision dynamics with reactive boundary conditions</i
– ident: 15
  article-title: i>Greens-function reaction dynamics: A particle-based approach for simulating biochemical networks in time and space</i
– ident: 27
  article-title: i>Mesoscale simulations: Lattice Boltzmann and particle algorithms</i
– ident: 31
  article-title: i>Compressible slip flow through constricted cylinders with density-dependent viscosity</i
– ident: 4
  article-title: i>Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations</i
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040605060
– ident: 2
  article-title: i>Approximate accelerated stochastic simulation of reacting systems</i
  publication-title: J. Phys. Chem.
  doi: 10.1063/1.1378322
– ident: 7
  article-title: i>An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems</i
– ident: 29
  article-title: i>Steady flow through a constricted cylinder by multiparticle collision dynamics</i
  publication-title: Biomech. Model. Mechan.
  doi: 10.1007/s10237-012-0454-z
SSID ssj0002124274
Score 2.0667984
Snippet A numerically efficient globally averaged number density approach is used to simulate a reaction-diffusion system using a particle-based stochastic simulation...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1805
SubjectTerms reaction-diffusion
reactive multiparticle collision dynamics
schnakenberg model
stochastic simulations
Title Stochastic simulations of the Schnakenberg model with spatial inhomogeneities using reactive multiparticle collision dynamics
URI https://doaj.org/article/02225364dd574ac49a9874199ec436c9
Volume 4
WOSCitedRecordID wos000680830800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8Sm-5YGFIW1SO048AqJioBVSAXWLkrNDKyBBpLDBb-fODlUnWFgyJI5lPZ_su_P5PcZOTZQmBVDSPUlUINMiDnQclkEkDOgQIFXuIu3DTTIcpuOxvl2Q-qKaME8P7IHruoBEKGlMnMgcpM4xSpaR1hakUOCu7oWJXgimaA3GBVlivOXPJYUWsov-H509RLqjOlFKanUL-9ACXb_bV_obbL11CPm5H8gmW7LVFlsbzNlUm232OZrVMMmJUZk305dWcKvhdcmxFR_BpMqffKUWd8o2nLKrvKFiaex6Wk3qlxoNxTr2VE6l7o8cnUW31HFfUtgCwcku3HVzbrxWfbPD7vtXd5fXQSubEIDQ4SywJjIK4ZIlOjtgI9CFKsIEYptT0q-QWogkVL0ytD0oIpwT3KCMoQpN_G6k2GXLVV3ZPcYxmumVYCWEJpUytkT2J4zpKTrcK4TZZ90fEDNoOcVJ2uI5w9iCYM8I9oxgz1RGsO-zs_kfr55P45e2FzQv83bEhO1eoH1kLSzZX_Zx8B-dHLJVGpdPvRyx5dnbuz1mK_AxmzZvJ8708Dn4uvoGUSvgOw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulations+of+the+Schnakenberg+model+with+spatial+inhomogeneities+using+reactive+multiparticle+collision+dynamics&rft.jtitle=AIMS+mathematics&rft.au=Alireza+Sayyidmousavi&rft.au=Katrin+Rohlf&rft.date=2019-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=4&rft.issue=6&rft.spage=1805&rft.epage=1823&rft_id=info:doi/10.3934%2Fmath.2019.6.1805&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02225364dd574ac49a9874199ec436c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon