The Inflation Technique for Causal Inference with Latent Variables

The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the for tackling this problem. An inflation of a causal str...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of causal inference Ročník 7; číslo 2; s. 156 - 65
Hlavní autoři: Wolfe, Elie, Spekkens, Robert W., Fritz, Tobias
Médium: Journal Article
Jazyk:angličtina
Vydáno: De Gruyter 01.09.2019
Témata:
ISSN:2193-3677, 2193-3685
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.
AbstractList The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.
The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.
The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.
Author Spekkens, Robert W.
Wolfe, Elie
Fritz, Tobias
Author_xml – sequence: 1
  givenname: Elie
  orcidid: 0000-0002-6960-3796
  surname: Wolfe
  fullname: Wolfe, Elie
  email: ewolfe@perimeterinstitute.ca
  organization: 72273Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5
– sequence: 2
  givenname: Robert W.
  surname: Spekkens
  fullname: Spekkens, Robert W.
  email: rspekkens@perimeterinstitute.ca
  organization: 72273Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5
– sequence: 3
  givenname: Tobias
  surname: Fritz
  fullname: Fritz, Tobias
  email: tfritz@perimeterinstitute.ca
  organization: 72273Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5
BookMark eNp1kD1PwzAQhi0EEqV0ZM8fCJztJI5HqPioVImlsFqOfWkdhRgcV1X_PUmLOiCY7tXdvc_wXJHzzndIyA2FW5rT_K4xLmVARQrA4IxMGJU85UWZn5-yEJdk1vcNAFCW50LICXlYbTBZdHWro_NdskKz6dzXFpPah2Sut71uxzMG7AwmOxc3yVJH7GLyroPTVYv9Nbmoddvj7GdOydvT42r-ki5fnxfz-2VquISYVkAltVWZybJEzRlDg4JWWOaFBTRgMiusrqmUqI0AQS0DyDJa8kJCVjM-JYsj13rdqM_gPnTYK6-dOix8WCsdojMtKoZgBqbFQU2GFCssGDdU2DyrrRE4sNIjywTf9wHrE4-CGn2qwacafarR5_DPf_0bFw_KYtCu_bcljq2dbiMGi-uw3Q9BNX4busHV3z3B-Dcxs41G
CitedBy_id crossref_primary_10_1038_s41467_020_16137_4
crossref_primary_10_1016_j_rinp_2023_107244
crossref_primary_10_1209_0295_5075_ad4fbc
crossref_primary_10_1088_1367_2630_ad0a16
crossref_primary_10_1103_PhysRevX_10_021064
crossref_primary_10_1103_PhysRevX_11_021043
crossref_primary_10_1109_TIT_2021_3119651
crossref_primary_10_1103_3854_r395
crossref_primary_10_1103_PhysRevResearch_6_023038
crossref_primary_10_1002_andp_202200182
crossref_primary_10_3390_e21030325
crossref_primary_10_3390_e27090950
crossref_primary_10_1002_qute_202200069
crossref_primary_10_1103_PhysRevResearch_5_023016
crossref_primary_10_1038_s41534_024_00806_z
crossref_primary_10_1088_1361_6633_ac41bb
crossref_primary_10_22331_q_2025_05_06_1735
crossref_primary_10_1016_j_physrep_2024_10_003
crossref_primary_10_1016_j_ins_2023_119440
crossref_primary_10_1038_s41467_022_28006_3
crossref_primary_10_1103_PhysRevA_110_062411
crossref_primary_10_1103_PhysRevLett_134_010202
crossref_primary_10_1214_22_AOS2253
crossref_primary_10_1103_PhysRevLett_130_250201
crossref_primary_10_1007_s00220_023_04697_7
crossref_primary_10_22331_q_2025_08_27_1830
crossref_primary_10_1088_1751_8121_ad7c9f
crossref_primary_10_1038_s41534_020_00305_x
crossref_primary_10_1093_jrsssb_qkad130
crossref_primary_10_1103_PRXQuantum_3_030342
crossref_primary_10_3390_e26060440
crossref_primary_10_1038_s41534_024_00911_z
crossref_primary_10_1103_PRXQuantum_2_040323
crossref_primary_10_1038_s41467_023_37842_w
crossref_primary_10_1002_andp_202300297
crossref_primary_10_1038_s41467_023_36428_w
crossref_primary_10_1080_01621459_2023_2216909
crossref_primary_10_3390_e25020273
crossref_primary_10_1103_PhysRevResearch_4_L012041
crossref_primary_10_3390_math11071625
crossref_primary_10_1103_PRXQuantum_4_020311
crossref_primary_10_1038_s41534_025_01024_x
crossref_primary_10_1007_s10614_020_09973_5
crossref_primary_10_1038_s41534_023_00789_3
crossref_primary_10_1088_1402_4896_ad6e27
Cites_doi 10.1515/jci-2016-0013
10.1103/RevModPhys.86.419
10.1038/nphys2916
10.1103/RevModPhys.38.447
10.1007/BF02058098
10.1017/CBO9780511803161
10.1038/nphys3266
10.1103/PhysRevA.75.032304
10.1007/BF00417500
10.1103/PhysRevA.52.2535
10.2140/pjm.1969.31.469
10.1088/1367-2630/aa673e
10.1023/A:1011259103627
10.1103/PhysRevA.71.022101
10.1103/PhysRevLett.76.2818
10.1007/s13675-015-0040-0
10.1088/1367-2630/17/3/033002
10.1090/crmp/048/03
10.1134/S0965542515010042
10.1007/s10957-008-9384-4
10.1103/PhysRevLett.116.010402
10.1007/978-3-319-01183-7
10.1088/1367-2630/16/11/113043
10.1016/j.jsc.2004.11.007
10.1145/3159652.3176182
10.1007/978-3-319-00200-2_15
10.26421/QIC18.11-12-2
10.1016/j.physrep.2011.05.001
10.1023/A:1018368920203
10.1103/PhysRevA.90.062109
10.1088/1367-2630/14/10/103001
10.1103/PhysRevLett.116.010403
10.1103/PhysRevA.92.062120
10.1007/s00220-015-2495-5
10.1007/978-88-470-5217-8_13
10.1007/978-3-642-15582-6_48
10.1016/S0012-365X(00)00455-6
10.1109/ISIT.2013.6620223
10.1103/PhysRevX.7.031021
10.1016/j.physleta.2007.11.012
10.1088/1367-2630/16/12/123029
10.1103/PhysRevA.83.022105
10.1038/ncomms7288
10.1088/1367-2630/13/11/113036
10.1088/1751-8113/47/32/323001
10.4171/OWR/2010/38
10.1103/PhysRevA.79.022120
10.1103/PhysRevLett.23.880
10.1103/PhysRevLett.54.857
10.3390/e17042304
10.1007/s10701-012-9640-1
10.1103/PhysRevA.65.032108
10.1103/PhysRevA.88.022118
10.1016/j.dam.2007.04.017
10.1016/0097-3165(73)90004-6
10.4236/ajcm.2012.21001
10.1109/MLSP.2012.6349796
10.1103/PhysRevA.93.030101
10.1137/1107014
10.1103/PhysRevA.94.042127
10.1007/BF00534912
10.1088/1367-2630/16/4/043001
10.1103/PhysRevA.85.032119
10.1103/PhysRevLett.71.1665
10.1103/PhysRevLett.114.220402
10.1103/RevModPhys.81.865
10.1103/PhysRevLett.116.240501
10.1103/PhysRevLett.48.291
10.1007/978-3-0348-8438-9_9
10.1038/ncomms6766
10.1088/1367-2630/10/7/073013
10.1103/PhysRevA.62.062314
10.1103/PhysRevLett.95.140401
10.1007/978-0-387-79234-7_15
10.1103/PhysRevLett.61.662
10.1103/PhysicsPhysiqueFizika.1.195
10.1103/PhysRevA.85.032113
10.1103/PhysRevA.89.032117
10.22331/q-2018-03-14-57
10.1088/1751-8113/47/42/424027
10.1103/PhysRevA.88.052130
10.1088/1751-8121/aae754
10.1088/1367-2630/18/6/063032
10.1109/TIT.2012.2222863
10.1093/bjps/45.1.95
10.1038/ncomms3263
10.1103/PhysRevA.44.7047
10.1016/S0925-7721(96)00023-5
10.1007/3-540-61576-8_77
10.1007/978-3-319-13045-3_2
10.1103/PhysRevA.78.032114
10.1103/PhysRevA.98.022113
10.1007/s00209-012-1053-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/jci-2017-0020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Philosophy
EISSN 2193-3685
EndPage 65
ExternalDocumentID oai_doaj_org_article_2e0c0ecde1514e1ebe623c17d54fdc7e
10_1515_jci_2017_0020
10_1515_jci_2017_002072
GrantInformation_xml – fundername: John Templeton Foundation
  grantid: 69609
GroupedDBID 0R~
1WD
4.4
AAFPC
AAFWJ
AAGVJ
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACMKP
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AIKXB
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
BAKPI
BBCWN
BCIFA
CFGNV
E0C
EBS
EJD
GROUPED_DOAJ
HZ~
IY9
K.~
M48
M~E
O9-
OK1
QD8
SA.
SLJYH
T2Y
AAYXX
CITATION
ID FETCH-LOGICAL-c390t-b0191db84988ea322ece71be856d0ec0c4d7daf199eac7071d200441836904f23
IEDL.DBID DOA
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489326100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-3677
IngestDate Fri Oct 03 12:42:13 EDT 2025
Sat Nov 29 05:32:48 EST 2025
Tue Nov 18 22:35:29 EST 2025
Sat Nov 29 01:30:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-b0191db84988ea322ece71be856d0ec0c4d7daf199eac7071d200441836904f23
ORCID 0000-0002-6960-3796
OpenAccessLink https://doaj.org/article/2e0c0ecde1514e1ebe623c17d54fdc7e
PageCount 51
ParticipantIDs doaj_primary_oai_doaj_org_article_2e0c0ecde1514e1ebe623c17d54fdc7e
crossref_primary_10_1515_jci_2017_0020
crossref_citationtrail_10_1515_jci_2017_0020
walterdegruyter_journals_10_1515_jci_2017_002072
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of causal inference
PublicationYear 2019
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Branciard, C; Rosset, D; Gisin, N; Pironio, S (j_jci-2017-0020_ref_047_w2aab3b7d926b1b6b1ab2b2c47Aa) 2012; 85
Hardy, L (j_jci-2017-0020_ref_049_w2aab3b7d926b1b6b1ab2b2c49Aa) 1993; 71
Henson, J; Lal, R; Pusey, MF (j_jci-2017-0020_ref_022_w2aab3b7d926b1b6b1ab2b2c22Aa) 2014; 16
Tavakoli, A (j_jci-2017-0020_ref_030_w2aab3b7d926b1b6b1ab2b2c30Aa) 2016; 93
Ghirardi, G; Marinatto, L (j_jci-2017-0020_ref_074_w2aab3b7d926b1b6b1ab2b2c74Aa) 2008; 372
Fritz, T; Sainz, AB; Augusiak, R; Brask, JB; Chaves, R; Leverrier, A; Acin, A (j_jci-2017-0020_ref_099_w2aab3b7d926b1b6b1ab2b2c99Aa) 2013; 4
Sainz, AB; Fritz, T; Augusiak, R; Brask, JB; Chaves, R; Leverrier, A; Acín, A (j_jci-2017-0020_ref_100_w2aab3b7d926b1b6b1ab2b2d100Aa) 2014; 89
Dür, W; Vidal, G; Cirac, JI (j_jci-2017-0020_ref_048_w2aab3b7d926b1b6b1ab2b2c48Aa) 2000; 62
Kellerer, HG (j_jci-2017-0020_ref_061_w2aab3b7d926b1b6b1ab2b2c61Aa) 1964; 3
Rosset, D; Gisin, N; Wolfe, E (j_jci-2017-0020_ref_006_w2aab3b7d926b1b6b1ab2b2b6Aa) 2018; 18
Chaves, R (j_jci-2017-0020_ref_009_w2aab3b7d926b1b6b1ab2b2b9Aa) 2016; 116
Cabello, A (j_jci-2017-0020_ref_071_w2aab3b7d926b1b6b1ab2b2c71Aa) 2002; 65
Barnum, H; Caves, CM; Fuchs, CA; Jozsa, R; Schumacher, B (j_jci-2017-0020_ref_093_w2aab3b7d926b1b6b1ab2b2c93Aa) 1996; 76
Costa, F; Shrapnel, S (j_jci-2017-0020_ref_042_w2aab3b7d926b1b6b1ab2b2c42Aa) 2016; 18
Chaves, R; Budroni, C (j_jci-2017-0020_ref_024_w2aab3b7d926b1b6b1ab2b2c24Aa) 2016; 116
Budroni, C; Miklin, N; Chaves, R (j_jci-2017-0020_ref_067_w2aab3b7d926b1b6b1ab2b2c67Aa) 2016; 94
Garuccio, A (j_jci-2017-0020_ref_070_w2aab3b7d926b1b6b1ab2b2c70Aa) 1995; 52
Braun, D; Choi, M-S (j_jci-2017-0020_ref_072_w2aab3b7d926b1b6b1ab2b2c72Aa) 2008; 78
Liang, Y-C; Spekkens, RW; Wiseman, HM (j_jci-2017-0020_ref_057_w2aab3b7d926b1b6b1ab2b2c57Aa) 2011; 506
Vorob’ev, NN (j_jci-2017-0020_ref_066_w2aab3b7d926b1b6b1ab2b2c66Aa) 1960; 7
Fritz, T (j_jci-2017-0020_ref_023_w2aab3b7d926b1b6b1ab2b2c23Aa) 2015; 341
Kahle, T (j_jci-2017-0020_ref_068_w2aab3b7d926b1b6b1ab2b2c68Aa) 2010; 51
Barrett, J (j_jci-2017-0020_ref_045_w2aab3b7d926b1b6b1ab2b2c45Aa) 2007; 75
Chaves, R; Fritz, T (j_jci-2017-0020_ref_089_w2aab3b7d926b1b6b1ab2b2c89Aa) 2012; 85
Popescu, S (j_jci-2017-0020_ref_095_w2aab3b7d926b1b6b1ab2b2c95Aa) 2014; 10
Eiter, T; Makino, K; Gottlob, G (j_jci-2017-0020_ref_075_w2aab3b7d926b1b6b1ab2b2c75Aa) 2008; 156
Chaves, R; Majenz, C; Gross, D (j_jci-2017-0020_ref_040_w2aab3b7d926b1b6b1ab2b2c40Aa) 2015; 6
Araújo, M; Túlio Quintino, M; Budroni, C; Terra Cunha, M; Cabello, A (j_jci-2017-0020_ref_063_w2aab3b7d926b1b6b1ab2b2c63Aa) 2013; 88
Popescu, S; Rohrlich, D (j_jci-2017-0020_ref_055_w2aab3b7d926b1b6b1ab2b2c55Aa) 1994; 24
Navascués, M; Guryanova, Y; Hoban, MJ; Acín, A (j_jci-2017-0020_ref_103_w2aab3b7d926b1b6b1ab2b2d103Aa) 2015; 6
Andersen, ED (j_jci-2017-0020_ref_069_w2aab3b7d926b1b6b1ab2b2c69Aa) 2001; 20
Fine, A (j_jci-2017-0020_ref_122_w2aab3b7d926b1b6b1ab2b2d122Aa) 1982; 48
Steudel, B; Ay, N (j_jci-2017-0020_ref_032_w2aab3b7d926b1b6b1ab2b2c32Aa) 2015; 17
Mansfield, S; Fritz, T (j_jci-2017-0020_ref_050_w2aab3b7d926b1b6b1ab2b2c50Aa) 2012; 42
Bogart, T; Contois, M; Gubeladze, J (j_jci-2017-0020_ref_124_w2aab3b7d926b1b6b1ab2b2d124Aa) 2013; 273
Fritz, T; Chaves, R (j_jci-2017-0020_ref_035_w2aab3b7d926b1b6b1ab2b2c35Aa) 2013; 59
Kaibel, V; Liberti, L; Schürmann, A; Sotirov, R (j_jci-2017-0020_ref_116_w2aab3b7d926b1b6b1ab2b2d116Aa) 2010; 7
Lee, CM; Spekkens, RW (j_jci-2017-0020_ref_008_w2aab3b7d926b1b6b1ab2b2b8Aa) 2017; 5
Namioka, I; Phelps, R (j_jci-2017-0020_ref_123_w2aab3b7d926b1b6b1ab2b2d123Aa) 1969; 31
Mančinska, L; Wehner, S (j_jci-2017-0020_ref_073_w2aab3b7d926b1b6b1ab2b2c73Aa) 2014; 47
Ried, K; Agnew, M; Vermeyden, L; Janzing, D; Spekkens, RW; Resch, KJ (j_jci-2017-0020_ref_041_w2aab3b7d926b1b6b1ab2b2c41Aa) 2015; 11
Fraser, TC; Wolfe, E (j_jci-2017-0020_ref_092_w2aab3b7d926b1b6b1ab2b2c92Aa) 2018; 98
Donohue, JM; Wolfe, E (j_jci-2017-0020_ref_052_w2aab3b7d926b1b6b1ab2b2c52Aa) 2015; 92
Rosset, D; Branciard, C; Barnea, TJ; Pütz, G; Brunner, N; Gisin, N (j_jci-2017-0020_ref_029_w2aab3b7d926b1b6b1ab2b2c29Aa) 2016; 116
Bell, JS (j_jci-2017-0020_ref_017_w2aab3b7d926b1b6b1ab2b2c17Aa) 1964; 1
Brunner, N; Cavalcanti, D; Pironio, S; Scarani, V; Wehner, S (j_jci-2017-0020_ref_020_w2aab3b7d926b1b6b1ab2b2c20Aa) 2014; 86
Scarani, V (j_jci-2017-0020_ref_087_w2aab3b7d926b1b6b1ab2b2c87Aa) 2012; 62
Boldi, P; Vigna, S (j_jci-2017-0020_ref_046_w2aab3b7d926b1b6b1ab2b2c46Aa) 2002; 243
Barrett, J; Pironio, S (j_jci-2017-0020_ref_056_w2aab3b7d926b1b6b1ab2b2c56Aa) 2005; 95
Avis, D; Bremner, D; Seidel, R (j_jci-2017-0020_ref_109_w2aab3b7d926b1b6b1ab2b2d109Aa) 1997; 7
Shapot, DV; Lukatskii, AM (j_jci-2017-0020_ref_111_w2aab3b7d926b1b6b1ab2b2d111Aa) 2012; 02
Bastrakov, SI; Zolotykh, NY (j_jci-2017-0020_ref_079_w2aab3b7d926b1b6b1ab2b2c79Aa) 2015; 55
Dantzig, GB; Eaves, BC (j_jci-2017-0020_ref_078_w2aab3b7d926b1b6b1ab2b2c78Aa) 1973; 14
Wood, CJ; Spekkens, RW (j_jci-2017-0020_ref_019_w2aab3b7d926b1b6b1ab2b2c19Aa) 2015; 17
Gläßle, T; Gross, D; Chaves, R (j_jci-2017-0020_ref_113_w2aab3b7d926b1b6b1ab2b2d113Aa) 2018; 51
Garcia, LD; Stillman, M; Sturmfels, B (j_jci-2017-0020_ref_011_w2aab3b7d926b1b6b1ab2b2c11Aa) 2005; 39
Pienaar, J (j_jci-2017-0020_ref_036_w2aab3b7d926b1b6b1ab2b2c36Aa) 2017; 19
Pitowsky, I (j_jci-2017-0020_ref_059_w2aab3b7d926b1b6b1ab2b2c59Aa) 1994; 45
Cirel’son, BS (j_jci-2017-0020_ref_054_w2aab3b7d926b1b6b1ab2b2c54Aa) 1980; 4
Schürmann, A (j_jci-2017-0020_ref_115_w2aab3b7d926b1b6b1ab2b2d115Aa) 2013; 265
Lörwald, S; Reinelt, G (j_jci-2017-0020_ref_118_w2aab3b7d926b1b6b1ab2b2d118Aa) 2015; 3
Balas, E (j_jci-2017-0020_ref_080_w2aab3b7d926b1b6b1ab2b2c80Aa) 1998; 10
Braunstein, SL; Caves, CM (j_jci-2017-0020_ref_037_w2aab3b7d926b1b6b1ab2b2c37Aa) 1988; 61
Janotta, P; Hinrichsen, H (j_jci-2017-0020_ref_091_w2aab3b7d926b1b6b1ab2b2c91Aa) 2014; 47
Yang, TH; Navascués, M; Sheridan, L; Scarani, V (j_jci-2017-0020_ref_096_w2aab3b7d926b1b6b1ab2b2c96Aa) 2011; 83
Clauser, JF; Horne, MA; Shimony, A; Holt, RA (j_jci-2017-0020_ref_018_w2aab3b7d926b1b6b1ab2b2c18Aa) 1969; 23
Fritz, T (j_jci-2017-0020_ref_021_w2aab3b7d926b1b6b1ab2b2c21Aa) 2012; 14
Leifer, MS; Spekkens, RW (j_jci-2017-0020_ref_039_w2aab3b7d926b1b6b1ab2b2c39Aa) 2013; 88
Schumacher, BW (j_jci-2017-0020_ref_038_w2aab3b7d926b1b6b1ab2b2c38Aa) 1991; 44
Weilenmann, M; Colbeck, R (j_jci-2017-0020_ref_026_w2aab3b7d926b1b6b1ab2b2c26Aa) 2018; 2
Chaves, R; Luft, L; Gross, D (j_jci-2017-0020_ref_033_w2aab3b7d926b1b6b1ab2b2c33Aa) 2014; 16
Horodecki, R; Horodecki, P; Horodecki, M; Horodecki, K (j_jci-2017-0020_ref_064_w2aab3b7d926b1b6b1ab2b2c64Aa) 2009; 81
Navascués, M; Pironio, S; Acín, A (j_jci-2017-0020_ref_105_w2aab3b7d926b1b6b1ab2b2d105Aa) 2008; 10
Tavakoli, A; Skrzypczyk, P; Cavalcanti, D; Acín, A (j_jci-2017-0020_ref_028_w2aab3b7d926b1b6b1ab2b2c28Aa) 2014; 90
Leggett, AJ; Garg, A (j_jci-2017-0020_ref_062_w2aab3b7d926b1b6b1ab2b2c62Aa) 1985; 54
Pál, KF; Vértesi, T (j_jci-2017-0020_ref_106_w2aab3b7d926b1b6b1ab2b2d106Aa) 2009; 79
Allen, J-MA; Barrett, J; Horsman, DC; Lee, CM; Spekkens, RW (j_jci-2017-0020_ref_043_w2aab3b7d926b1b6b1ab2b2c43Aa) 2017; 7
Bell, JS (j_jci-2017-0020_ref_051_w2aab3b7d926b1b6b1ab2b2c51Aa) 1966; 38
Jones, CN; Kerrigan, EC; Maciejowski, JM (j_jci-2017-0020_ref_081_w2aab3b7d926b1b6b1ab2b2c81Aa) 2008; 138
Barrett, J; Linden, N; Massar, S; Pironio, S; Popescu, S; Roberts, D (j_jci-2017-0020_ref_086_w2aab3b7d926b1b6b1ab2b2c86Aa) 2005; 71
Barnum, H; Müller, MP; Ududec, C (j_jci-2017-0020_ref_102_w2aab3b7d926b1b6b1ab2b2d102Aa) 2014; 16
Abramsky, S; Brandenburger, A (j_jci-2017-0020_ref_065_w2aab3b7d926b1b6b1ab2b2c65Aa) 2011; 13
Cabello, A (j_jci-2017-0020_ref_101_w2aab3b7d926b1b6b1ab2b2d101Aa) 2015; 114
2023040100213523938_j_jci-2017-0020_ref_089_w2aab3b7d926b1b6b1ab2b2c89Aa
2023040100213523938_j_jci-2017-0020_ref_019_w2aab3b7d926b1b6b1ab2b2c19Aa
2023040100213523938_j_jci-2017-0020_ref_070_w2aab3b7d926b1b6b1ab2b2c70Aa
2023040100213523938_j_jci-2017-0020_ref_037_w2aab3b7d926b1b6b1ab2b2c37Aa
2023040100213523938_j_jci-2017-0020_ref_113_w2aab3b7d926b1b6b1ab2b2d113Aa
2023040100213523938_j_jci-2017-0020_ref_009_w2aab3b7d926b1b6b1ab2b2b9Aa
2023040100213523938_j_jci-2017-0020_ref_028_w2aab3b7d926b1b6b1ab2b2c28Aa
2023040100213523938_j_jci-2017-0020_ref_098_w2aab3b7d926b1b6b1ab2b2c98Aa
2023040100213523938_j_jci-2017-0020_ref_122_w2aab3b7d926b1b6b1ab2b2d122Aa
2023040100213523938_j_jci-2017-0020_ref_055_w2aab3b7d926b1b6b1ab2b2c55Aa
2023040100213523938_j_jci-2017-0020_ref_064_w2aab3b7d926b1b6b1ab2b2c64Aa
2023040100213523938_j_jci-2017-0020_ref_104_w2aab3b7d926b1b6b1ab2b2d104Aa
2023040100213523938_j_jci-2017-0020_ref_046_w2aab3b7d926b1b6b1ab2b2c46Aa
2023040100213523938_j_jci-2017-0020_ref_012_w2aab3b7d926b1b6b1ab2b2c12Aa
2023040100213523938_j_jci-2017-0020_ref_082_w2aab3b7d926b1b6b1ab2b2c82Aa
2023040100213523938_j_jci-2017-0020_ref_123_w2aab3b7d926b1b6b1ab2b2d123Aa
2023040100213523938_j_jci-2017-0020_ref_073_w2aab3b7d926b1b6b1ab2b2c73Aa
2023040100213523938_j_jci-2017-0020_ref_102_w2aab3b7d926b1b6b1ab2b2d102Aa
2023040100213523938_j_jci-2017-0020_ref_091_w2aab3b7d926b1b6b1ab2b2c91Aa
2023040100213523938_j_jci-2017-0020_ref_007_w2aab3b7d926b1b6b1ab2b2b7Aa
2023040100213523938_j_jci-2017-0020_ref_121_w2aab3b7d926b1b6b1ab2b2d121Aa
2023040100213523938_j_jci-2017-0020_ref_016_w2aab3b7d926b1b6b1ab2b2c16Aa
2023040100213523938_j_jci-2017-0020_ref_025_w2aab3b7d926b1b6b1ab2b2c25Aa
2023040100213523938_j_jci-2017-0020_ref_043_w2aab3b7d926b1b6b1ab2b2c43Aa
2023040100213523938_j_jci-2017-0020_ref_112_w2aab3b7d926b1b6b1ab2b2d112Aa
2023040100213523938_j_jci-2017-0020_ref_008_w2aab3b7d926b1b6b1ab2b2b8Aa
2023040100213523938_j_jci-2017-0020_ref_034_w2aab3b7d926b1b6b1ab2b2c34Aa
2023040100213523938_j_jci-2017-0020_ref_061_w2aab3b7d926b1b6b1ab2b2c61Aa
2023040100213523938_j_jci-2017-0020_ref_024_w2aab3b7d926b1b6b1ab2b2c24Aa
2023040100213523938_j_jci-2017-0020_ref_033_w2aab3b7d926b1b6b1ab2b2c33Aa
2023040100213523938_j_jci-2017-0020_ref_015_w2aab3b7d926b1b6b1ab2b2c15Aa
2023040100213523938_j_jci-2017-0020_ref_052_w2aab3b7d926b1b6b1ab2b2c52Aa
2023040100213523938_j_jci-2017-0020_ref_103_w2aab3b7d926b1b6b1ab2b2d103Aa
2023040100213523938_j_jci-2017-0020_ref_005_w2aab3b7d926b1b6b1ab2b2b5Aa
2023040100213523938_j_jci-2017-0020_ref_051_w2aab3b7d926b1b6b1ab2b2c51Aa
2023040100213523938_j_jci-2017-0020_ref_047_w2aab3b7d926b1b6b1ab2b2c47Aa
2023040100213523938_j_jci-2017-0020_ref_101_w2aab3b7d926b1b6b1ab2b2d101Aa
2023040100213523938_j_jci-2017-0020_ref_065_w2aab3b7d926b1b6b1ab2b2c65Aa
2023040100213523938_j_jci-2017-0020_ref_027_w2aab3b7d926b1b6b1ab2b2c27Aa
2023040100213523938_j_jci-2017-0020_ref_083_w2aab3b7d926b1b6b1ab2b2c83Aa
2023040100213523938_j_jci-2017-0020_ref_013_w2aab3b7d926b1b6b1ab2b2c13Aa
2023040100213523938_j_jci-2017-0020_ref_088_w2aab3b7d926b1b6b1ab2b2c88Aa
2023040100213523938_j_jci-2017-0020_ref_045_w2aab3b7d926b1b6b1ab2b2c45Aa
2023040100213523938_j_jci-2017-0020_ref_120_w2aab3b7d926b1b6b1ab2b2d120Aa
2023040100213523938_j_jci-2017-0020_ref_031_w2aab3b7d926b1b6b1ab2b2c31Aa
2023040100213523938_j_jci-2017-0020_ref_003_w2aab3b7d926b1b6b1ab2b2b3Aa
2023040100213523938_j_jci-2017-0020_ref_030_w2aab3b7d926b1b6b1ab2b2c30Aa
2023040100213523938_j_jci-2017-0020_ref_068_w2aab3b7d926b1b6b1ab2b2c68Aa
2023040100213523938_j_jci-2017-0020_ref_114_w2aab3b7d926b1b6b1ab2b2d114Aa
2023040100213523938_j_jci-2017-0020_ref_116_w2aab3b7d926b1b6b1ab2b2d116Aa
2023040100213523938_j_jci-2017-0020_ref_011_w2aab3b7d926b1b6b1ab2b2c11Aa
2023040100213523938_j_jci-2017-0020_ref_086_w2aab3b7d926b1b6b1ab2b2c86Aa
2023040100213523938_j_jci-2017-0020_ref_049_w2aab3b7d926b1b6b1ab2b2c49Aa
2023040100213523938_j_jci-2017-0020_ref_048_w2aab3b7d926b1b6b1ab2b2c48Aa
2023040100213523938_j_jci-2017-0020_ref_067_w2aab3b7d926b1b6b1ab2b2c67Aa
2023040100213523938_j_jci-2017-0020_ref_029_w2aab3b7d926b1b6b1ab2b2c29Aa
2023040100213523938_j_jci-2017-0020_ref_066_w2aab3b7d926b1b6b1ab2b2c66Aa
2023040100213523938_j_jci-2017-0020_ref_115_w2aab3b7d926b1b6b1ab2b2d115Aa
2023040100213523938_j_jci-2017-0020_ref_010_w2aab3b7d926b1b6b1ab2b2c10Aa
2023040100213523938_j_jci-2017-0020_ref_085_w2aab3b7d926b1b6b1ab2b2c85Aa
2023040100213523938_j_jci-2017-0020_ref_100_w2aab3b7d926b1b6b1ab2b2d100Aa
2023040100213523938_j_jci-2017-0020_ref_014_w2aab3b7d926b1b6b1ab2b2c14Aa
2023040100213523938_j_jci-2017-0020_ref_084_w2aab3b7d926b1b6b1ab2b2c84Aa
2023040100213523938_j_jci-2017-0020_ref_075_w2aab3b7d926b1b6b1ab2b2c75Aa
2023040100213523938_j_jci-2017-0020_ref_032_w2aab3b7d926b1b6b1ab2b2c32Aa
2023040100213523938_j_jci-2017-0020_ref_108_w2aab3b7d926b1b6b1ab2b2d108Aa
2023040100213523938_j_jci-2017-0020_ref_041_w2aab3b7d926b1b6b1ab2b2c41Aa
2023040100213523938_j_jci-2017-0020_ref_023_w2aab3b7d926b1b6b1ab2b2c23Aa
2023040100213523938_j_jci-2017-0020_ref_093_w2aab3b7d926b1b6b1ab2b2c93Aa
2023040100213523938_j_jci-2017-0020_ref_117_w2aab3b7d926b1b6b1ab2b2d117Aa
2023040100213523938_j_jci-2017-0020_ref_050_w2aab3b7d926b1b6b1ab2b2c50Aa
2023040100213523938_j_jci-2017-0020_ref_017_w2aab3b7d926b1b6b1ab2b2c17Aa
2023040100213523938_j_jci-2017-0020_ref_087_w2aab3b7d926b1b6b1ab2b2c87Aa
2023040100213523938_j_jci-2017-0020_ref_069_w2aab3b7d926b1b6b1ab2b2c69Aa
2023040100213523938_j_jci-2017-0020_ref_078_w2aab3b7d926b1b6b1ab2b2c78Aa
2023040100213523938_j_jci-2017-0020_ref_063_w2aab3b7d926b1b6b1ab2b2c63Aa
2023040100213523938_j_jci-2017-0020_ref_072_w2aab3b7d926b1b6b1ab2b2c72Aa
2023040100213523938_j_jci-2017-0020_ref_035_w2aab3b7d926b1b6b1ab2b2c35Aa
2023040100213523938_j_jci-2017-0020_ref_054_w2aab3b7d926b1b6b1ab2b2c54Aa
2023040100213523938_j_jci-2017-0020_ref_026_w2aab3b7d926b1b6b1ab2b2c26Aa
2023040100213523938_j_jci-2017-0020_ref_002_w2aab3b7d926b1b6b1ab2b2b2Aa
2023040100213523938_j_jci-2017-0020_ref_053_w2aab3b7d926b1b6b1ab2b2c53Aa
2023040100213523938_j_jci-2017-0020_ref_090_w2aab3b7d926b1b6b1ab2b2c90Aa
2023040100213523938_j_jci-2017-0020_ref_044_w2aab3b7d926b1b6b1ab2b2c44Aa
2023040100213523938_j_jci-2017-0020_ref_081_w2aab3b7d926b1b6b1ab2b2c81Aa
2023040100213523938_j_jci-2017-0020_ref_119_w2aab3b7d926b1b6b1ab2b2d119Aa
2023040100213523938_j_jci-2017-0020_ref_071_w2aab3b7d926b1b6b1ab2b2c71Aa
2023040100213523938_j_jci-2017-0020_ref_080_w2aab3b7d926b1b6b1ab2b2c80Aa
2023040100213523938_j_jci-2017-0020_ref_062_w2aab3b7d926b1b6b1ab2b2c62Aa
2023040100213523938_j_jci-2017-0020_ref_099_w2aab3b7d926b1b6b1ab2b2c99Aa
2023040100213523938_j_jci-2017-0020_ref_118_w2aab3b7d926b1b6b1ab2b2d118Aa
2023040100213523938_j_jci-2017-0020_ref_001_w2aab3b7d926b1b6b1ab2b2b1Aa
2023040100213523938_j_jci-2017-0020_ref_109_w2aab3b7d926b1b6b1ab2b2d109Aa
2023040100213523938_j_jci-2017-0020_ref_056_w2aab3b7d926b1b6b1ab2b2c56Aa
2023040100213523938_j_jci-2017-0020_ref_038_w2aab3b7d926b1b6b1ab2b2c38Aa
2023040100213523938_j_jci-2017-0020_ref_042_w2aab3b7d926b1b6b1ab2b2c42Aa
2023040100213523938_j_jci-2017-0020_ref_074_w2aab3b7d926b1b6b1ab2b2c74Aa
2023040100213523938_j_jci-2017-0020_ref_079_w2aab3b7d926b1b6b1ab2b2c79Aa
2023040100213523938_j_jci-2017-0020_ref_004_w2aab3b7d926b1b6b1ab2b2b4Aa
2023040100213523938_j_jci-2017-0020_ref_110_w2aab3b7d926b1b6b1ab2b2d110Aa
2023040100213523938_j_jci-2017-0020_ref_060_w2aab3b7d926b1b6b1ab2b2c60Aa
2023040100213523938_j_jci-2017-0020_ref_006_w2aab3b7d926b1b6b1ab2b2b6Aa
2023040100213523938_j_jci-2017-0020_ref_022_w2aab3b7d926b1b6b1ab2b2c22Aa
2023040100213523938_j_jci-2017-0020_ref_092_w2aab3b7d926b1b6b1ab2b2c92Aa
2023040100213523938_j_jci-2017-0020_ref_097_w2aab3b7d926b1b6b1ab2b2c97Aa
2023040100213523938_j_jci-2017-0020_ref_105_w2aab3b7d926b1b6b1ab2b2d105Aa
2023040100213523938_j_jci-2017-0020_ref_111_w2aab3b7d926b1b6b1ab2b2d111Aa
2023040100213523938_j_jci-2017-0020_ref_018_w2aab3b7d926b1b6b1ab2b2c18Aa
2023040100213523938_j_jci-2017-0020_ref_040_w2aab3b7d926b1b6b1ab2b2c40Aa
2023040100213523938_j_jci-2017-0020_ref_036_w2aab3b7d926b1b6b1ab2b2c36Aa
2023040100213523938_j_jci-2017-0020_ref_107_w2aab3b7d926b1b6b1ab2b2d107Aa
2023040100213523938_j_jci-2017-0020_ref_059_w2aab3b7d926b1b6b1ab2b2c59Aa
2023040100213523938_j_jci-2017-0020_ref_021_w2aab3b7d926b1b6b1ab2b2c21Aa
2023040100213523938_j_jci-2017-0020_ref_096_w2aab3b7d926b1b6b1ab2b2c96Aa
2023040100213523938_j_jci-2017-0020_ref_058_w2aab3b7d926b1b6b1ab2b2c58Aa
2023040100213523938_j_jci-2017-0020_ref_020_w2aab3b7d926b1b6b1ab2b2c20Aa
2023040100213523938_j_jci-2017-0020_ref_095_w2aab3b7d926b1b6b1ab2b2c95Aa
2023040100213523938_j_jci-2017-0020_ref_077_w2aab3b7d926b1b6b1ab2b2c77Aa
2023040100213523938_j_jci-2017-0020_ref_076_w2aab3b7d926b1b6b1ab2b2c76Aa
2023040100213523938_j_jci-2017-0020_ref_039_w2aab3b7d926b1b6b1ab2b2c39Aa
2023040100213523938_j_jci-2017-0020_ref_124_w2aab3b7d926b1b6b1ab2b2d124Aa
2023040100213523938_j_jci-2017-0020_ref_094_w2aab3b7d926b1b6b1ab2b2c94Aa
2023040100213523938_j_jci-2017-0020_ref_057_w2aab3b7d926b1b6b1ab2b2c57Aa
2023040100213523938_j_jci-2017-0020_ref_106_w2aab3b7d926b1b6b1ab2b2d106Aa
References_xml – volume: 81
  start-page: 865
  year: 2009
  ident: j_jci-2017-0020_ref_064_w2aab3b7d926b1b6b1ab2b2c64Aa
  article-title: Quantum entanglement
  publication-title: Rev Mod Phys
– volume: 4
  start-page: 93
  year: 1980
  ident: j_jci-2017-0020_ref_054_w2aab3b7d926b1b6b1ab2b2c54Aa
  article-title: Quantum generalizations of Bell’s inequality
  publication-title: Lett Math Phys
– volume: 94
  year: 2016
  ident: j_jci-2017-0020_ref_067_w2aab3b7d926b1b6b1ab2b2c67Aa
  article-title: Indistinguishability of causal relations from limited marginals
  publication-title: Phys Rev A
– volume: 4
  start-page: 2263
  year: 2013
  ident: j_jci-2017-0020_ref_099_w2aab3b7d926b1b6b1ab2b2c99Aa
  article-title: Local orthogonality as a multipartite principle for quantum correlations
  publication-title: Nat Commun
– volume: 88
  year: 2013
  ident: j_jci-2017-0020_ref_063_w2aab3b7d926b1b6b1ab2b2c63Aa
  article-title: All noncontextuality inequalities for the n-cycle scenario
  publication-title: Phys Rev A
– volume: 372
  start-page: 1982
  year: 2008
  ident: j_jci-2017-0020_ref_074_w2aab3b7d926b1b6b1ab2b2c74Aa
  article-title: Proofs of nonlocality without inequalities revisited
  publication-title: Phys Lett A
– volume: 83
  year: 2011
  ident: j_jci-2017-0020_ref_096_w2aab3b7d926b1b6b1ab2b2c96Aa
  article-title: Quantum Bell inequalities from macroscopic locality
  publication-title: Phys Rev A
– volume: 14
  start-page: 288
  year: 1973
  ident: j_jci-2017-0020_ref_078_w2aab3b7d926b1b6b1ab2b2c78Aa
  article-title: Fourier-Motzkin elimination and its dual
  publication-title: J Comb Theory, Ser A
– volume: 51
  start-page: 45
  year: 2010
  ident: j_jci-2017-0020_ref_068_w2aab3b7d926b1b6b1ab2b2c68Aa
  article-title: Neighborliness of marginal polytopes
  publication-title: Beitr Algebra Geom
– volume: 98
  year: 2018
  ident: j_jci-2017-0020_ref_092_w2aab3b7d926b1b6b1ab2b2c92Aa
  article-title: Causal compatibility inequalities admitting quantum violations in the triangle structure
  publication-title: Phys Rev A
– volume: 11
  start-page: 414
  year: 2015
  ident: j_jci-2017-0020_ref_041_w2aab3b7d926b1b6b1ab2b2c41Aa
  article-title: A quantum advantage for inferring causal structure
  publication-title: Nat Phys
– volume: 71
  start-page: 1665
  year: 1993
  ident: j_jci-2017-0020_ref_049_w2aab3b7d926b1b6b1ab2b2c49Aa
  article-title: Nonlocality for two particles without inequalities for almost all entangled states
  publication-title: Phys Rev Lett
– volume: 20
  start-page: 171
  year: 2001
  ident: j_jci-2017-0020_ref_069_w2aab3b7d926b1b6b1ab2b2c69Aa
  article-title: Certificates of primal or dual infeasibility in linear programming
  publication-title: Comput Optim Appl
– volume: 6
  start-page: 5766
  year: 2015
  ident: j_jci-2017-0020_ref_040_w2aab3b7d926b1b6b1ab2b2c40Aa
  article-title: Information–theoretic implications of quantum causal structures
  publication-title: Nat Commun
– volume: 13
  year: 2011
  ident: j_jci-2017-0020_ref_065_w2aab3b7d926b1b6b1ab2b2c65Aa
  article-title: The sheaf-theoretic structure of non-locality and contextuality
  publication-title: New J Phys
– volume: 44
  start-page: 7047
  year: 1991
  ident: j_jci-2017-0020_ref_038_w2aab3b7d926b1b6b1ab2b2c38Aa
  article-title: Information and quantum nonseparability
  publication-title: Phys Rev A
– volume: 116
  year: 2016
  ident: j_jci-2017-0020_ref_029_w2aab3b7d926b1b6b1ab2b2c29Aa
  article-title: Nonlinear Bell inequalities tailored for quantum networks
  publication-title: Phys Rev Lett
– volume: 55
  start-page: 160
  year: 2015
  ident: j_jci-2017-0020_ref_079_w2aab3b7d926b1b6b1ab2b2c79Aa
  article-title: Fast method for verifying Chernikov rules in Fourier-Motzkin elimination
  publication-title: Comput Math Math Phys
– volume: 265
  year: 2013
  ident: j_jci-2017-0020_ref_115_w2aab3b7d926b1b6b1ab2b2d115Aa
  article-title: Exploiting symmetries in polyhedral computations
  publication-title: Disc Geom Optim
– volume: 61
  start-page: 662
  year: 1988
  ident: j_jci-2017-0020_ref_037_w2aab3b7d926b1b6b1ab2b2c37Aa
  article-title: Information-theoretic Bell inequalities
  publication-title: Phys Rev Lett
– volume: 506
  start-page: 1
  year: 2011
  ident: j_jci-2017-0020_ref_057_w2aab3b7d926b1b6b1ab2b2c57Aa
  article-title: Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity
  publication-title: Phys Rep
– volume: 75
  year: 2007
  ident: j_jci-2017-0020_ref_045_w2aab3b7d926b1b6b1ab2b2c45Aa
  article-title: Information processing in generalized probabilistic theories
  publication-title: Phys Rev A
– volume: 42
  start-page: 709
  year: 2012
  ident: j_jci-2017-0020_ref_050_w2aab3b7d926b1b6b1ab2b2c50Aa
  article-title: Hardy’s non-locality paradox and possibilistic conditions for non-locality
  publication-title: Found Phys
– volume: 95
  year: 2005
  ident: j_jci-2017-0020_ref_056_w2aab3b7d926b1b6b1ab2b2c56Aa
  article-title: Popescu-Rohrlich correlations as a unit of nonlocality
  publication-title: Phys Rev Lett
– volume: 47
  year: 2014
  ident: j_jci-2017-0020_ref_073_w2aab3b7d926b1b6b1ab2b2c73Aa
  article-title: A unified view on Hardy’s paradox and the Clauser–Horne–Shimony–Holt inequality
  publication-title: J Phys A
– volume: 85
  year: 2012
  ident: j_jci-2017-0020_ref_047_w2aab3b7d926b1b6b1ab2b2c47Aa
  article-title: Bilocal versus nonbilocal correlations in entanglement-swapping experiments
  publication-title: Phys Rev A
– volume: 1
  start-page: 195
  year: 1964
  ident: j_jci-2017-0020_ref_017_w2aab3b7d926b1b6b1ab2b2c17Aa
  article-title: On the Einstein-Podolsky-Rosen paradox
  publication-title: Physics
– volume: 54
  start-page: 857
  year: 1985
  ident: j_jci-2017-0020_ref_062_w2aab3b7d926b1b6b1ab2b2c62Aa
  article-title: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?
  publication-title: Phys Rev Lett
– volume: 47
  year: 2014
  ident: j_jci-2017-0020_ref_091_w2aab3b7d926b1b6b1ab2b2c91Aa
  article-title: Generalized probability theories: what determines the structure of quantum theory?
  publication-title: J Phys A
– volume: 02
  start-page: 1
  year: 2012
  ident: j_jci-2017-0020_ref_111_w2aab3b7d926b1b6b1ab2b2d111Aa
  article-title: Solution building for arbitrary system of linear inequalities in an explicit form
  publication-title: Am J Comput Math
– volume: 5
  year: 2017
  ident: j_jci-2017-0020_ref_008_w2aab3b7d926b1b6b1ab2b2b8Aa
  article-title: Causal inference via algebraic geometry: Feasibility tests for functional causal structures with two binary observed variables
  publication-title: J Causal Inference
– volume: 18
  year: 2018
  ident: j_jci-2017-0020_ref_006_w2aab3b7d926b1b6b1ab2b2b6Aa
  article-title: Universal bound on the cardinality of local hidden variables in networks
  publication-title: Quantum Inf Comput
– volume: 2
  start-page: 57
  year: 2018
  ident: j_jci-2017-0020_ref_026_w2aab3b7d926b1b6b1ab2b2c26Aa
  article-title: Non-Shannon inequalities in the entropy vector approach to causal structures
  publication-title: Quantum
– volume: 59
  start-page: 803
  year: 2013
  ident: j_jci-2017-0020_ref_035_w2aab3b7d926b1b6b1ab2b2c35Aa
  article-title: Entropic inequalities and marginal problems
  publication-title: IEEE Trans Inf Theory
– volume: 92
  year: 2015
  ident: j_jci-2017-0020_ref_052_w2aab3b7d926b1b6b1ab2b2c52Aa
  article-title: Identifying nonconvexity in the sets of limited-dimension quantum correlations
  publication-title: Phys Rev A
– volume: 10
  start-page: 189
  year: 1998
  ident: j_jci-2017-0020_ref_080_w2aab3b7d926b1b6b1ab2b2c80Aa
  article-title: Projection with a minimal system of inequalities
  publication-title: Comput Optim Appl
– volume: 79
  year: 2009
  ident: j_jci-2017-0020_ref_106_w2aab3b7d926b1b6b1ab2b2d106Aa
  article-title: Quantum bounds on Bell inequalities
  publication-title: Phys Rev A
– volume: 3
  start-page: 247
  year: 1964
  ident: j_jci-2017-0020_ref_061_w2aab3b7d926b1b6b1ab2b2c61Aa
  article-title: Verteilungsfunktionen mit gegebenen Marginalverteilungen
  publication-title: Z Wahrscheinlichkeitstheorie
– volume: 156
  start-page: 2035
  year: 2008
  ident: j_jci-2017-0020_ref_075_w2aab3b7d926b1b6b1ab2b2c75Aa
  article-title: Computational aspects of monotone dualization: A brief survey
  publication-title: Discrete Appl Math
– volume: 23
  start-page: 880
  year: 1969
  ident: j_jci-2017-0020_ref_018_w2aab3b7d926b1b6b1ab2b2c18Aa
  article-title: Proposed experiment to test local hidden-variable theories
  publication-title: Phys Rev Lett
– volume: 16
  year: 2014
  ident: j_jci-2017-0020_ref_022_w2aab3b7d926b1b6b1ab2b2c22Aa
  article-title: Theory-independent limits on correlations from generalized Bayesian networks
  publication-title: New J Phys
– volume: 6
  start-page: 6288
  year: 2015
  ident: j_jci-2017-0020_ref_103_w2aab3b7d926b1b6b1ab2b2d103Aa
  article-title: Almost quantum correlations
  publication-title: Nat Commun
– volume: 62
  year: 2000
  ident: j_jci-2017-0020_ref_048_w2aab3b7d926b1b6b1ab2b2c48Aa
  article-title: Three qubits can be entangled in two inequivalent ways
  publication-title: Phys Rev A
– volume: 78
  year: 2008
  ident: j_jci-2017-0020_ref_072_w2aab3b7d926b1b6b1ab2b2c72Aa
  article-title: Hardy’s test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects
  publication-title: Phys Rev A
– volume: 52
  start-page: 2535
  year: 1995
  ident: j_jci-2017-0020_ref_070_w2aab3b7d926b1b6b1ab2b2c70Aa
  article-title: Hardy’s approach, Eberhard’s inequality, and supplementary assumptions
  publication-title: Phys Rev A
– volume: 273
  start-page: 1267
  year: 2013
  ident: j_jci-2017-0020_ref_124_w2aab3b7d926b1b6b1ab2b2d124Aa
  article-title: Hom-polytopes
  publication-title: Math Z
– volume: 76
  start-page: 2818
  year: 1996
  ident: j_jci-2017-0020_ref_093_w2aab3b7d926b1b6b1ab2b2c93Aa
  article-title: Noncommuting mixed states cannot be broadcast
  publication-title: Phys Rev Lett
– volume: 90
  year: 2014
  ident: j_jci-2017-0020_ref_028_w2aab3b7d926b1b6b1ab2b2c28Aa
  article-title: Nonlocal correlations in the star-network configuration
  publication-title: Phys Rev A
– volume: 3
  start-page: 297
  year: 2015
  ident: j_jci-2017-0020_ref_118_w2aab3b7d926b1b6b1ab2b2d118Aa
  article-title: PANDA: a software for polyhedral transformations
  publication-title: EURO J Comp Optim
– volume: 89
  year: 2014
  ident: j_jci-2017-0020_ref_100_w2aab3b7d926b1b6b1ab2b2d100Aa
  article-title: Exploring the local orthogonality principle
  publication-title: Phys Rev A
– volume: 85
  year: 2012
  ident: j_jci-2017-0020_ref_089_w2aab3b7d926b1b6b1ab2b2c89Aa
  article-title: Entropic approach to local realism and noncontextuality
  publication-title: Phys Rev A
– volume: 24
  start-page: 379
  year: 1994
  ident: j_jci-2017-0020_ref_055_w2aab3b7d926b1b6b1ab2b2c55Aa
  article-title: Quantum nonlocality as an axiom
  publication-title: Found Phys
– volume: 14
  year: 2012
  ident: j_jci-2017-0020_ref_021_w2aab3b7d926b1b6b1ab2b2c21Aa
  article-title: Beyond Bell’s theorem: correlation scenarios
  publication-title: New J Phys
– volume: 116
  year: 2016
  ident: j_jci-2017-0020_ref_024_w2aab3b7d926b1b6b1ab2b2c24Aa
  article-title: Entropic nonsignaling correlations
  publication-title: Phys Rev Lett
– volume: 16
  year: 2014
  ident: j_jci-2017-0020_ref_033_w2aab3b7d926b1b6b1ab2b2c33Aa
  article-title: Causal structures from entropic information: geometry and novel scenarios
  publication-title: New J Phys
– volume: 16
  year: 2014
  ident: j_jci-2017-0020_ref_102_w2aab3b7d926b1b6b1ab2b2d102Aa
  article-title: Higher-order interference and single-system postulates characterizing quantum theory
  publication-title: New J Phys
– volume: 19
  year: 2017
  ident: j_jci-2017-0020_ref_036_w2aab3b7d926b1b6b1ab2b2c36Aa
  article-title: Which causal structures might support a quantum–classical gap?
  publication-title: New J Phys
– volume: 71
  year: 2005
  ident: j_jci-2017-0020_ref_086_w2aab3b7d926b1b6b1ab2b2c86Aa
  article-title: Nonlocal correlations as an information-theoretic resource
  publication-title: Phys Rev A
– volume: 86
  start-page: 419
  year: 2014
  ident: j_jci-2017-0020_ref_020_w2aab3b7d926b1b6b1ab2b2c20Aa
  article-title: Bell nonlocality
  publication-title: Rev Mod Phys
– volume: 62
  start-page: 347
  year: 2012
  ident: j_jci-2017-0020_ref_087_w2aab3b7d926b1b6b1ab2b2c87Aa
  article-title: The device-independent outlook on quantum physics
  publication-title: Acta Phys Slovaca
– volume: 18
  year: 2016
  ident: j_jci-2017-0020_ref_042_w2aab3b7d926b1b6b1ab2b2c42Aa
  article-title: Quantum causal modelling
  publication-title: New J Phys
– volume: 17
  start-page: 2304
  year: 2015
  ident: j_jci-2017-0020_ref_032_w2aab3b7d926b1b6b1ab2b2c32Aa
  article-title: Information-theoretic inference of common ancestors
  publication-title: Entropy
– volume: 45
  start-page: 95
  year: 1994
  ident: j_jci-2017-0020_ref_059_w2aab3b7d926b1b6b1ab2b2c59Aa
  article-title: George Boole’s ‘Conditions of possible experience’ and the quantum puzzle
  publication-title: Br J Philos Sci
– volume: 65
  year: 2002
  ident: j_jci-2017-0020_ref_071_w2aab3b7d926b1b6b1ab2b2c71Aa
  article-title: Bell’s theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states
  publication-title: Phys Rev A
– volume: 51
  year: 2018
  ident: j_jci-2017-0020_ref_113_w2aab3b7d926b1b6b1ab2b2d113Aa
  article-title: Computational tools for solving a marginal problem with applications in Bell non-locality and causal modeling
  publication-title: J Phys A
– volume: 93
  year: 2016
  ident: j_jci-2017-0020_ref_030_w2aab3b7d926b1b6b1ab2b2c30Aa
  article-title: Bell-type inequalities for arbitrary noncyclic networks
  publication-title: Phys Rev A
– volume: 7
  start-page: 2245
  year: 2010
  ident: j_jci-2017-0020_ref_116_w2aab3b7d926b1b6b1ab2b2d116Aa
  article-title: Mini-workshop: Exploiting symmetry in optimization
  publication-title: Oberwolfach Rep
– volume: 17
  year: 2015
  ident: j_jci-2017-0020_ref_019_w2aab3b7d926b1b6b1ab2b2c19Aa
  article-title: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning
  publication-title: New J Phys
– volume: 38
  start-page: 447
  year: 1966
  ident: j_jci-2017-0020_ref_051_w2aab3b7d926b1b6b1ab2b2c51Aa
  article-title: On the problem of hidden variables in quantum mechanics
  publication-title: Rev Mod Phys
– volume: 116
  year: 2016
  ident: j_jci-2017-0020_ref_009_w2aab3b7d926b1b6b1ab2b2b9Aa
  article-title: Polynomial Bell inequalities
  publication-title: Phys Rev Lett
– volume: 7
  year: 2017
  ident: j_jci-2017-0020_ref_043_w2aab3b7d926b1b6b1ab2b2c43Aa
  article-title: Quantum common causes and quantum causal models
  publication-title: Phys Rev X
– volume: 88
  year: 2013
  ident: j_jci-2017-0020_ref_039_w2aab3b7d926b1b6b1ab2b2c39Aa
  article-title: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference
  publication-title: Phys Rev A
– volume: 31
  start-page: 469
  year: 1969
  ident: j_jci-2017-0020_ref_123_w2aab3b7d926b1b6b1ab2b2d123Aa
  article-title: Tensor products of compact convex sets
  publication-title: Pac J Math
– volume: 114
  year: 2015
  ident: j_jci-2017-0020_ref_101_w2aab3b7d926b1b6b1ab2b2d101Aa
  article-title: Simple explanation of the quantum limits of genuine n-body nonlocality
  publication-title: Phys Rev Lett
– volume: 138
  start-page: 207
  year: 2008
  ident: j_jci-2017-0020_ref_081_w2aab3b7d926b1b6b1ab2b2c81Aa
  article-title: On polyhedral projection and parametric programming
  publication-title: J Optim Theory Appl
– volume: 39
  start-page: 331
  year: 2005
  ident: j_jci-2017-0020_ref_011_w2aab3b7d926b1b6b1ab2b2c11Aa
  article-title: Algebraic geometry of bayesian networks
  publication-title: J Symb Comput
– volume: 7
  start-page: 147
  year: 1960
  ident: j_jci-2017-0020_ref_066_w2aab3b7d926b1b6b1ab2b2c66Aa
  article-title: Consistent families of measures and their extensions
  publication-title: Theory Probab Appl
– volume: 10
  year: 2008
  ident: j_jci-2017-0020_ref_105_w2aab3b7d926b1b6b1ab2b2d105Aa
  article-title: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations
  publication-title: New J Phys
– volume: 10
  start-page: 264
  year: 2014
  ident: j_jci-2017-0020_ref_095_w2aab3b7d926b1b6b1ab2b2c95Aa
  article-title: Nonlocality beyond quantum mechanics
  publication-title: Nat Phys
– volume: 243
  start-page: 21
  year: 2002
  ident: j_jci-2017-0020_ref_046_w2aab3b7d926b1b6b1ab2b2c46Aa
  article-title: Fibrations of graphs
  publication-title: Discrete Math
– volume: 7
  start-page: 265
  year: 1997
  ident: j_jci-2017-0020_ref_109_w2aab3b7d926b1b6b1ab2b2d109Aa
  article-title: How good are convex hull algorithms?
  publication-title: Comput Geom
– volume: 48
  start-page: 291
  year: 1982
  ident: j_jci-2017-0020_ref_122_w2aab3b7d926b1b6b1ab2b2d122Aa
  article-title: Hidden variables, joint probability, and the Bell inequalities
  publication-title: Phys Rev Lett
– volume: 341
  start-page: 391
  year: 2015
  ident: j_jci-2017-0020_ref_023_w2aab3b7d926b1b6b1ab2b2c23Aa
  article-title: Beyond Bell’s theorem II: Scenarios with arbitrary causal structure
  publication-title: Commun Math Phys
– ident: 2023040100213523938_j_jci-2017-0020_ref_008_w2aab3b7d926b1b6b1ab2b2b8Aa
  doi: 10.1515/jci-2016-0013
– ident: 2023040100213523938_j_jci-2017-0020_ref_020_w2aab3b7d926b1b6b1ab2b2c20Aa
  doi: 10.1103/RevModPhys.86.419
– ident: 2023040100213523938_j_jci-2017-0020_ref_095_w2aab3b7d926b1b6b1ab2b2c95Aa
  doi: 10.1038/nphys2916
– ident: 2023040100213523938_j_jci-2017-0020_ref_051_w2aab3b7d926b1b6b1ab2b2c51Aa
  doi: 10.1103/RevModPhys.38.447
– ident: 2023040100213523938_j_jci-2017-0020_ref_055_w2aab3b7d926b1b6b1ab2b2c55Aa
  doi: 10.1007/BF02058098
– ident: 2023040100213523938_j_jci-2017-0020_ref_085_w2aab3b7d926b1b6b1ab2b2c85Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_090_w2aab3b7d926b1b6b1ab2b2c90Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_001_w2aab3b7d926b1b6b1ab2b2b1Aa
  doi: 10.1017/CBO9780511803161
– ident: 2023040100213523938_j_jci-2017-0020_ref_041_w2aab3b7d926b1b6b1ab2b2c41Aa
  doi: 10.1038/nphys3266
– ident: 2023040100213523938_j_jci-2017-0020_ref_045_w2aab3b7d926b1b6b1ab2b2c45Aa
  doi: 10.1103/PhysRevA.75.032304
– ident: 2023040100213523938_j_jci-2017-0020_ref_054_w2aab3b7d926b1b6b1ab2b2c54Aa
  doi: 10.1007/BF00417500
– ident: 2023040100213523938_j_jci-2017-0020_ref_070_w2aab3b7d926b1b6b1ab2b2c70Aa
  doi: 10.1103/PhysRevA.52.2535
– ident: 2023040100213523938_j_jci-2017-0020_ref_123_w2aab3b7d926b1b6b1ab2b2d123Aa
  doi: 10.2140/pjm.1969.31.469
– ident: 2023040100213523938_j_jci-2017-0020_ref_036_w2aab3b7d926b1b6b1ab2b2c36Aa
  doi: 10.1088/1367-2630/aa673e
– ident: 2023040100213523938_j_jci-2017-0020_ref_027_w2aab3b7d926b1b6b1ab2b2c27Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_069_w2aab3b7d926b1b6b1ab2b2c69Aa
  doi: 10.1023/A:1011259103627
– ident: 2023040100213523938_j_jci-2017-0020_ref_086_w2aab3b7d926b1b6b1ab2b2c86Aa
  doi: 10.1103/PhysRevA.71.022101
– ident: 2023040100213523938_j_jci-2017-0020_ref_093_w2aab3b7d926b1b6b1ab2b2c93Aa
  doi: 10.1103/PhysRevLett.76.2818
– ident: 2023040100213523938_j_jci-2017-0020_ref_118_w2aab3b7d926b1b6b1ab2b2d118Aa
  doi: 10.1007/s13675-015-0040-0
– ident: 2023040100213523938_j_jci-2017-0020_ref_025_w2aab3b7d926b1b6b1ab2b2c25Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_083_w2aab3b7d926b1b6b1ab2b2c83Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_019_w2aab3b7d926b1b6b1ab2b2c19Aa
  doi: 10.1088/1367-2630/17/3/033002
– ident: 2023040100213523938_j_jci-2017-0020_ref_114_w2aab3b7d926b1b6b1ab2b2d114Aa
  doi: 10.1090/crmp/048/03
– ident: 2023040100213523938_j_jci-2017-0020_ref_079_w2aab3b7d926b1b6b1ab2b2c79Aa
  doi: 10.1134/S0965542515010042
– ident: 2023040100213523938_j_jci-2017-0020_ref_081_w2aab3b7d926b1b6b1ab2b2c81Aa
  doi: 10.1007/s10957-008-9384-4
– ident: 2023040100213523938_j_jci-2017-0020_ref_009_w2aab3b7d926b1b6b1ab2b2b9Aa
  doi: 10.1103/PhysRevLett.116.010402
– ident: 2023040100213523938_j_jci-2017-0020_ref_002_w2aab3b7d926b1b6b1ab2b2b2Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_088_w2aab3b7d926b1b6b1ab2b2c88Aa
  doi: 10.1007/978-3-319-01183-7
– ident: 2023040100213523938_j_jci-2017-0020_ref_082_w2aab3b7d926b1b6b1ab2b2c82Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_022_w2aab3b7d926b1b6b1ab2b2c22Aa
  doi: 10.1088/1367-2630/16/11/113043
– ident: 2023040100213523938_j_jci-2017-0020_ref_094_w2aab3b7d926b1b6b1ab2b2c94Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_011_w2aab3b7d926b1b6b1ab2b2c11Aa
  doi: 10.1016/j.jsc.2004.11.007
– ident: 2023040100213523938_j_jci-2017-0020_ref_007_w2aab3b7d926b1b6b1ab2b2b7Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_005_w2aab3b7d926b1b6b1ab2b2b5Aa
  doi: 10.1145/3159652.3176182
– ident: 2023040100213523938_j_jci-2017-0020_ref_115_w2aab3b7d926b1b6b1ab2b2d115Aa
  doi: 10.1007/978-3-319-00200-2_15
– ident: 2023040100213523938_j_jci-2017-0020_ref_006_w2aab3b7d926b1b6b1ab2b2b6Aa
  doi: 10.26421/QIC18.11-12-2
– ident: 2023040100213523938_j_jci-2017-0020_ref_053_w2aab3b7d926b1b6b1ab2b2c53Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_057_w2aab3b7d926b1b6b1ab2b2c57Aa
  doi: 10.1016/j.physrep.2011.05.001
– ident: 2023040100213523938_j_jci-2017-0020_ref_080_w2aab3b7d926b1b6b1ab2b2c80Aa
  doi: 10.1023/A:1018368920203
– ident: 2023040100213523938_j_jci-2017-0020_ref_087_w2aab3b7d926b1b6b1ab2b2c87Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_028_w2aab3b7d926b1b6b1ab2b2c28Aa
  doi: 10.1103/PhysRevA.90.062109
– ident: 2023040100213523938_j_jci-2017-0020_ref_016_w2aab3b7d926b1b6b1ab2b2c16Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_021_w2aab3b7d926b1b6b1ab2b2c21Aa
  doi: 10.1088/1367-2630/14/10/103001
– ident: 2023040100213523938_j_jci-2017-0020_ref_029_w2aab3b7d926b1b6b1ab2b2c29Aa
  doi: 10.1103/PhysRevLett.116.010403
– ident: 2023040100213523938_j_jci-2017-0020_ref_052_w2aab3b7d926b1b6b1ab2b2c52Aa
  doi: 10.1103/PhysRevA.92.062120
– ident: 2023040100213523938_j_jci-2017-0020_ref_023_w2aab3b7d926b1b6b1ab2b2c23Aa
  doi: 10.1007/s00220-015-2495-5
– ident: 2023040100213523938_j_jci-2017-0020_ref_097_w2aab3b7d926b1b6b1ab2b2c97Aa
  doi: 10.1007/978-88-470-5217-8_13
– ident: 2023040100213523938_j_jci-2017-0020_ref_117_w2aab3b7d926b1b6b1ab2b2d117Aa
  doi: 10.1007/978-3-642-15582-6_48
– ident: 2023040100213523938_j_jci-2017-0020_ref_046_w2aab3b7d926b1b6b1ab2b2c46Aa
  doi: 10.1016/S0012-365X(00)00455-6
– ident: 2023040100213523938_j_jci-2017-0020_ref_031_w2aab3b7d926b1b6b1ab2b2c31Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_120_w2aab3b7d926b1b6b1ab2b2d120Aa
  doi: 10.1109/ISIT.2013.6620223
– ident: 2023040100213523938_j_jci-2017-0020_ref_010_w2aab3b7d926b1b6b1ab2b2c10Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_004_w2aab3b7d926b1b6b1ab2b2b4Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_060_w2aab3b7d926b1b6b1ab2b2c60Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_058_w2aab3b7d926b1b6b1ab2b2c58Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_043_w2aab3b7d926b1b6b1ab2b2c43Aa
  doi: 10.1103/PhysRevX.7.031021
– ident: 2023040100213523938_j_jci-2017-0020_ref_044_w2aab3b7d926b1b6b1ab2b2c44Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_074_w2aab3b7d926b1b6b1ab2b2c74Aa
  doi: 10.1016/j.physleta.2007.11.012
– ident: 2023040100213523938_j_jci-2017-0020_ref_068_w2aab3b7d926b1b6b1ab2b2c68Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_102_w2aab3b7d926b1b6b1ab2b2d102Aa
  doi: 10.1088/1367-2630/16/12/123029
– ident: 2023040100213523938_j_jci-2017-0020_ref_096_w2aab3b7d926b1b6b1ab2b2c96Aa
  doi: 10.1103/PhysRevA.83.022105
– ident: 2023040100213523938_j_jci-2017-0020_ref_103_w2aab3b7d926b1b6b1ab2b2d103Aa
  doi: 10.1038/ncomms7288
– ident: 2023040100213523938_j_jci-2017-0020_ref_108_w2aab3b7d926b1b6b1ab2b2d108Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_065_w2aab3b7d926b1b6b1ab2b2c65Aa
  doi: 10.1088/1367-2630/13/11/113036
– ident: 2023040100213523938_j_jci-2017-0020_ref_091_w2aab3b7d926b1b6b1ab2b2c91Aa
  doi: 10.1088/1751-8113/47/32/323001
– ident: 2023040100213523938_j_jci-2017-0020_ref_116_w2aab3b7d926b1b6b1ab2b2d116Aa
  doi: 10.4171/OWR/2010/38
– ident: 2023040100213523938_j_jci-2017-0020_ref_106_w2aab3b7d926b1b6b1ab2b2d106Aa
  doi: 10.1103/PhysRevA.79.022120
– ident: 2023040100213523938_j_jci-2017-0020_ref_018_w2aab3b7d926b1b6b1ab2b2c18Aa
  doi: 10.1103/PhysRevLett.23.880
– ident: 2023040100213523938_j_jci-2017-0020_ref_062_w2aab3b7d926b1b6b1ab2b2c62Aa
  doi: 10.1103/PhysRevLett.54.857
– ident: 2023040100213523938_j_jci-2017-0020_ref_032_w2aab3b7d926b1b6b1ab2b2c32Aa
  doi: 10.3390/e17042304
– ident: 2023040100213523938_j_jci-2017-0020_ref_050_w2aab3b7d926b1b6b1ab2b2c50Aa
  doi: 10.1007/s10701-012-9640-1
– ident: 2023040100213523938_j_jci-2017-0020_ref_098_w2aab3b7d926b1b6b1ab2b2c98Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_071_w2aab3b7d926b1b6b1ab2b2c71Aa
  doi: 10.1103/PhysRevA.65.032108
– ident: 2023040100213523938_j_jci-2017-0020_ref_063_w2aab3b7d926b1b6b1ab2b2c63Aa
  doi: 10.1103/PhysRevA.88.022118
– ident: 2023040100213523938_j_jci-2017-0020_ref_015_w2aab3b7d926b1b6b1ab2b2c15Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_075_w2aab3b7d926b1b6b1ab2b2c75Aa
  doi: 10.1016/j.dam.2007.04.017
– ident: 2023040100213523938_j_jci-2017-0020_ref_078_w2aab3b7d926b1b6b1ab2b2c78Aa
  doi: 10.1016/0097-3165(73)90004-6
– ident: 2023040100213523938_j_jci-2017-0020_ref_111_w2aab3b7d926b1b6b1ab2b2d111Aa
  doi: 10.4236/ajcm.2012.21001
– ident: 2023040100213523938_j_jci-2017-0020_ref_034_w2aab3b7d926b1b6b1ab2b2c34Aa
  doi: 10.1109/MLSP.2012.6349796
– ident: 2023040100213523938_j_jci-2017-0020_ref_030_w2aab3b7d926b1b6b1ab2b2c30Aa
  doi: 10.1103/PhysRevA.93.030101
– ident: 2023040100213523938_j_jci-2017-0020_ref_066_w2aab3b7d926b1b6b1ab2b2c66Aa
  doi: 10.1137/1107014
– ident: 2023040100213523938_j_jci-2017-0020_ref_107_w2aab3b7d926b1b6b1ab2b2d107Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_067_w2aab3b7d926b1b6b1ab2b2c67Aa
  doi: 10.1103/PhysRevA.94.042127
– ident: 2023040100213523938_j_jci-2017-0020_ref_061_w2aab3b7d926b1b6b1ab2b2c61Aa
  doi: 10.1007/BF00534912
– ident: 2023040100213523938_j_jci-2017-0020_ref_033_w2aab3b7d926b1b6b1ab2b2c33Aa
  doi: 10.1088/1367-2630/16/4/043001
– ident: 2023040100213523938_j_jci-2017-0020_ref_047_w2aab3b7d926b1b6b1ab2b2c47Aa
  doi: 10.1103/PhysRevA.85.032119
– ident: 2023040100213523938_j_jci-2017-0020_ref_049_w2aab3b7d926b1b6b1ab2b2c49Aa
  doi: 10.1103/PhysRevLett.71.1665
– ident: 2023040100213523938_j_jci-2017-0020_ref_014_w2aab3b7d926b1b6b1ab2b2c14Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_101_w2aab3b7d926b1b6b1ab2b2d101Aa
  doi: 10.1103/PhysRevLett.114.220402
– ident: 2023040100213523938_j_jci-2017-0020_ref_064_w2aab3b7d926b1b6b1ab2b2c64Aa
  doi: 10.1103/RevModPhys.81.865
– ident: 2023040100213523938_j_jci-2017-0020_ref_024_w2aab3b7d926b1b6b1ab2b2c24Aa
  doi: 10.1103/PhysRevLett.116.240501
– ident: 2023040100213523938_j_jci-2017-0020_ref_122_w2aab3b7d926b1b6b1ab2b2d122Aa
  doi: 10.1103/PhysRevLett.48.291
– ident: 2023040100213523938_j_jci-2017-0020_ref_112_w2aab3b7d926b1b6b1ab2b2d112Aa
  doi: 10.1007/978-3-0348-8438-9_9
– ident: 2023040100213523938_j_jci-2017-0020_ref_040_w2aab3b7d926b1b6b1ab2b2c40Aa
  doi: 10.1038/ncomms6766
– ident: 2023040100213523938_j_jci-2017-0020_ref_105_w2aab3b7d926b1b6b1ab2b2d105Aa
  doi: 10.1088/1367-2630/10/7/073013
– ident: 2023040100213523938_j_jci-2017-0020_ref_048_w2aab3b7d926b1b6b1ab2b2c48Aa
  doi: 10.1103/PhysRevA.62.062314
– ident: 2023040100213523938_j_jci-2017-0020_ref_056_w2aab3b7d926b1b6b1ab2b2c56Aa
  doi: 10.1103/PhysRevLett.95.140401
– ident: 2023040100213523938_j_jci-2017-0020_ref_119_w2aab3b7d926b1b6b1ab2b2d119Aa
  doi: 10.1007/978-0-387-79234-7_15
– ident: 2023040100213523938_j_jci-2017-0020_ref_037_w2aab3b7d926b1b6b1ab2b2c37Aa
  doi: 10.1103/PhysRevLett.61.662
– ident: 2023040100213523938_j_jci-2017-0020_ref_017_w2aab3b7d926b1b6b1ab2b2c17Aa
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– ident: 2023040100213523938_j_jci-2017-0020_ref_076_w2aab3b7d926b1b6b1ab2b2c76Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_089_w2aab3b7d926b1b6b1ab2b2c89Aa
  doi: 10.1103/PhysRevA.85.032113
– ident: 2023040100213523938_j_jci-2017-0020_ref_100_w2aab3b7d926b1b6b1ab2b2d100Aa
  doi: 10.1103/PhysRevA.89.032117
– ident: 2023040100213523938_j_jci-2017-0020_ref_026_w2aab3b7d926b1b6b1ab2b2c26Aa
  doi: 10.22331/q-2018-03-14-57
– ident: 2023040100213523938_j_jci-2017-0020_ref_073_w2aab3b7d926b1b6b1ab2b2c73Aa
  doi: 10.1088/1751-8113/47/42/424027
– ident: 2023040100213523938_j_jci-2017-0020_ref_039_w2aab3b7d926b1b6b1ab2b2c39Aa
  doi: 10.1103/PhysRevA.88.052130
– ident: 2023040100213523938_j_jci-2017-0020_ref_113_w2aab3b7d926b1b6b1ab2b2d113Aa
  doi: 10.1088/1751-8121/aae754
– ident: 2023040100213523938_j_jci-2017-0020_ref_121_w2aab3b7d926b1b6b1ab2b2d121Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_077_w2aab3b7d926b1b6b1ab2b2c77Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_042_w2aab3b7d926b1b6b1ab2b2c42Aa
  doi: 10.1088/1367-2630/18/6/063032
– ident: 2023040100213523938_j_jci-2017-0020_ref_012_w2aab3b7d926b1b6b1ab2b2c12Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_035_w2aab3b7d926b1b6b1ab2b2c35Aa
  doi: 10.1109/TIT.2012.2222863
– ident: 2023040100213523938_j_jci-2017-0020_ref_003_w2aab3b7d926b1b6b1ab2b2b3Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_104_w2aab3b7d926b1b6b1ab2b2d104Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_013_w2aab3b7d926b1b6b1ab2b2c13Aa
– ident: 2023040100213523938_j_jci-2017-0020_ref_059_w2aab3b7d926b1b6b1ab2b2c59Aa
  doi: 10.1093/bjps/45.1.95
– ident: 2023040100213523938_j_jci-2017-0020_ref_099_w2aab3b7d926b1b6b1ab2b2c99Aa
  doi: 10.1038/ncomms3263
– ident: 2023040100213523938_j_jci-2017-0020_ref_038_w2aab3b7d926b1b6b1ab2b2c38Aa
  doi: 10.1103/PhysRevA.44.7047
– ident: 2023040100213523938_j_jci-2017-0020_ref_109_w2aab3b7d926b1b6b1ab2b2d109Aa
  doi: 10.1016/S0925-7721(96)00023-5
– ident: 2023040100213523938_j_jci-2017-0020_ref_110_w2aab3b7d926b1b6b1ab2b2d110Aa
  doi: 10.1007/3-540-61576-8_77
– ident: 2023040100213523938_j_jci-2017-0020_ref_084_w2aab3b7d926b1b6b1ab2b2c84Aa
  doi: 10.1007/978-3-319-13045-3_2
– ident: 2023040100213523938_j_jci-2017-0020_ref_072_w2aab3b7d926b1b6b1ab2b2c72Aa
  doi: 10.1103/PhysRevA.78.032114
– ident: 2023040100213523938_j_jci-2017-0020_ref_092_w2aab3b7d926b1b6b1ab2b2c92Aa
  doi: 10.1103/PhysRevA.98.022113
– ident: 2023040100213523938_j_jci-2017-0020_ref_124_w2aab3b7d926b1b6b1ab2b2d124Aa
  doi: 10.1007/s00209-012-1053-5
SSID ssj0001255779
Score 2.5249703
Snippet The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Bell inequalities
causal compatibility inequalities
causal inference with latent variables
GPT causal models, triangle scenario
graph symmetries
Hardy paradox
inflation technique
marginal problem
quantum causal models
Title The Inflation Technique for Causal Inference with Latent Variables
URI https://www.degruyter.com/doi/10.1515/jci-2017-0020
https://doaj.org/article/2e0c0ecde1514e1ebe623c17d54fdc7e
Volume 7
WOSCitedRecordID wos000489326100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2193-3685
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255779
  issn: 2193-3677
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxVCGiqcoL3lATFjNw4mTkVatqFSqDgV1ixL7jIpQQE0K6sJv55xHVRCIhSVD5MTRdz7fd7bzHSGXOkkUjgSb6VgA4xiDWKyVwxKjTeW4ieVCoa4_EuNxMJuFk41SX-ZMWCkPXALXccCSFkgFGJo42NgnBmxpC-VxraQAM_si69lIpsrVFc8ThdAeeqTLXF-ISmAT43fnSc5xdOD0bMjSl4BU6PbvkNZ7sVet4HGxXOX13mgRcga7pFVxRXpTfuMe2YJ0nzQndfGB1QHpopXpMNXlgTY6rQVZKVJR2ouXGT4-rH_po2bNlY6QXKY5fcAc2fw1lR2S-0F_2rtlVVUEJt3QylmCpMxWScDDIIAY_REkCDuBwPMVAmVJroSKtR2GOKcKZBDKOAJH18VEmGvHPSKN9CWFY0J9TK4c7cfc84B7NlIX5D8gQAUJhn3fbZPrGppIVpLhpnLFc2RSB0QyQiQjg2RkkGyTq3Xz11Ir47eGXYPzupGRuC5uoOGjyvDRX4ZvE-ublaLK_bKfexXOyX_0e0qa-MrqnNkZaeSLJZyTbfmWz7PFRTEM8Xr30f8EoGjhoQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Inflation+Technique+for+Causal+Inference+with+Latent+Variables&rft.jtitle=Journal+of+causal+inference&rft.au=Wolfe%2C+Elie&rft.au=Spekkens%2C+Robert+W.&rft.au=Fritz%2C+Tobias&rft.date=2019-09-01&rft.pub=De+Gruyter&rft.issn=2193-3677&rft.eissn=2193-3685&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1515%2Fjci-2017-0020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jci_2017_002072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-3677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-3677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-3677&client=summon