Generalized matrix inversion is not harder than matrix multiplication

Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 230; číslo 1; s. 270 - 282
Hlavní autori: PETKOVIC, Marko D, STANIMIROVIC, Predrag S
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier B.V 01.08.2009
Elsevier
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized { 2 , 3 } and { 2 , 4 } inverses. Introduced algorithms are not harder than the matrix–matrix multiplication.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2008.11.012