Generalized matrix inversion is not harder than matrix multiplication

Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 230; H. 1; S. 270 - 282
Hauptverfasser: PETKOVIC, Marko D, STANIMIROVIC, Predrag S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 01.08.2009
Elsevier
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized { 2 , 3 } and { 2 , 4 } inverses. Introduced algorithms are not harder than the matrix–matrix multiplication.
AbstractList Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A?R@un@ux@un. We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized {2,3} and {2,4} inverses. Introduced algorithms are not harder than the matrix-matrix multiplication.
Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized { 2 , 3 } and { 2 , 4 } inverses. Introduced algorithms are not harder than the matrix–matrix multiplication.
Author Stanimirović, Predrag S.
Petković, Marko D.
Author_xml – sequence: 1
  givenname: Marko D
  surname: PETKOVIC
  fullname: PETKOVIC, Marko D
  organization: University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia
– sequence: 2
  givenname: Predrag S
  surname: STANIMIROVIC
  fullname: STANIMIROVIC, Predrag S
  organization: University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21657563$$DView record in Pascal Francis
BookMark eNp9kcFO3DAQhq2KSl1oH6C3XFpOCTNxYsfqqUJ0QULiwt2aeifCq8TZ2l7U8vQYFi49rOYwl-_7pZn_VJyEJbAQXxEaBFQX28bR3LQAQ4PYALYfxAoHbWrUejgRK5Ba19C1-pM4TWkLAMpgtxJXaw4cafJPvKlmytH_rXx45Jj8EiqfqrDk6oHihmOVHyi8M_N-yn43eUe5gJ_Fx5GmxF_e9pm4_3V1f3ld396tby5_3tZOGsg1jbJvYUDQSDAMHQ1gsMfRtGScGrVm3XcKf3eDlA5GJ7GMMT27lpQZ5Zk4P8Tu4vJnzynb2SfH00SBl32yBqRCrRAL-f0oKbsOpURVwG9vICVH0xgpOJ_sLvqZ4j_boup1r2Th9IFzcUkp8midz6-350h-sgj2pQe7taUH-9KDRbSlh2Lif-Z7-DHnx8Hh8sxHz9Em5zk43vjILtvN4o_Yz1qHoNE
CODEN JCAMDI
CitedBy_id crossref_primary_10_1007_s00466_021_02080_8
crossref_primary_10_1080_03081087_2016_1228810
crossref_primary_10_1016_j_ijar_2016_09_004
crossref_primary_10_1016_j_procs_2020_04_104
crossref_primary_10_1007_s11075_018_0564_5
crossref_primary_10_1109_ACCESS_2017_2782763
crossref_primary_10_1109_ACCESS_2020_2968983
crossref_primary_10_1109_TPAMI_2022_3143089
crossref_primary_10_1016_j_camwa_2014_03_019
crossref_primary_10_1007_s42979_022_01478_2
crossref_primary_10_1016_j_jocs_2023_101941
crossref_primary_10_1109_ACCESS_2023_3338544
crossref_primary_10_1007_s00454_021_00360_x
crossref_primary_10_1007_s10514_024_10165_5
crossref_primary_10_1109_ACCESS_2021_3100432
crossref_primary_10_1080_03081087_2018_1535573
crossref_primary_10_3390_a15100348
crossref_primary_10_1016_j_amc_2019_124957
crossref_primary_10_1002_tpg2_20033
crossref_primary_10_1109_JSAC_2021_3078492
Cites_doi 10.1016/S0893-6080(02)00091-6
10.1147/rd.446.0823
10.1147/rd.416.0737
10.1137/0126022
10.1145/98267.98290
10.1137/S0895479896297744
10.1016/S0747-7171(08)80013-2
10.1080/00207160701582077
10.1007/BF02165411
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2009 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2008.11.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 282
ExternalDocumentID 21657563
10_1016_j_cam_2008_11_012
S0377042708006237
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c390t-af352081071a0884a809151f92a9c6f77e75461b4833c0fc31313995ec2a69f3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267237500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Sep 27 19:45:28 EDT 2025
Sat Sep 27 19:59:10 EDT 2025
Mon Jul 21 09:14:04 EDT 2025
Sat Nov 29 06:07:29 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 23 02:27:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Complexity analysis
Generalized inverses
Strassen method
Moore–Penrose inverse
15A09
Cholesky factorization
Multiplication
Moore Penrose inverse
Numerical linear algebra
Recursive algorithm
Moore-Penrose inverse
Direct method
Numerical analysis
Linear system
Matrix inversion
Applied mathematics
Symmetric matrix
Cholesky method
Factorization method
Positive definite matrix
Recursive method
Matrix method
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-af352081071a0884a809151f92a9c6f77e75461b4833c0fc31313995ec2a69f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cam.2008.11.012
PQID 34413316
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_903617611
proquest_miscellaneous_34413316
pascalfrancis_primary_21657563
crossref_citationtrail_10_1016_j_cam_2008_11_012
crossref_primary_10_1016_j_cam_2008_11_012
elsevier_sciencedirect_doi_10_1016_j_cam_2008_11_012
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Banachiewicz (b5) 1937; 3
Toledo (b12) 1997; 18
P. Stanimirović, M. Tasić, Computing generalized inverses using LU factorization of matrix product, Int. J. Comput. Math.
Gustavson (b11) 1997; 41
Meenakshi, Anandam (b17) 1992; 58
Burns, Carlson, Haynsworth, Markham (b14) 1974; 26
Wang, Wei, Qiao (b13) 2003
Courrieu (b15) 2005; 8
Ben-Israel, Greville (b1) 2003
Abdali, Wise (b16) 1989; vol. 358
Strassen (b3) 1969; 13
Cormen, Leiserson, Rivest, Stein (b2) 2001
Gustavson, Jonsson (b10) 2000; 44
Coppersmith, Winograd (b4) 1990; 9
Courrieu (b7) 2002; 15
S.M. Balle, P.C. Hansen, N.J. Higham, A Strassen-type matrix inversion algorithm, Danish computing center for research and education, in: PaA2 Deliverable APPARC ESPRIT Contract, Building 305, DK-2800 Lyngby, Technical University of Denmark, Denmark, 1993
Highman (b9) 1990; 16
Coppersmith (10.1016/j.cam.2008.11.012_b4) 1990; 9
Strassen (10.1016/j.cam.2008.11.012_b3) 1969; 13
Burns (10.1016/j.cam.2008.11.012_b14) 1974; 26
Highman (10.1016/j.cam.2008.11.012_b9) 1990; 16
Gustavson (10.1016/j.cam.2008.11.012_b10) 2000; 44
Gustavson (10.1016/j.cam.2008.11.012_b11) 1997; 41
Cormen (10.1016/j.cam.2008.11.012_b2) 2001
Meenakshi (10.1016/j.cam.2008.11.012_b17) 1992; 58
10.1016/j.cam.2008.11.012_b6
Ben-Israel (10.1016/j.cam.2008.11.012_b1) 2003
Courrieu (10.1016/j.cam.2008.11.012_b7) 2002; 15
Toledo (10.1016/j.cam.2008.11.012_b12) 1997; 18
Courrieu (10.1016/j.cam.2008.11.012_b15) 2005; 8
Banachiewicz (10.1016/j.cam.2008.11.012_b5) 1937; 3
Wang (10.1016/j.cam.2008.11.012_b13) 2003
Abdali (10.1016/j.cam.2008.11.012_b16) 1989; vol. 358
10.1016/j.cam.2008.11.012_b8
References_xml – volume: 13
  start-page: 354
  year: 1969
  end-page: 356
  ident: b3
  article-title: Gaussian elimination is not optimal
  publication-title: Numer. Math.
– reference: S.M. Balle, P.C. Hansen, N.J. Higham, A Strassen-type matrix inversion algorithm, Danish computing center for research and education, in: PaA2 Deliverable APPARC ESPRIT Contract, Building 305, DK-2800 Lyngby, Technical University of Denmark, Denmark, 1993
– volume: 26
  year: 1974
  ident: b14
  article-title: Generalized inverse formulas using Schur complement
  publication-title: SIAM J. Appl. Math.
– volume: 41
  start-page: 737
  year: 1997
  end-page: 755
  ident: b11
  article-title: Recursion leads to automatic variable blocking for dense linear algebra algorithms
  publication-title: IBM J. Res. Dev.
– volume: 44
  start-page: 823
  year: 2000
  end-page: 850
  ident: b10
  article-title: Minimal-storage high-performance Cholesky factorization via recursion and blocking
  publication-title: IBM J. Res. Dev.
– volume: 15
  start-page: 1185
  year: 2002
  end-page: 1196
  ident: b7
  article-title: Straight monotonic embedding of data sets in Euclidean spaces
  publication-title: Neural Netw.
– volume: 9
  start-page: 251
  year: 1990
  end-page: 280
  ident: b4
  article-title: Matrix multiplication via arithmetic progression
  publication-title: J. Symb. Comput.
– volume: 18
  start-page: 1065
  year: 1997
  end-page: 1081
  ident: b12
  article-title: Locality of reference in LU decomposition with partial pivoting
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: vol. 358
  start-page: 96
  year: 1989
  end-page: 108
  ident: b16
  article-title: Experiments with quadtree representation of matrices
  publication-title: Proc. ISSAC 88
– reference: P. Stanimirović, M. Tasić, Computing generalized inverses using LU factorization of matrix product, Int. J. Comput. Math.,
– volume: 16
  start-page: 352
  year: 1990
  end-page: 368
  ident: b9
  article-title: Exploiting fast matrix multiplication within the level 3 BLAS
  publication-title: ACM Trans. Math. Softw.
– year: 2003
  ident: b13
  article-title: Generalized Inverses: Theory and Computations
– year: 2003
  ident: b1
  article-title: Generalized Inverses: Theory and Applications
– volume: 8
  start-page: 25
  year: 2005
  end-page: 29
  ident: b15
  article-title: Fast computation of Moore–Penrose inverse matrices
  publication-title: Neural Inform. Process. Lett. Rev.
– volume: 58
  start-page: 11
  year: 1992
  end-page: 18
  ident: b17
  article-title: Polynomial generalized inverses of a partitioned polynomial matrix
  publication-title: J. Indian Math. Soc.
– volume: 3
  start-page: 41
  year: 1937
  end-page: 67
  ident: b5
  article-title: Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen
  publication-title: Acta Astron. Ser. C
– year: 2001
  ident: b2
  article-title: Introduction to Algorithms
– year: 2003
  ident: 10.1016/j.cam.2008.11.012_b1
– volume: 3
  start-page: 41
  year: 1937
  ident: 10.1016/j.cam.2008.11.012_b5
  article-title: Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen
  publication-title: Acta Astron. Ser. C
– volume: 15
  start-page: 1185
  year: 2002
  ident: 10.1016/j.cam.2008.11.012_b7
  article-title: Straight monotonic embedding of data sets in Euclidean spaces
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00091-6
– volume: vol. 358
  start-page: 96
  year: 1989
  ident: 10.1016/j.cam.2008.11.012_b16
  article-title: Experiments with quadtree representation of matrices
– year: 2003
  ident: 10.1016/j.cam.2008.11.012_b13
– volume: 44
  start-page: 823
  issue: 6
  year: 2000
  ident: 10.1016/j.cam.2008.11.012_b10
  article-title: Minimal-storage high-performance Cholesky factorization via recursion and blocking
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.446.0823
– volume: 41
  start-page: 737
  issue: 6
  year: 1997
  ident: 10.1016/j.cam.2008.11.012_b11
  article-title: Recursion leads to automatic variable blocking for dense linear algebra algorithms
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.416.0737
– volume: 26
  year: 1974
  ident: 10.1016/j.cam.2008.11.012_b14
  article-title: Generalized inverse formulas using Schur complement
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0126022
– volume: 16
  start-page: 352
  year: 1990
  ident: 10.1016/j.cam.2008.11.012_b9
  article-title: Exploiting fast matrix multiplication within the level 3 BLAS
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/98267.98290
– volume: 18
  start-page: 1065
  year: 1997
  ident: 10.1016/j.cam.2008.11.012_b12
  article-title: Locality of reference in LU decomposition with partial pivoting
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896297744
– volume: 9
  start-page: 251
  year: 1990
  ident: 10.1016/j.cam.2008.11.012_b4
  article-title: Matrix multiplication via arithmetic progression
  publication-title: J. Symb. Comput.
  doi: 10.1016/S0747-7171(08)80013-2
– ident: 10.1016/j.cam.2008.11.012_b6
  doi: 10.1080/00207160701582077
– volume: 58
  start-page: 11
  issue: 1
  year: 1992
  ident: 10.1016/j.cam.2008.11.012_b17
  article-title: Polynomial generalized inverses of a partitioned polynomial matrix
  publication-title: J. Indian Math. Soc.
– ident: 10.1016/j.cam.2008.11.012_b8
– year: 2001
  ident: 10.1016/j.cam.2008.11.012_b2
– volume: 8
  start-page: 25
  issue: 2
  year: 2005
  ident: 10.1016/j.cam.2008.11.012_b15
  article-title: Fast computation of Moore–Penrose inverse matrices
  publication-title: Neural Inform. Process. Lett. Rev.
– volume: 13
  start-page: 354
  year: 1969
  ident: 10.1016/j.cam.2008.11.012_b3
  article-title: Gaussian elimination is not optimal
  publication-title: Numer. Math.
  doi: 10.1007/BF02165411
SSID ssj0006914
Score 2.1081235
Snippet Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms Cholesky factorization
Complexity analysis
Exact sciences and technology
Generalized inverses
Mathematical analysis
Mathematics
Moore–Penrose inverse
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
Sequences, series, summability
Strassen method
Title Generalized matrix inversion is not harder than matrix multiplication
URI https://dx.doi.org/10.1016/j.cam.2008.11.012
https://www.proquest.com/docview/34413316
https://www.proquest.com/docview/903617611
Volume 230
WOSCitedRecordID wos000267237500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wBCEz9FYQwfEAemSE3sxPFxmjoNVMoOQerNcl1bykbT0mRTxV_Pc2ynLVMHHFClqEqdpPJ7fv78_PJ9CL3XJJmYnMlIMm1JtbM04nQKixWASIlKGDe6ZdcfstEoH4_5hZdLrVs5AVZV-WrFF__V1HAOjG1fnf0Hc3c3hRPwHYwORzA7HP_K8J5IuvwJUHJmCfhXx2V149JiVr68mjfH9lUrbcsLYXT7Nr6y0KfwdmBW1WpAhPxhy_PqUeyso3-t19G2uZpDIGpzrhuVxQBHy1m5DD9d-OxrSD3wrvCte-WKsciKdWyG08Tvs2z6jQ-OTiLEz7OJEx26FcJdNuESluczV-pqSVZ9qfUWXfboqzj7NhyKYjAuPix-RFZJzO64e1mV-2g_YSmHYL1_8mkw_tzNzxl3jO_hz4e97rbq77en7kIrjxeyhjFknPjJrXm8BSfFE3TgLYRPnDc8Rfd09Qw9-rK2yXM02PAL7GyOO7_AZY3BL7DzC2z9IrTZ9osXqDgbFKfnkdfQiBTh_SaSBhA2wD5AkhImFCpzAIhpbHgiucoMgxGa0iye0JwQ1TeKxPDhPNUqkRk35CXaq-aVfoWwzidcZ0orPZ1SQy2rEaVmMlW5pkYz3kP90FVCeX55K3PyXYRCwksBvet0T2HVCb3bQx-7SxaOXOWuxjT0v_Do0KE-AZ5z12VHW7bqHpTEds8xIz30LhhPQGi1-2Wy0vPrWhBYKhASZz2Ed7TggP9ilsXx6z_e5A16uB5Ch2ivWV7rt-iBumnKennkffQX-3eobw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+matrix+inversion+is+not+harder+than+matrix+multiplication&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Petkovic%2C+M+D&rft.au=Stanimirovic%2C+P+S&rft.date=2009-08-01&rft.issn=0377-0427&rft.volume=230&rft.issue=1&rft.spage=270&rft.epage=282&rft_id=info:doi/10.1016%2Fj.cam.2008.11.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon