Generalized matrix inversion is not harder than matrix multiplication
Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and applied mathematics Jg. 230; H. 1; S. 270 - 282 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
01.08.2009
Elsevier |
| Schlagworte: | |
| ISSN: | 0377-0427, 1879-1778 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix
A
∈
R
n
×
n
. We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized
{
2
,
3
}
and
{
2
,
4
}
inverses. Introduced algorithms are not harder than the matrix–matrix multiplication. |
|---|---|
| AbstractList | Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A?R@un@ux@un. We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized {2,3} and {2,4} inverses. Introduced algorithms are not harder than the matrix-matrix multiplication. Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix A ∈ R n × n . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized { 2 , 3 } and { 2 , 4 } inverses. Introduced algorithms are not harder than the matrix–matrix multiplication. |
| Author | Stanimirović, Predrag S. Petković, Marko D. |
| Author_xml | – sequence: 1 givenname: Marko D surname: PETKOVIC fullname: PETKOVIC, Marko D organization: University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia – sequence: 2 givenname: Predrag S surname: STANIMIROVIC fullname: STANIMIROVIC, Predrag S organization: University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21657563$$DView record in Pascal Francis |
| BookMark | eNp9kcFO3DAQhq2KSl1oH6C3XFpOCTNxYsfqqUJ0QULiwt2aeifCq8TZ2l7U8vQYFi49rOYwl-_7pZn_VJyEJbAQXxEaBFQX28bR3LQAQ4PYALYfxAoHbWrUejgRK5Ba19C1-pM4TWkLAMpgtxJXaw4cafJPvKlmytH_rXx45Jj8EiqfqrDk6oHihmOVHyi8M_N-yn43eUe5gJ_Fx5GmxF_e9pm4_3V1f3ld396tby5_3tZOGsg1jbJvYUDQSDAMHQ1gsMfRtGScGrVm3XcKf3eDlA5GJ7GMMT27lpQZ5Zk4P8Tu4vJnzynb2SfH00SBl32yBqRCrRAL-f0oKbsOpURVwG9vICVH0xgpOJ_sLvqZ4j_boup1r2Th9IFzcUkp8midz6-350h-sgj2pQe7taUH-9KDRbSlh2Lif-Z7-DHnx8Hh8sxHz9Em5zk43vjILtvN4o_Yz1qHoNE |
| CODEN | JCAMDI |
| CitedBy_id | crossref_primary_10_1007_s00466_021_02080_8 crossref_primary_10_1080_03081087_2016_1228810 crossref_primary_10_1016_j_ijar_2016_09_004 crossref_primary_10_1016_j_procs_2020_04_104 crossref_primary_10_1007_s11075_018_0564_5 crossref_primary_10_1109_ACCESS_2017_2782763 crossref_primary_10_1109_ACCESS_2020_2968983 crossref_primary_10_1109_TPAMI_2022_3143089 crossref_primary_10_1016_j_camwa_2014_03_019 crossref_primary_10_1007_s42979_022_01478_2 crossref_primary_10_1016_j_jocs_2023_101941 crossref_primary_10_1109_ACCESS_2023_3338544 crossref_primary_10_1007_s00454_021_00360_x crossref_primary_10_1007_s10514_024_10165_5 crossref_primary_10_1109_ACCESS_2021_3100432 crossref_primary_10_1080_03081087_2018_1535573 crossref_primary_10_3390_a15100348 crossref_primary_10_1016_j_amc_2019_124957 crossref_primary_10_1002_tpg2_20033 crossref_primary_10_1109_JSAC_2021_3078492 |
| Cites_doi | 10.1016/S0893-6080(02)00091-6 10.1147/rd.446.0823 10.1147/rd.416.0737 10.1137/0126022 10.1145/98267.98290 10.1137/S0895479896297744 10.1016/S0747-7171(08)80013-2 10.1080/00207160701582077 10.1007/BF02165411 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier B.V. 2009 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier B.V. – notice: 2009 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cam.2008.11.012 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 282 |
| ExternalDocumentID | 21657563 10_1016_j_cam_2008_11_012 S0377042708006237 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c390t-af352081071a0884a809151f92a9c6f77e75461b4833c0fc31313995ec2a69f3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267237500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 |
| IngestDate | Sat Sep 27 19:45:28 EDT 2025 Sat Sep 27 19:59:10 EDT 2025 Mon Jul 21 09:14:04 EDT 2025 Sat Nov 29 06:07:29 EST 2025 Tue Nov 18 19:39:50 EST 2025 Fri Feb 23 02:27:51 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Complexity analysis Generalized inverses Strassen method Moore–Penrose inverse 15A09 Cholesky factorization Multiplication Moore Penrose inverse Numerical linear algebra Recursive algorithm Moore-Penrose inverse Direct method Numerical analysis Linear system Matrix inversion Applied mathematics Symmetric matrix Cholesky method Factorization method Positive definite matrix Recursive method Matrix method |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c390t-af352081071a0884a809151f92a9c6f77e75461b4833c0fc31313995ec2a69f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cam.2008.11.012 |
| PQID | 34413316 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_903617611 proquest_miscellaneous_34413316 pascalfrancis_primary_21657563 crossref_citationtrail_10_1016_j_cam_2008_11_012 crossref_primary_10_1016_j_cam_2008_11_012 elsevier_sciencedirect_doi_10_1016_j_cam_2008_11_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-08-01 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2009 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Banachiewicz (b5) 1937; 3 Toledo (b12) 1997; 18 P. Stanimirović, M. Tasić, Computing generalized inverses using LU factorization of matrix product, Int. J. Comput. Math. Gustavson (b11) 1997; 41 Meenakshi, Anandam (b17) 1992; 58 Burns, Carlson, Haynsworth, Markham (b14) 1974; 26 Wang, Wei, Qiao (b13) 2003 Courrieu (b15) 2005; 8 Ben-Israel, Greville (b1) 2003 Abdali, Wise (b16) 1989; vol. 358 Strassen (b3) 1969; 13 Cormen, Leiserson, Rivest, Stein (b2) 2001 Gustavson, Jonsson (b10) 2000; 44 Coppersmith, Winograd (b4) 1990; 9 Courrieu (b7) 2002; 15 S.M. Balle, P.C. Hansen, N.J. Higham, A Strassen-type matrix inversion algorithm, Danish computing center for research and education, in: PaA2 Deliverable APPARC ESPRIT Contract, Building 305, DK-2800 Lyngby, Technical University of Denmark, Denmark, 1993 Highman (b9) 1990; 16 Coppersmith (10.1016/j.cam.2008.11.012_b4) 1990; 9 Strassen (10.1016/j.cam.2008.11.012_b3) 1969; 13 Burns (10.1016/j.cam.2008.11.012_b14) 1974; 26 Highman (10.1016/j.cam.2008.11.012_b9) 1990; 16 Gustavson (10.1016/j.cam.2008.11.012_b10) 2000; 44 Gustavson (10.1016/j.cam.2008.11.012_b11) 1997; 41 Cormen (10.1016/j.cam.2008.11.012_b2) 2001 Meenakshi (10.1016/j.cam.2008.11.012_b17) 1992; 58 10.1016/j.cam.2008.11.012_b6 Ben-Israel (10.1016/j.cam.2008.11.012_b1) 2003 Courrieu (10.1016/j.cam.2008.11.012_b7) 2002; 15 Toledo (10.1016/j.cam.2008.11.012_b12) 1997; 18 Courrieu (10.1016/j.cam.2008.11.012_b15) 2005; 8 Banachiewicz (10.1016/j.cam.2008.11.012_b5) 1937; 3 Wang (10.1016/j.cam.2008.11.012_b13) 2003 Abdali (10.1016/j.cam.2008.11.012_b16) 1989; vol. 358 10.1016/j.cam.2008.11.012_b8 |
| References_xml | – volume: 13 start-page: 354 year: 1969 end-page: 356 ident: b3 article-title: Gaussian elimination is not optimal publication-title: Numer. Math. – reference: S.M. Balle, P.C. Hansen, N.J. Higham, A Strassen-type matrix inversion algorithm, Danish computing center for research and education, in: PaA2 Deliverable APPARC ESPRIT Contract, Building 305, DK-2800 Lyngby, Technical University of Denmark, Denmark, 1993 – volume: 26 year: 1974 ident: b14 article-title: Generalized inverse formulas using Schur complement publication-title: SIAM J. Appl. Math. – volume: 41 start-page: 737 year: 1997 end-page: 755 ident: b11 article-title: Recursion leads to automatic variable blocking for dense linear algebra algorithms publication-title: IBM J. Res. Dev. – volume: 44 start-page: 823 year: 2000 end-page: 850 ident: b10 article-title: Minimal-storage high-performance Cholesky factorization via recursion and blocking publication-title: IBM J. Res. Dev. – volume: 15 start-page: 1185 year: 2002 end-page: 1196 ident: b7 article-title: Straight monotonic embedding of data sets in Euclidean spaces publication-title: Neural Netw. – volume: 9 start-page: 251 year: 1990 end-page: 280 ident: b4 article-title: Matrix multiplication via arithmetic progression publication-title: J. Symb. Comput. – volume: 18 start-page: 1065 year: 1997 end-page: 1081 ident: b12 article-title: Locality of reference in LU decomposition with partial pivoting publication-title: SIAM J. Matrix Anal. Appl. – volume: vol. 358 start-page: 96 year: 1989 end-page: 108 ident: b16 article-title: Experiments with quadtree representation of matrices publication-title: Proc. ISSAC 88 – reference: P. Stanimirović, M. Tasić, Computing generalized inverses using LU factorization of matrix product, Int. J. Comput. Math., – volume: 16 start-page: 352 year: 1990 end-page: 368 ident: b9 article-title: Exploiting fast matrix multiplication within the level 3 BLAS publication-title: ACM Trans. Math. Softw. – year: 2003 ident: b13 article-title: Generalized Inverses: Theory and Computations – year: 2003 ident: b1 article-title: Generalized Inverses: Theory and Applications – volume: 8 start-page: 25 year: 2005 end-page: 29 ident: b15 article-title: Fast computation of Moore–Penrose inverse matrices publication-title: Neural Inform. Process. Lett. Rev. – volume: 58 start-page: 11 year: 1992 end-page: 18 ident: b17 article-title: Polynomial generalized inverses of a partitioned polynomial matrix publication-title: J. Indian Math. Soc. – volume: 3 start-page: 41 year: 1937 end-page: 67 ident: b5 article-title: Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen publication-title: Acta Astron. Ser. C – year: 2001 ident: b2 article-title: Introduction to Algorithms – year: 2003 ident: 10.1016/j.cam.2008.11.012_b1 – volume: 3 start-page: 41 year: 1937 ident: 10.1016/j.cam.2008.11.012_b5 article-title: Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen publication-title: Acta Astron. Ser. C – volume: 15 start-page: 1185 year: 2002 ident: 10.1016/j.cam.2008.11.012_b7 article-title: Straight monotonic embedding of data sets in Euclidean spaces publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00091-6 – volume: vol. 358 start-page: 96 year: 1989 ident: 10.1016/j.cam.2008.11.012_b16 article-title: Experiments with quadtree representation of matrices – year: 2003 ident: 10.1016/j.cam.2008.11.012_b13 – volume: 44 start-page: 823 issue: 6 year: 2000 ident: 10.1016/j.cam.2008.11.012_b10 article-title: Minimal-storage high-performance Cholesky factorization via recursion and blocking publication-title: IBM J. Res. Dev. doi: 10.1147/rd.446.0823 – volume: 41 start-page: 737 issue: 6 year: 1997 ident: 10.1016/j.cam.2008.11.012_b11 article-title: Recursion leads to automatic variable blocking for dense linear algebra algorithms publication-title: IBM J. Res. Dev. doi: 10.1147/rd.416.0737 – volume: 26 year: 1974 ident: 10.1016/j.cam.2008.11.012_b14 article-title: Generalized inverse formulas using Schur complement publication-title: SIAM J. Appl. Math. doi: 10.1137/0126022 – volume: 16 start-page: 352 year: 1990 ident: 10.1016/j.cam.2008.11.012_b9 article-title: Exploiting fast matrix multiplication within the level 3 BLAS publication-title: ACM Trans. Math. Softw. doi: 10.1145/98267.98290 – volume: 18 start-page: 1065 year: 1997 ident: 10.1016/j.cam.2008.11.012_b12 article-title: Locality of reference in LU decomposition with partial pivoting publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896297744 – volume: 9 start-page: 251 year: 1990 ident: 10.1016/j.cam.2008.11.012_b4 article-title: Matrix multiplication via arithmetic progression publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(08)80013-2 – ident: 10.1016/j.cam.2008.11.012_b6 doi: 10.1080/00207160701582077 – volume: 58 start-page: 11 issue: 1 year: 1992 ident: 10.1016/j.cam.2008.11.012_b17 article-title: Polynomial generalized inverses of a partitioned polynomial matrix publication-title: J. Indian Math. Soc. – ident: 10.1016/j.cam.2008.11.012_b8 – year: 2001 ident: 10.1016/j.cam.2008.11.012_b2 – volume: 8 start-page: 25 issue: 2 year: 2005 ident: 10.1016/j.cam.2008.11.012_b15 article-title: Fast computation of Moore–Penrose inverse matrices publication-title: Neural Inform. Process. Lett. Rev. – volume: 13 start-page: 354 year: 1969 ident: 10.1016/j.cam.2008.11.012_b3 article-title: Gaussian elimination is not optimal publication-title: Numer. Math. doi: 10.1007/BF02165411 |
| SSID | ssj0006914 |
| Score | 2.1081235 |
| Snippet | Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 270 |
| SubjectTerms | Cholesky factorization Complexity analysis Exact sciences and technology Generalized inverses Mathematical analysis Mathematics Moore–Penrose inverse Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use Sequences, series, summability Strassen method |
| Title | Generalized matrix inversion is not harder than matrix multiplication |
| URI | https://dx.doi.org/10.1016/j.cam.2008.11.012 https://www.proquest.com/docview/34413316 https://www.proquest.com/docview/903617611 |
| Volume | 230 |
| WOSCitedRecordID | wos000267237500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1778 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIEXJ dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wBCEz9FYQwfEAemSE3sxPFxmjoNVMoOQerNcl1bykbT0mRTxV_Pc2ynLVMHHFClqEqdpPJ7fv78_PJ9CL3XJJmYnMlIMm1JtbM04nQKixWASIlKGDe6ZdcfstEoH4_5hZdLrVs5AVZV-WrFF__V1HAOjG1fnf0Hc3c3hRPwHYwORzA7HP_K8J5IuvwJUHJmCfhXx2V149JiVr68mjfH9lUrbcsLYXT7Nr6y0KfwdmBW1WpAhPxhy_PqUeyso3-t19G2uZpDIGpzrhuVxQBHy1m5DD9d-OxrSD3wrvCte-WKsciKdWyG08Tvs2z6jQ-OTiLEz7OJEx26FcJdNuESluczV-pqSVZ9qfUWXfboqzj7NhyKYjAuPix-RFZJzO64e1mV-2g_YSmHYL1_8mkw_tzNzxl3jO_hz4e97rbq77en7kIrjxeyhjFknPjJrXm8BSfFE3TgLYRPnDc8Rfd09Qw9-rK2yXM02PAL7GyOO7_AZY3BL7DzC2z9IrTZ9osXqDgbFKfnkdfQiBTh_SaSBhA2wD5AkhImFCpzAIhpbHgiucoMgxGa0iye0JwQ1TeKxPDhPNUqkRk35CXaq-aVfoWwzidcZ0orPZ1SQy2rEaVmMlW5pkYz3kP90FVCeX55K3PyXYRCwksBvet0T2HVCb3bQx-7SxaOXOWuxjT0v_Do0KE-AZ5z12VHW7bqHpTEds8xIz30LhhPQGi1-2Wy0vPrWhBYKhASZz2Ed7TggP9ilsXx6z_e5A16uB5Ch2ivWV7rt-iBumnKennkffQX-3eobw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+matrix+inversion+is+not+harder+than+matrix+multiplication&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Petkovic%2C+M+D&rft.au=Stanimirovic%2C+P+S&rft.date=2009-08-01&rft.issn=0377-0427&rft.volume=230&rft.issue=1&rft.spage=270&rft.epage=282&rft_id=info:doi/10.1016%2Fj.cam.2008.11.012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |