A Cubic Kernel for Feedback Vertex Set and Loop Cutset

The Feedback Vertex Set problem on unweighted, undirected graphs is considered. Improving upon a result by Burrage et al. (Proceedings 2nd International Workshop on Parameterized and Exact Computation, pp. 192–202, 2006 ), we show that this problem has a kernel with O ( k 3 ) vertices, i.e., there i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 46; číslo 3; s. 566 - 597
Hlavní autoři: Bodlaender, Hans L., van Dijk, Thomas C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.04.2010
Springer Nature B.V
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Feedback Vertex Set problem on unweighted, undirected graphs is considered. Improving upon a result by Burrage et al. (Proceedings 2nd International Workshop on Parameterized and Exact Computation, pp. 192–202, 2006 ), we show that this problem has a kernel with O ( k 3 ) vertices, i.e., there is a polynomial time algorithm, that given a graph G and an integer k , finds a graph G ′ with O ( k 3 ) vertices and integer k ′≤ k , such that G has a feedback vertex set of size at most k , if and only if G ′ has a feedback vertex set of size at most k ′. Moreover, the algorithm can be made constructive: if the reduced instance G ′ has a feedback vertex set of size k ′, then we can easily transform a minimum size feedback vertex set of G ′ into a minimum size feedback vertex set of G . This kernelization algorithm can be used as the first step of an FPT algorithm for Feedback Vertex Set , but also as a preprocessing heuristic for Feedback Vertex Set . We also show that the related Loop Cutset problem also has a kernel of cubic size. The kernelization algorithms are experimentally evaluated, and we report on these experiments.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-009-9234-2