Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA

Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faul...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 14; no. 21; p. 7278
Main Authors: Amaral, Tito G., Pires, Vitor Fernão, Pires, Armando J.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2021
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faults, which can compromise the desired perpendicular position between the PV modules and the brightest point in the sky. So, the diagnosis of a fault in the trackers is fundamental to ensure the maximum energy production. Approaches based on sensors and statistical methods have been researched but they are expensive and time consuming. To overcome these problems, a new method is proposed for the fault diagnosis in the trackers of the PV systems based on a machine learning approach. In this type of approach the developed method can be classified into two major categories: supervised and unsupervised. In accordance with this, to implement the desired fault diagnosis, an unsupervised method based on a new image processing algorithm to determine the PV slopes is proposed. The fault detection is obtained comparing the slopes of several modules. This algorithm is based on a new image processing approach in which principal component analysis (PCA) is used. Instead of using the PCA to reduce the data dimension, as is usual, it is proposed to use it to determine the slope of an object. The use of the proposed approach presents several benefits, namely, avoiding the use of a wide range of data and specific sensors, fast detection and reliability even with incomplete images due to reflections and other problems. Based on this algorithm, a deviation index is also proposed that will be used to discriminate the panel(s) under fault. Several test cases are used to test and validate the proposed approach. From the obtained results, it is possible to verify that the PCA can successfully be adapted and used in image processing algorithms to determine the slope of the PV modules and so effectively detect a fault in the tracker, even when there are incomplete parts of an object in the image.
AbstractList Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faults, which can compromise the desired perpendicular position between the PV modules and the brightest point in the sky. So, the diagnosis of a fault in the trackers is fundamental to ensure the maximum energy production. Approaches based on sensors and statistical methods have been researched but they are expensive and time consuming. To overcome these problems, a new method is proposed for the fault diagnosis in the trackers of the PV systems based on a machine learning approach. In this type of approach the developed method can be classified into two major categories: supervised and unsupervised. In accordance with this, to implement the desired fault diagnosis, an unsupervised method based on a new image processing algorithm to determine the PV slopes is proposed. The fault detection is obtained comparing the slopes of several modules. This algorithm is based on a new image processing approach in which principal component analysis (PCA) is used. Instead of using the PCA to reduce the data dimension, as is usual, it is proposed to use it to determine the slope of an object. The use of the proposed approach presents several benefits, namely, avoiding the use of a wide range of data and specific sensors, fast detection and reliability even with incomplete images due to reflections and other problems. Based on this algorithm, a deviation index is also proposed that will be used to discriminate the panel(s) under fault. Several test cases are used to test and validate the proposed approach. From the obtained results, it is possible to verify that the PCA can successfully be adapted and used in image processing algorithms to determine the slope of the PV modules and so effectively detect a fault in the tracker, even when there are incomplete parts of an object in the image.
Author Amaral, Tito G.
Pires, Armando J.
Pires, Vitor Fernão
Author_xml – sequence: 1
  givenname: Tito G.
  surname: Amaral
  fullname: Amaral, Tito G.
– sequence: 2
  givenname: Vitor Fernão
  orcidid: 0000-0002-3764-0955
  surname: Pires
  fullname: Pires, Vitor Fernão
– sequence: 3
  givenname: Armando J.
  orcidid: 0000-0003-0061-9455
  surname: Pires
  fullname: Pires, Armando J.
BookMark eNptUU1LAzEQDaLgVy_-goA3oZpssh851mq1IFiw6jFMk9maut1okh78925bURHnMh-8efOYd0h2W98iISecnQuh2AW2XGa8zMpqhxxwpYo-Z6XY_VXvk16MC9aFEFwIcUCeR7BqEr3ChCY531LX0skTnQYwr66d04ePmHAZ6WNcd9DS8RLmSCfBG4yb2aCZ--DSy5JeQkRLO47JcHBM9mpoIva-8hGZjq6nw9v-3f3NeDi465tOceqDsCWYKpdlwW0OmLEZ5rOcKWURS2VZpXg240wKZYGbUkrIrczr2hZ5BkwckfGW1npY6LfglhA-tAenNwMf5hpCcqZBbQTD7ogpKigkl1wxw2oDVtgZVJKbjut0y_UW_PsKY9ILvwptp15nuSqYyKTMOtTZFmWCjzFg_X2VM722Qf_Y0IHZH7BxCdZ_TgFc89_KJ7GxieM
CitedBy_id crossref_primary_10_3390_en16114378
crossref_primary_10_3390_min12091112
crossref_primary_10_1007_s00170_024_14413_x
crossref_primary_10_3390_s25030843
crossref_primary_10_3390_electronics12214397
crossref_primary_10_3390_en15217978
crossref_primary_10_3390_electronics14091860
crossref_primary_10_3390_en15155388
crossref_primary_10_1088_1742_6596_3065_1_012038
crossref_primary_10_1016_j_solener_2025_113546
crossref_primary_10_1016_j_solener_2025_113623
crossref_primary_10_1016_j_engappai_2024_109068
crossref_primary_10_3390_info14040230
crossref_primary_10_1016_j_energy_2022_126605
crossref_primary_10_1177_03019233251356194
crossref_primary_10_1016_j_knosys_2024_112882
crossref_primary_10_3390_en15051751
crossref_primary_10_1109_JPHOTOV_2024_3450009
crossref_primary_10_3390_en15031101
crossref_primary_10_1109_JPHOTOV_2024_3364811
crossref_primary_10_59730_rer_v12n55a5
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_3390_en15238845
crossref_primary_10_1016_j_solener_2025_113633
crossref_primary_10_1016_j_solener_2023_112245
crossref_primary_10_3390_en17020404
crossref_primary_10_1051_itmconf_20224403065
crossref_primary_10_3390_en15218102
Cites_doi 10.1016/S0031-3203(98)00103-4
10.1016/j.patrec.2010.09.010
10.1109/PVSC.2011.6185877
10.1007/s10668-007-9123-2
10.1016/j.isatra.2009.10.005
10.1016/j.apenergy.2020.114647
10.3390/en14133951
10.1016/j.rser.2018.05.027
10.1016/j.rser.2018.11.012
10.3390/pr8101278
10.3390/app9163392
10.4324/9781315459653
10.1016/j.infrared.2017.04.015
10.1109/SIBGRAPI.2007.9
10.3390/s130505448
10.1016/j.rser.2009.01.022
10.1016/j.isatra.2017.03.019
10.1016/j.energy.2017.02.001
10.1002/pip.800
10.7815/ijorcs.21.2011.011
10.1016/j.rser.2018.03.094
10.1016/j.isatra.2019.11.008
10.1016/j.rser.2017.03.131
10.3390/en12071220
10.1016/j.solener.2016.09.009
10.1021/ac302528v
10.1016/j.solener.2003.12.006
10.1109/TSMC.1979.4310076
10.1016/j.solener.2013.10.020
10.1007/978-1-4757-1904-8
10.1109/TEC.2016.2629514
10.1016/S0169-7161(82)02015-X
10.1016/j.isatra.2020.08.019
10.1109/TSTE.2018.2801625
10.1080/14786451.2013.826223
10.1002/pip.925
10.1016/j.compag.2009.01.003
10.1016/j.isatra.2013.11.015
10.1016/j.jprocont.2013.09.026
10.1016/j.isatra.2018.06.004
10.1016/j.renene.2004.11.019
10.1016/j.isatra.2018.05.002
10.1016/j.solmat.2009.09.016
10.1002/etep.2771
10.1016/j.eswa.2011.03.083
10.3390/en14133798
10.3390/s90503875
10.1109/ISGTEUROPE.2010.5638902
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14217278
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_c30e61dc68a6414190c0fcad3dba841c
10_3390_en14217278
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c390t-a3d7ac854761d5ae20be5b5099dee79d08912b10439da1c744a5d45ffd652a03
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719231800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 18:09:31 EDT 2025
Mon Jun 30 07:30:27 EDT 2025
Tue Nov 18 21:13:38 EST 2025
Sat Nov 29 07:14:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-a3d7ac854761d5ae20be5b5099dee79d08912b10439da1c744a5d45ffd652a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3764-0955
0000-0003-0061-9455
OpenAccessLink https://doaj.org/article/c30e61dc68a6414190c0fcad3dba841c
PQID 2596032442
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_c30e61dc68a6414190c0fcad3dba841c
proquest_journals_2596032442
crossref_primary_10_3390_en14217278
crossref_citationtrail_10_3390_en14217278
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hafez (ref_10) 2018; 91
ref_50
ref_12
ref_11
ref_51
ref_19
(ref_30) 2018; 93
Fathabadi (ref_13) 2016; 138
ref_16
Pandit (ref_47) 2011; 2
Wang (ref_41) 2018; 9
Venkateswari (ref_3) 2019; 101
Deabes (ref_23) 2010; 49
Moore (ref_37) 2008; 16
Race (ref_48) 2013; 85
Mousazadeh (ref_8) 2019; 13
Jaffery (ref_34) 2017; 83
Martins (ref_22) 2011; 32
Oozeki (ref_38) 2010; 18
Camacho (ref_27) 2014; 24
Lee (ref_33) 2013; 13
Camargo (ref_17) 2009; 66
Zhang (ref_5) 2018; 81
ref_28
Amaral (ref_36) 2019; 29
Malayil (ref_18) 2021; 108
Asokan (ref_21) 2020; 100
Simon (ref_31) 2010; 94
Papadakis (ref_39) 2005; 30
Rohlf (ref_46) 1982; Volume 2
Mahmoud (ref_32) 2017; 32
Zhang (ref_42) 2017; 68
Pires (ref_43) 2011; 38
Hafez (ref_6) 2017; 77
Tsanakas (ref_35) 2015; 34
Hajihosseini (ref_25) 2018; 79
Karimi (ref_20) 2014; 53
Khatun (ref_49) 2009; 11
Chu (ref_29) 2013; 98
ref_45
Iftikhar (ref_15) 2021; 14
ref_40
ref_1
ref_2
Berenguel (ref_26) 2004; 76
Zhu (ref_9) 2019; 264
Lee (ref_7) 2009; 9
Kim (ref_24) 1999; 32
Sidek (ref_14) 2017; 124
Otsu (ref_44) 1978; 9
ref_4
References_xml – volume: 32
  start-page: 565
  year: 1999
  ident: ref_24
  article-title: Visual inspection system for the classification of solder joints
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(98)00103-4
– volume: 32
  start-page: 321
  year: 2011
  ident: ref_22
  article-title: Induction motor fault detection and diagnosis using a current state space pattern recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.09.010
– ident: ref_28
  doi: 10.1109/PVSC.2011.6185877
– volume: 11
  start-page: 439
  year: 2009
  ident: ref_49
  article-title: Measuring environmental degradation by using principal component analysis
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-007-9123-2
– volume: 49
  start-page: 10
  year: 2010
  ident: ref_23
  article-title: A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2009.10.005
– ident: ref_16
– volume: 264
  start-page: 114647
  year: 2019
  ident: ref_9
  article-title: Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114647
– ident: ref_40
  doi: 10.3390/en14133951
– volume: 93
  start-page: 566
  year: 2018
  ident: ref_30
  article-title: Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.05.027
– volume: 101
  start-page: 376
  year: 2019
  ident: ref_3
  article-title: Factors influencing the efficiency of photovoltaic system
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.11.012
– ident: ref_12
  doi: 10.3390/pr8101278
– ident: ref_11
  doi: 10.3390/app9163392
– ident: ref_1
  doi: 10.4324/9781315459653
– volume: 83
  start-page: 182
  year: 2017
  ident: ref_34
  article-title: Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.04.015
– ident: ref_19
  doi: 10.1109/SIBGRAPI.2007.9
– volume: 13
  start-page: 5448
  year: 2013
  ident: ref_33
  article-title: The Development of Sun-Tracking System Using Image Processing
  publication-title: Sensors
  doi: 10.3390/s130505448
– volume: 13
  start-page: 1800
  year: 2019
  ident: ref_8
  article-title: A review of principle and sun-tracking methods for maximizing solar systems output
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.01.022
– volume: 68
  start-page: 313
  year: 2017
  ident: ref_42
  article-title: Fault detection of feed water treatment process using PCA-WD with parameter optimization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.03.019
– ident: ref_45
– volume: 124
  start-page: 160
  year: 2017
  ident: ref_14
  article-title: Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.001
– volume: 16
  start-page: 249
  year: 2008
  ident: ref_37
  article-title: Five years of operating experience at a large, utility-scale photovoltaic generating plant
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.800
– volume: 2
  start-page: 29
  year: 2011
  ident: ref_47
  article-title: A comparative study on distance measuring approaches for clustering
  publication-title: Int. J. Res. Comput. Sci.
  doi: 10.7815/ijorcs.21.2011.011
– volume: 91
  start-page: 754
  year: 2018
  ident: ref_10
  article-title: Solar tracking systems: Technologies and trackers drive types—A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.094
– volume: 100
  start-page: 308
  year: 2020
  ident: ref_21
  article-title: Adaptive Cuckoo Search based optimal bilateral filtering for denoising of satellite images
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.11.008
– volume: 77
  start-page: 147
  year: 2017
  ident: ref_6
  article-title: Tilt and azimuth angles in solar energy applications—A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.131
– ident: ref_2
  doi: 10.3390/en12071220
– volume: 138
  start-page: 67
  year: 2016
  ident: ref_13
  article-title: Comparative study between two novel sensorless and sensor based dual-axis solar trackers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.09.009
– volume: 85
  start-page: 3071
  year: 2013
  ident: ref_48
  article-title: Memory Efficient Principal Component Analysis for the Dimensionality Reduction of Large Mass Spectrometry Imaging Data Sets
  publication-title: Anal. Chem.
  doi: 10.1021/ac302528v
– volume: 76
  start-page: 523
  year: 2004
  ident: ref_26
  article-title: An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.12.006
– volume: 9
  start-page: 62
  year: 1978
  ident: ref_44
  article-title: A threshold selection method from gray-level histogram
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 98
  start-page: 592
  year: 2013
  ident: ref_29
  article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.10.020
– ident: ref_51
  doi: 10.1007/978-1-4757-1904-8
– volume: 32
  start-page: 213
  year: 2017
  ident: ref_32
  article-title: A Novel MPPT Technique Based on an Image of PV Modules
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2016.2629514
– volume: Volume 2
  start-page: 267
  year: 1982
  ident: ref_46
  article-title: 12 Single-link clustering algorithms
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(82)02015-X
– volume: 108
  start-page: 269
  year: 2021
  ident: ref_18
  article-title: A novel image scaling based reversible watermarking scheme for secure medical image transmission
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.019
– volume: 9
  start-page: 1627
  year: 2018
  ident: ref_41
  article-title: Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2801625
– volume: 34
  start-page: 351
  year: 2015
  ident: ref_35
  article-title: Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2013.826223
– volume: 18
  start-page: 363
  year: 2010
  ident: ref_38
  article-title: An analysis of reliability in the early stages of photovoltaic systems in japan
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.925
– volume: 66
  start-page: 121
  year: 2009
  ident: ref_17
  article-title: Image pattern classification for the identification of disease causing agents in plants
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.01.003
– ident: ref_50
– volume: 53
  start-page: 834
  year: 2014
  ident: ref_20
  article-title: Surface defect detection in tiling Industries using digital image processing methods: Analysis and evaluation
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2013.11.015
– volume: 24
  start-page: 332
  year: 2014
  ident: ref_27
  article-title: Control of thermal solar energy plants
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.09.026
– volume: 81
  start-page: 313
  year: 2018
  ident: ref_5
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.06.004
– volume: 30
  start-page: 1649
  year: 2005
  ident: ref_39
  article-title: A server database system for remote monitoring and operational evaluation of renewable energy sources plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2004.11.019
– volume: 79
  start-page: 137
  year: 2018
  ident: ref_25
  article-title: Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.05.002
– volume: 94
  start-page: 106
  year: 2010
  ident: ref_31
  article-title: Detection and analysis of hot-spot formation in solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.09.016
– volume: 29
  start-page: e2771
  year: 2019
  ident: ref_36
  article-title: Fault Detection in Trackers for PV Systems Based on a Pattern Recognition Approach
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2771
– volume: 38
  start-page: 11911
  year: 2011
  ident: ref_43
  article-title: Power Quality Disturbances Classification Using the 3-D Space Representation and PCA based Neuro-Fuzzy Approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.083
– volume: 14
  start-page: 3798
  year: 2021
  ident: ref_15
  article-title: Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output?
  publication-title: Energies
  doi: 10.3390/en14133798
– volume: 9
  start-page: 3875
  year: 2009
  ident: ref_7
  article-title: Sun tracking systems: A review
  publication-title: Sensors
  doi: 10.3390/s90503875
– ident: ref_4
  doi: 10.1109/ISGTEUROPE.2010.5638902
SSID ssj0000331333
Score 2.4188385
Snippet Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7278
SubjectTerms Algorithms
Alternative energy sources
Efficiency
Energy resources
fault detection
Fault diagnosis
image processing
Photovoltaic cells
photovoltaic systems (pv)
Power plants
principal component analysis (PCA)
Renewable resources
Sensors
Solar energy
Sun
tracking system
two-axis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61gUM5tOVREQqVJbhwWGGvvd7dU5VQovYSRRUCbit77FCksIFk4ffj2TgBqYgLV6-1D489r535PoAjIQW6zJbJWBc6Ubk1iUXNE8JKC-4uqU3ekk3kw2FxdVWOYsJtHssqlzqxVdRuipQjPwluuubB-qv05919QqxR9Hc1Umh8hDVCKlMdWOufDUd_V1kWLmUIwuQCl1SG-P7E10IRKRPxqr2wRC1g_3_6uDUygy_vfb2v8Dm6l6y32A-b8MHXW7DxAnRwGy4H5mHSsF--aauwanZTs9EFC0YLKW3OIoY5a4sJmKnZn9ugc1jsKKCx3uQ6PLr5d8v6wQY6Fu4xOu3twPng7Pz0dxLpFRIMC9EkRrrcYJGpXAuXGZ9y6zMbHIjSeZ-XjhelSK2g3llnBOZKmcypbDx2OksNl9-gU09rvwtMUodtYWUqjVVaCqMkcswsR6-Cxii6cLxc6Qoj9DgxYEyqEIKQVKpnqXThcDX3bgG48eqsPglsNYNAstuB6ey6imeuQsl9-DTUhdFKqOD6IB-jcdJZUyiBXdhfyrKKJ3dePQty7-3L3-FTSvUtbV_iPnSa2YM_gHV8bG7msx9xIz4BhLLlmQ
  priority: 102
  providerName: ProQuest
Title Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA
URI https://www.proquest.com/docview/2596032442
https://doaj.org/article/c30e61dc68a6414190c0fcad3dba841c
Volume 14
WOSCitedRecordID wos000719231800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIpCQZZgYYiwY8dJxhZawUAVoQrKFPlVqNSmqE0Z-e2cnQCVQGJhyXCy8riL77uz7r5D6Jwyqk2k0mAoEhHwWMlAaUECx5UG4a5zm8QPm4h7vWQwSLOlUV-uJqyiB64Ud6kZsYIaLRIpOOWAX5oMtTTMKJlwqp33hahnKZnyPpgxSL5YxUfKIK-_tAXlbhiTm6e2hECeqP-HH_bg0t1GW3VUiFvV2-ygFVvsos0lrsA99NiVi3GJr23pi6cKPCpw9oABa7Q77cY19Tj2NQBYFvh2Aq4C140ATtYaP09no_JlgtsAXQbDPbKr1j7qdzv9q5ugnooQaPiOMpDMxFInEY9BLZG0IVE2UoD7qbE2Tg1JUhoq6lpejaQ65lxGhkfDoRFRKAk7QKvFtLCHCDPXGJsoFjKpuGBUcqaJjhTRlsNGTxro4lNRua4Zw93ginEOmYNTav6t1AY6-1r7WvFk_Lqq7fT9tcJxW3sBWDyvLZ7_ZfEGan5aK6833DyHLE4QCA55ePQfzzhGG6ErXvFNh020Ws4W9gSt67dyNJ-dorV2p5fdn_p_Dq537x2QZbd32dMH4B7baQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4BuxUMAScOAQ1Y7txDkgtG1ZddV2lcMKysny15ZK22zZTUH8KP4j42yyrQTi1gPXxHLi-OWNx56ZB_CGcea8tEUyzVSWiNyaxLqMJrFWGi53I23SRmwiH4_V8XFRbsCvLhcmhlV2nNgQtZ-7uEe-jcv0jKL1F-mH829JVI2Kp6udhMYKFgfh5w902ZbvR3s4v2_TdPhxsruftKoCiUP_vk4M97lxSgp04L00IaU2SIt2s_Ah5IWnqmCpZTFl1BvmciGM9EJOpz6TqaEcu70Bm_geUvVgsxwdlV_WmzqUc_T5-KoMKsfHbYeKiagBFWXcrhi-Rh_gD_pvbNrw3n_2Ne7D3XbxTAYrtD-AjVA9hDtXSio-gs9DczGryV6omxizipxWpPxE0CS7eChA2grtpAmVIKYiozNkVNLmS8Rrg9kJjrT-ekZ20MJ7gn2Uu4PHMLmOgT2BXjWvwlMgPOYPK8tTbqzIODOCO-qkpS4I5EPVh3fdxGrXFlaP-h4zjQ5WBIG-BEEfXq_bnq_Kify11U7Ex7pFLAHeXJgvTnTLKNpxGnBoLlMmE0zgws7RqTOee2uUYK4PWx10dMtLS32Jm2f_vv0Kbu1Pjg714Wh88BxupzGSp8nA3IJevbgIL-Cm-16fLhcv23-AgL5mnP0GolpBww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFiF6KK8iAgUsAQcOq9hr7-uAqrQhIipEe6ignCy_tlRKN22yBfHT-u863njTSiBuPXD1Wra8_jwPe2Y-gLeMM2MTXURVmqeRyLSKtElp5GulobnrxSZtySayySQ_OirKNbjscmF8WGUnE1tBbWfG35H30UxPKWp_EferEBZRDke7Z-eRZ5DyL60dncYSIgfu9y903xYfxkPc63dxPPp4uP8pCgwDkUFfv4kUt5kyeSLQmbeJcjHVLtGoQwvrXFZYmhcs1synj1rFTCaESqxIqsqmSawox2HvwAZa5AKP2EY5_lJ-X13wUM7R_-PLkqgcp-u7mgnPB-Up3W4owZYr4A9V0Oq30YP_-M88hK1gVJPB8hQ8gjVXP4bNG6UWn8C3kbqYNmTomjb2rCYnNSm_ElTVxj8WkFC5nbQhFETVZHyKkpaEPArfNpge40qbH6dkDzW_JThGuT_YhsPbWNhTWK9ntXsGhPu84lzzmCstUs6U4IaaRFPjBMrJvAfvu02WJhRc97wfU4mOlweEvAZED96s-p4ty4z8tdeex8qqhy8N3jbM5scySBppOHW4NJPmKhVMoMFnaGWU5VarXDDTg50ORjLIq4W8xtDzf39-DfcQXPLzeHLwAu7HPsCnTczcgfVmfuFewl3zszlZzF-F40BA3jLMrgAbykqD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+in+PV+Tracking+Systems+Using+an+Image+Processing+Algorithm+Based+on+PCA&rft.jtitle=Energies+%28Basel%29&rft.au=Amaral%2C+Tito+G.&rft.au=Pires%2C+Vitor+Fern%C3%A3o&rft.au=Pires%2C+Armando+J.&rft.date=2021-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=21&rft.spage=7278&rft_id=info:doi/10.3390%2Fen14217278&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14217278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon