Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA
Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faul...
Saved in:
| Published in: | Energies (Basel) Vol. 14; no. 21; p. 7278 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2021
|
| Subjects: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faults, which can compromise the desired perpendicular position between the PV modules and the brightest point in the sky. So, the diagnosis of a fault in the trackers is fundamental to ensure the maximum energy production. Approaches based on sensors and statistical methods have been researched but they are expensive and time consuming. To overcome these problems, a new method is proposed for the fault diagnosis in the trackers of the PV systems based on a machine learning approach. In this type of approach the developed method can be classified into two major categories: supervised and unsupervised. In accordance with this, to implement the desired fault diagnosis, an unsupervised method based on a new image processing algorithm to determine the PV slopes is proposed. The fault detection is obtained comparing the slopes of several modules. This algorithm is based on a new image processing approach in which principal component analysis (PCA) is used. Instead of using the PCA to reduce the data dimension, as is usual, it is proposed to use it to determine the slope of an object. The use of the proposed approach presents several benefits, namely, avoiding the use of a wide range of data and specific sensors, fast detection and reliability even with incomplete images due to reflections and other problems. Based on this algorithm, a deviation index is also proposed that will be used to discriminate the panel(s) under fault. Several test cases are used to test and validate the proposed approach. From the obtained results, it is possible to verify that the PCA can successfully be adapted and used in image processing algorithms to determine the slope of the PV modules and so effectively detect a fault in the tracker, even when there are incomplete parts of an object in the image. |
|---|---|
| AbstractList | Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faults, which can compromise the desired perpendicular position between the PV modules and the brightest point in the sky. So, the diagnosis of a fault in the trackers is fundamental to ensure the maximum energy production. Approaches based on sensors and statistical methods have been researched but they are expensive and time consuming. To overcome these problems, a new method is proposed for the fault diagnosis in the trackers of the PV systems based on a machine learning approach. In this type of approach the developed method can be classified into two major categories: supervised and unsupervised. In accordance with this, to implement the desired fault diagnosis, an unsupervised method based on a new image processing algorithm to determine the PV slopes is proposed. The fault detection is obtained comparing the slopes of several modules. This algorithm is based on a new image processing approach in which principal component analysis (PCA) is used. Instead of using the PCA to reduce the data dimension, as is usual, it is proposed to use it to determine the slope of an object. The use of the proposed approach presents several benefits, namely, avoiding the use of a wide range of data and specific sensors, fast detection and reliability even with incomplete images due to reflections and other problems. Based on this algorithm, a deviation index is also proposed that will be used to discriminate the panel(s) under fault. Several test cases are used to test and validate the proposed approach. From the obtained results, it is possible to verify that the PCA can successfully be adapted and used in image processing algorithms to determine the slope of the PV modules and so effectively detect a fault in the tracker, even when there are incomplete parts of an object in the image. |
| Author | Amaral, Tito G. Pires, Armando J. Pires, Vitor Fernão |
| Author_xml | – sequence: 1 givenname: Tito G. surname: Amaral fullname: Amaral, Tito G. – sequence: 2 givenname: Vitor Fernão orcidid: 0000-0002-3764-0955 surname: Pires fullname: Pires, Vitor Fernão – sequence: 3 givenname: Armando J. orcidid: 0000-0003-0061-9455 surname: Pires fullname: Pires, Armando J. |
| BookMark | eNptUU1LAzEQDaLgVy_-goA3oZpssh851mq1IFiw6jFMk9maut1okh78925bURHnMh-8efOYd0h2W98iISecnQuh2AW2XGa8zMpqhxxwpYo-Z6XY_VXvk16MC9aFEFwIcUCeR7BqEr3ChCY531LX0skTnQYwr66d04ePmHAZ6WNcd9DS8RLmSCfBG4yb2aCZ--DSy5JeQkRLO47JcHBM9mpoIva-8hGZjq6nw9v-3f3NeDi465tOceqDsCWYKpdlwW0OmLEZ5rOcKWURS2VZpXg240wKZYGbUkrIrczr2hZ5BkwckfGW1npY6LfglhA-tAenNwMf5hpCcqZBbQTD7ogpKigkl1wxw2oDVtgZVJKbjut0y_UW_PsKY9ILvwptp15nuSqYyKTMOtTZFmWCjzFg_X2VM722Qf_Y0IHZH7BxCdZ_TgFc89_KJ7GxieM |
| CitedBy_id | crossref_primary_10_3390_en16114378 crossref_primary_10_3390_min12091112 crossref_primary_10_1007_s00170_024_14413_x crossref_primary_10_3390_s25030843 crossref_primary_10_3390_electronics12214397 crossref_primary_10_3390_en15217978 crossref_primary_10_3390_electronics14091860 crossref_primary_10_3390_en15155388 crossref_primary_10_1088_1742_6596_3065_1_012038 crossref_primary_10_1016_j_solener_2025_113546 crossref_primary_10_1016_j_solener_2025_113623 crossref_primary_10_1016_j_engappai_2024_109068 crossref_primary_10_3390_info14040230 crossref_primary_10_1016_j_energy_2022_126605 crossref_primary_10_1177_03019233251356194 crossref_primary_10_1016_j_knosys_2024_112882 crossref_primary_10_3390_en15051751 crossref_primary_10_1109_JPHOTOV_2024_3450009 crossref_primary_10_3390_en15031101 crossref_primary_10_1109_JPHOTOV_2024_3364811 crossref_primary_10_59730_rer_v12n55a5 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_3390_en15238845 crossref_primary_10_1016_j_solener_2025_113633 crossref_primary_10_1016_j_solener_2023_112245 crossref_primary_10_3390_en17020404 crossref_primary_10_1051_itmconf_20224403065 crossref_primary_10_3390_en15218102 |
| Cites_doi | 10.1016/S0031-3203(98)00103-4 10.1016/j.patrec.2010.09.010 10.1109/PVSC.2011.6185877 10.1007/s10668-007-9123-2 10.1016/j.isatra.2009.10.005 10.1016/j.apenergy.2020.114647 10.3390/en14133951 10.1016/j.rser.2018.05.027 10.1016/j.rser.2018.11.012 10.3390/pr8101278 10.3390/app9163392 10.4324/9781315459653 10.1016/j.infrared.2017.04.015 10.1109/SIBGRAPI.2007.9 10.3390/s130505448 10.1016/j.rser.2009.01.022 10.1016/j.isatra.2017.03.019 10.1016/j.energy.2017.02.001 10.1002/pip.800 10.7815/ijorcs.21.2011.011 10.1016/j.rser.2018.03.094 10.1016/j.isatra.2019.11.008 10.1016/j.rser.2017.03.131 10.3390/en12071220 10.1016/j.solener.2016.09.009 10.1021/ac302528v 10.1016/j.solener.2003.12.006 10.1109/TSMC.1979.4310076 10.1016/j.solener.2013.10.020 10.1007/978-1-4757-1904-8 10.1109/TEC.2016.2629514 10.1016/S0169-7161(82)02015-X 10.1016/j.isatra.2020.08.019 10.1109/TSTE.2018.2801625 10.1080/14786451.2013.826223 10.1002/pip.925 10.1016/j.compag.2009.01.003 10.1016/j.isatra.2013.11.015 10.1016/j.jprocont.2013.09.026 10.1016/j.isatra.2018.06.004 10.1016/j.renene.2004.11.019 10.1016/j.isatra.2018.05.002 10.1016/j.solmat.2009.09.016 10.1002/etep.2771 10.1016/j.eswa.2011.03.083 10.3390/en14133798 10.3390/s90503875 10.1109/ISGTEUROPE.2010.5638902 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en14217278 |
| DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_c30e61dc68a6414190c0fcad3dba841c 10_3390_en14217278 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c390t-a3d7ac854761d5ae20be5b5099dee79d08912b10439da1c744a5d45ffd652a03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719231800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 18:09:31 EDT 2025 Mon Jun 30 07:30:27 EDT 2025 Tue Nov 18 21:13:38 EST 2025 Sat Nov 29 07:14:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-a3d7ac854761d5ae20be5b5099dee79d08912b10439da1c744a5d45ffd652a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3764-0955 0000-0003-0061-9455 |
| OpenAccessLink | https://doaj.org/article/c30e61dc68a6414190c0fcad3dba841c |
| PQID | 2596032442 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c30e61dc68a6414190c0fcad3dba841c proquest_journals_2596032442 crossref_primary_10_3390_en14217278 crossref_citationtrail_10_3390_en14217278 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hafez (ref_10) 2018; 91 ref_50 ref_12 ref_11 ref_51 ref_19 (ref_30) 2018; 93 Fathabadi (ref_13) 2016; 138 ref_16 Pandit (ref_47) 2011; 2 Wang (ref_41) 2018; 9 Venkateswari (ref_3) 2019; 101 Deabes (ref_23) 2010; 49 Moore (ref_37) 2008; 16 Race (ref_48) 2013; 85 Mousazadeh (ref_8) 2019; 13 Jaffery (ref_34) 2017; 83 Martins (ref_22) 2011; 32 Oozeki (ref_38) 2010; 18 Camacho (ref_27) 2014; 24 Lee (ref_33) 2013; 13 Camargo (ref_17) 2009; 66 Zhang (ref_5) 2018; 81 ref_28 Amaral (ref_36) 2019; 29 Malayil (ref_18) 2021; 108 Asokan (ref_21) 2020; 100 Simon (ref_31) 2010; 94 Papadakis (ref_39) 2005; 30 Rohlf (ref_46) 1982; Volume 2 Mahmoud (ref_32) 2017; 32 Zhang (ref_42) 2017; 68 Pires (ref_43) 2011; 38 Hafez (ref_6) 2017; 77 Tsanakas (ref_35) 2015; 34 Hajihosseini (ref_25) 2018; 79 Karimi (ref_20) 2014; 53 Khatun (ref_49) 2009; 11 Chu (ref_29) 2013; 98 ref_45 Iftikhar (ref_15) 2021; 14 ref_40 ref_1 ref_2 Berenguel (ref_26) 2004; 76 Zhu (ref_9) 2019; 264 Lee (ref_7) 2009; 9 Kim (ref_24) 1999; 32 Sidek (ref_14) 2017; 124 Otsu (ref_44) 1978; 9 ref_4 |
| References_xml | – volume: 32 start-page: 565 year: 1999 ident: ref_24 article-title: Visual inspection system for the classification of solder joints publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(98)00103-4 – volume: 32 start-page: 321 year: 2011 ident: ref_22 article-title: Induction motor fault detection and diagnosis using a current state space pattern recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.09.010 – ident: ref_28 doi: 10.1109/PVSC.2011.6185877 – volume: 11 start-page: 439 year: 2009 ident: ref_49 article-title: Measuring environmental degradation by using principal component analysis publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-007-9123-2 – volume: 49 start-page: 10 year: 2010 ident: ref_23 article-title: A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography publication-title: ISA Trans. doi: 10.1016/j.isatra.2009.10.005 – ident: ref_16 – volume: 264 start-page: 114647 year: 2019 ident: ref_9 article-title: Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114647 – ident: ref_40 doi: 10.3390/en14133951 – volume: 93 start-page: 566 year: 2018 ident: ref_30 article-title: Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.05.027 – volume: 101 start-page: 376 year: 2019 ident: ref_3 article-title: Factors influencing the efficiency of photovoltaic system publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.11.012 – ident: ref_12 doi: 10.3390/pr8101278 – ident: ref_11 doi: 10.3390/app9163392 – ident: ref_1 doi: 10.4324/9781315459653 – volume: 83 start-page: 182 year: 2017 ident: ref_34 article-title: Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.04.015 – ident: ref_19 doi: 10.1109/SIBGRAPI.2007.9 – volume: 13 start-page: 5448 year: 2013 ident: ref_33 article-title: The Development of Sun-Tracking System Using Image Processing publication-title: Sensors doi: 10.3390/s130505448 – volume: 13 start-page: 1800 year: 2019 ident: ref_8 article-title: A review of principle and sun-tracking methods for maximizing solar systems output publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.01.022 – volume: 68 start-page: 313 year: 2017 ident: ref_42 article-title: Fault detection of feed water treatment process using PCA-WD with parameter optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.03.019 – ident: ref_45 – volume: 124 start-page: 160 year: 2017 ident: ref_14 article-title: Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control publication-title: Energy doi: 10.1016/j.energy.2017.02.001 – volume: 16 start-page: 249 year: 2008 ident: ref_37 article-title: Five years of operating experience at a large, utility-scale photovoltaic generating plant publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.800 – volume: 2 start-page: 29 year: 2011 ident: ref_47 article-title: A comparative study on distance measuring approaches for clustering publication-title: Int. J. Res. Comput. Sci. doi: 10.7815/ijorcs.21.2011.011 – volume: 91 start-page: 754 year: 2018 ident: ref_10 article-title: Solar tracking systems: Technologies and trackers drive types—A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.094 – volume: 100 start-page: 308 year: 2020 ident: ref_21 article-title: Adaptive Cuckoo Search based optimal bilateral filtering for denoising of satellite images publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.11.008 – volume: 77 start-page: 147 year: 2017 ident: ref_6 article-title: Tilt and azimuth angles in solar energy applications—A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.131 – ident: ref_2 doi: 10.3390/en12071220 – volume: 138 start-page: 67 year: 2016 ident: ref_13 article-title: Comparative study between two novel sensorless and sensor based dual-axis solar trackers publication-title: Sol. Energy doi: 10.1016/j.solener.2016.09.009 – volume: 85 start-page: 3071 year: 2013 ident: ref_48 article-title: Memory Efficient Principal Component Analysis for the Dimensionality Reduction of Large Mass Spectrometry Imaging Data Sets publication-title: Anal. Chem. doi: 10.1021/ac302528v – volume: 76 start-page: 523 year: 2004 ident: ref_26 article-title: An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant publication-title: Sol. Energy doi: 10.1016/j.solener.2003.12.006 – volume: 9 start-page: 62 year: 1978 ident: ref_44 article-title: A threshold selection method from gray-level histogram publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 98 start-page: 592 year: 2013 ident: ref_29 article-title: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning publication-title: Sol. Energy doi: 10.1016/j.solener.2013.10.020 – ident: ref_51 doi: 10.1007/978-1-4757-1904-8 – volume: 32 start-page: 213 year: 2017 ident: ref_32 article-title: A Novel MPPT Technique Based on an Image of PV Modules publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2016.2629514 – volume: Volume 2 start-page: 267 year: 1982 ident: ref_46 article-title: 12 Single-link clustering algorithms publication-title: Handbook of Statistics doi: 10.1016/S0169-7161(82)02015-X – volume: 108 start-page: 269 year: 2021 ident: ref_18 article-title: A novel image scaling based reversible watermarking scheme for secure medical image transmission publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.08.019 – volume: 9 start-page: 1627 year: 2018 ident: ref_41 article-title: Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2801625 – volume: 34 start-page: 351 year: 2015 ident: ref_35 article-title: Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements publication-title: Int. J. Sustain. Energy doi: 10.1080/14786451.2013.826223 – volume: 18 start-page: 363 year: 2010 ident: ref_38 article-title: An analysis of reliability in the early stages of photovoltaic systems in japan publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.925 – volume: 66 start-page: 121 year: 2009 ident: ref_17 article-title: Image pattern classification for the identification of disease causing agents in plants publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2009.01.003 – ident: ref_50 – volume: 53 start-page: 834 year: 2014 ident: ref_20 article-title: Surface defect detection in tiling Industries using digital image processing methods: Analysis and evaluation publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.11.015 – volume: 24 start-page: 332 year: 2014 ident: ref_27 article-title: Control of thermal solar energy plants publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.09.026 – volume: 81 start-page: 313 year: 2018 ident: ref_5 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.06.004 – volume: 30 start-page: 1649 year: 2005 ident: ref_39 article-title: A server database system for remote monitoring and operational evaluation of renewable energy sources plants publication-title: Renew. Energy doi: 10.1016/j.renene.2004.11.019 – volume: 79 start-page: 137 year: 2018 ident: ref_25 article-title: Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.05.002 – volume: 94 start-page: 106 year: 2010 ident: ref_31 article-title: Detection and analysis of hot-spot formation in solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.09.016 – volume: 29 start-page: e2771 year: 2019 ident: ref_36 article-title: Fault Detection in Trackers for PV Systems Based on a Pattern Recognition Approach publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2771 – volume: 38 start-page: 11911 year: 2011 ident: ref_43 article-title: Power Quality Disturbances Classification Using the 3-D Space Representation and PCA based Neuro-Fuzzy Approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.083 – volume: 14 start-page: 3798 year: 2021 ident: ref_15 article-title: Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output? publication-title: Energies doi: 10.3390/en14133798 – volume: 9 start-page: 3875 year: 2009 ident: ref_7 article-title: Sun tracking systems: A review publication-title: Sensors doi: 10.3390/s90503875 – ident: ref_4 doi: 10.1109/ISGTEUROPE.2010.5638902 |
| SSID | ssj0000331333 |
| Score | 2.4188385 |
| Snippet | Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 7278 |
| SubjectTerms | Algorithms Alternative energy sources Efficiency Energy resources fault detection Fault diagnosis image processing Photovoltaic cells photovoltaic systems (pv) Power plants principal component analysis (PCA) Renewable resources Sensors Solar energy Sun tracking system two-axis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61gUM5tOVREQqVJbhwWGGvvd7dU5VQovYSRRUCbit77FCksIFk4ffj2TgBqYgLV6-1D489r535PoAjIQW6zJbJWBc6Ubk1iUXNE8JKC-4uqU3ekk3kw2FxdVWOYsJtHssqlzqxVdRuipQjPwluuubB-qv05919QqxR9Hc1Umh8hDVCKlMdWOufDUd_V1kWLmUIwuQCl1SG-P7E10IRKRPxqr2wRC1g_3_6uDUygy_vfb2v8Dm6l6y32A-b8MHXW7DxAnRwGy4H5mHSsF--aauwanZTs9EFC0YLKW3OIoY5a4sJmKnZn9ugc1jsKKCx3uQ6PLr5d8v6wQY6Fu4xOu3twPng7Pz0dxLpFRIMC9EkRrrcYJGpXAuXGZ9y6zMbHIjSeZ-XjhelSK2g3llnBOZKmcypbDx2OksNl9-gU09rvwtMUodtYWUqjVVaCqMkcswsR6-Cxii6cLxc6Qoj9DgxYEyqEIKQVKpnqXThcDX3bgG48eqsPglsNYNAstuB6ey6imeuQsl9-DTUhdFKqOD6IB-jcdJZUyiBXdhfyrKKJ3dePQty7-3L3-FTSvUtbV_iPnSa2YM_gHV8bG7msx9xIz4BhLLlmQ priority: 102 providerName: ProQuest |
| Title | Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA |
| URI | https://www.proquest.com/docview/2596032442 https://doaj.org/article/c30e61dc68a6414190c0fcad3dba841c |
| Volume | 14 |
| WOSCitedRecordID | wos000719231800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIpCQZZgYYiwY8dJxhZawUAVoQrKFPlVqNSmqE0Z-e2cnQCVQGJhyXCy8riL77uz7r5D6Jwyqk2k0mAoEhHwWMlAaUECx5UG4a5zm8QPm4h7vWQwSLOlUV-uJqyiB64Ud6kZsYIaLRIpOOWAX5oMtTTMKJlwqp33hahnKZnyPpgxSL5YxUfKIK-_tAXlbhiTm6e2hECeqP-HH_bg0t1GW3VUiFvV2-ygFVvsos0lrsA99NiVi3GJr23pi6cKPCpw9oABa7Q77cY19Tj2NQBYFvh2Aq4C140ATtYaP09no_JlgtsAXQbDPbKr1j7qdzv9q5ugnooQaPiOMpDMxFInEY9BLZG0IVE2UoD7qbE2Tg1JUhoq6lpejaQ65lxGhkfDoRFRKAk7QKvFtLCHCDPXGJsoFjKpuGBUcqaJjhTRlsNGTxro4lNRua4Zw93ginEOmYNTav6t1AY6-1r7WvFk_Lqq7fT9tcJxW3sBWDyvLZ7_ZfEGan5aK6833DyHLE4QCA55ePQfzzhGG6ErXvFNh020Ws4W9gSt67dyNJ-dorV2p5fdn_p_Dq537x2QZbd32dMH4B7baQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4BuxUMAScOAQ1Y7txDkgtG1ZddV2lcMKysny15ZK22zZTUH8KP4j42yyrQTi1gPXxHLi-OWNx56ZB_CGcea8tEUyzVSWiNyaxLqMJrFWGi53I23SRmwiH4_V8XFRbsCvLhcmhlV2nNgQtZ-7uEe-jcv0jKL1F-mH829JVI2Kp6udhMYKFgfh5w902ZbvR3s4v2_TdPhxsruftKoCiUP_vk4M97lxSgp04L00IaU2SIt2s_Ah5IWnqmCpZTFl1BvmciGM9EJOpz6TqaEcu70Bm_geUvVgsxwdlV_WmzqUc_T5-KoMKsfHbYeKiagBFWXcrhi-Rh_gD_pvbNrw3n_2Ne7D3XbxTAYrtD-AjVA9hDtXSio-gs9DczGryV6omxizipxWpPxE0CS7eChA2grtpAmVIKYiozNkVNLmS8Rrg9kJjrT-ekZ20MJ7gn2Uu4PHMLmOgT2BXjWvwlMgPOYPK8tTbqzIODOCO-qkpS4I5EPVh3fdxGrXFlaP-h4zjQ5WBIG-BEEfXq_bnq_Kify11U7Ex7pFLAHeXJgvTnTLKNpxGnBoLlMmE0zgws7RqTOee2uUYK4PWx10dMtLS32Jm2f_vv0Kbu1Pjg714Wh88BxupzGSp8nA3IJevbgIL-Cm-16fLhcv23-AgL5mnP0GolpBww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFiF6KK8iAgUsAQcOq9hr7-uAqrQhIipEe6ignCy_tlRKN22yBfHT-u863njTSiBuPXD1Wra8_jwPe2Y-gLeMM2MTXURVmqeRyLSKtElp5GulobnrxSZtySayySQ_OirKNbjscmF8WGUnE1tBbWfG35H30UxPKWp_EferEBZRDke7Z-eRZ5DyL60dncYSIgfu9y903xYfxkPc63dxPPp4uP8pCgwDkUFfv4kUt5kyeSLQmbeJcjHVLtGoQwvrXFZYmhcs1synj1rFTCaESqxIqsqmSawox2HvwAZa5AKP2EY5_lJ-X13wUM7R_-PLkqgcp-u7mgnPB-Up3W4owZYr4A9V0Oq30YP_-M88hK1gVJPB8hQ8gjVXP4bNG6UWn8C3kbqYNmTomjb2rCYnNSm_ElTVxj8WkFC5nbQhFETVZHyKkpaEPArfNpge40qbH6dkDzW_JThGuT_YhsPbWNhTWK9ntXsGhPu84lzzmCstUs6U4IaaRFPjBMrJvAfvu02WJhRc97wfU4mOlweEvAZED96s-p4ty4z8tdeex8qqhy8N3jbM5scySBppOHW4NJPmKhVMoMFnaGWU5VarXDDTg50ORjLIq4W8xtDzf39-DfcQXPLzeHLwAu7HPsCnTczcgfVmfuFewl3zszlZzF-F40BA3jLMrgAbykqD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+in+PV+Tracking+Systems+Using+an+Image+Processing+Algorithm+Based+on+PCA&rft.jtitle=Energies+%28Basel%29&rft.au=Amaral%2C+Tito+G.&rft.au=Pires%2C+Vitor+Fern%C3%A3o&rft.au=Pires%2C+Armando+J.&rft.date=2021-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=21&rft.spage=7278&rft_id=info:doi/10.3390%2Fen14217278&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14217278 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |