Rethinking the Competition Between Detection and ReID in Multiobject Tracking

Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked beca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 31; pp. 3182 - 3196
Main Authors: Liang, Chao, Zhang, Zhipeng, Zhou, Xue, Li, Bing, Zhu, Shuyuan, Hu, Weiming
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS
AbstractList Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS.Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS.
Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS
Author Hu, Weiming
Liang, Chao
Zhu, Shuyuan
Zhang, Zhipeng
Li, Bing
Zhou, Xue
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0003-4707-5774
  surname: Liang
  fullname: Liang, Chao
  email: 201921060415@std.uestc.edu.cn
  organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Zhipeng
  orcidid: 0000-0003-0479-332X
  surname: Zhang
  fullname: Zhang, Zhipeng
  email: zhangzhipeng2017@ia.ac.cn
  organization: National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
– sequence: 3
  givenname: Xue
  orcidid: 0000-0003-1654-2157
  surname: Zhou
  fullname: Zhou, Xue
  email: zhouxue@uestc.edu.cn
  organization: School of Automation Engineering, Shenzhen Institute of Advanced Study, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 4
  givenname: Bing
  orcidid: 0000-0002-5888-6735
  surname: Li
  fullname: Li, Bing
  organization: National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
– sequence: 5
  givenname: Shuyuan
  orcidid: 0000-0003-4450-3868
  surname: Zhu
  fullname: Zhu, Shuyuan
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 6
  givenname: Weiming
  orcidid: 0000-0001-9237-8825
  surname: Hu
  fullname: Hu, Weiming
  organization: National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China
BookMark eNp9kLtPAzEMxiNURMtjR2I5iYXlSpxXmxHKqxIIhMp8SnMOTbnmyl0qxH9PjiIGBrzYsn-fZX_7pBfqgIQcAx0CUH0-mz4NGWVsyEFJPlI7ZABaQE6pYL1UUznKRyB0n-y37ZJSEBLUHulzKYDpMRuQh2eMCx_efHjN4gKzSb1aY_TR1yG7xPiBGLIrjGi_OyaU2TNOrzIfsodNlXrzZRpls8bYbsUh2XWmavHoJx-Ql5vr2eQuv3-8nU4u7nPLNY25RhTOIUMjtCgNc-XccJhTLplitnSAIJl01qLmAoVyWlDUDqA0jjoL_ICcbfeum_p9g20sVr61WFUmYL1pC6aE7kKME3r6B13Wmyak6xIl5ViKsaSJUlvKNnXbNugK66Ppfo6N8VUBtOgML5LhRWd48WN4EtI_wnXjV6b5_E9yspV4RPzF9UgqxhX_AsHDi2k
CODEN IIPRE4
CitedBy_id crossref_primary_10_1117_1_JEI_32_5_053007
crossref_primary_10_1016_j_neucom_2025_130182
crossref_primary_10_1007_s40747_024_01474_4
crossref_primary_10_1007_s11554_024_01513_w
crossref_primary_10_1016_j_eswa_2025_126846
crossref_primary_10_1002_cav_2272
crossref_primary_10_1016_j_cviu_2024_103973
crossref_primary_10_1109_TMM_2024_3394683
crossref_primary_10_1109_TII_2024_3366983
crossref_primary_10_3390_s23187938
crossref_primary_10_1109_TGRS_2023_3276357
crossref_primary_10_1016_j_compeleceng_2024_109078
crossref_primary_10_1109_ACCESS_2024_3362673
crossref_primary_10_1109_TCSVT_2023_3275813
crossref_primary_10_1016_j_neucom_2024_128420
crossref_primary_10_1186_s13634_024_01144_0
crossref_primary_10_1109_TITS_2023_3315222
crossref_primary_10_3390_s23208439
crossref_primary_10_26599_BDMA_2025_9020024
crossref_primary_10_1016_j_patcog_2024_110785
crossref_primary_10_1016_j_eswa_2025_128359
crossref_primary_10_1109_TMM_2023_3240881
crossref_primary_10_3390_rs16010070
crossref_primary_10_1007_s11263_024_02237_x
crossref_primary_10_1016_j_compag_2025_110377
crossref_primary_10_3390_app15179727
crossref_primary_10_1093_bib_bbae591
crossref_primary_10_1109_TCSVT_2023_3245607
crossref_primary_10_3390_s22155863
crossref_primary_10_1007_s11227_025_07381_w
crossref_primary_10_1049_cvi2_70010
crossref_primary_10_1007_s11263_024_02176_7
crossref_primary_10_1016_j_aap_2025_108105
crossref_primary_10_1016_j_imavis_2024_105303
crossref_primary_10_3390_rs17122042
crossref_primary_10_1007_s11760_024_03715_y
crossref_primary_10_1016_j_knosys_2024_111369
crossref_primary_10_3390_app142311098
crossref_primary_10_1109_JSTARS_2023_3289293
crossref_primary_10_1109_TIP_2025_3592524
crossref_primary_10_3390_rs16173347
crossref_primary_10_1016_j_engappai_2022_105770
crossref_primary_10_1016_j_inffus_2025_103349
crossref_primary_10_1109_TCSVT_2023_3263884
crossref_primary_10_3390_s24010229
crossref_primary_10_1016_j_compmedimag_2022_102175
crossref_primary_10_1016_j_measurement_2025_118009
crossref_primary_10_1016_j_asoc_2024_111860
crossref_primary_10_1016_j_neucom_2024_127635
crossref_primary_10_1007_s11263_025_02407_5
crossref_primary_10_1109_TCSVT_2024_3524670
crossref_primary_10_1007_s11760_025_04240_2
crossref_primary_10_1007_s40747_022_00946_9
crossref_primary_10_3390_s22145267
crossref_primary_10_1007_s00521_022_08079_3
crossref_primary_10_1016_j_aap_2024_107847
crossref_primary_10_1109_TASE_2025_3529283
crossref_primary_10_1109_JIOT_2025_3585134
crossref_primary_10_1109_JSEN_2024_3522021
crossref_primary_10_1016_j_imavis_2025_105695
crossref_primary_10_1109_TIM_2024_3449952
crossref_primary_10_1109_TSP_2024_3472068
crossref_primary_10_1016_j_knosys_2024_111859
crossref_primary_10_1109_TCE_2025_3541839
crossref_primary_10_54097_2efrm195
crossref_primary_10_1016_j_patcog_2024_110369
crossref_primary_10_1109_TITS_2024_3437645
crossref_primary_10_1080_23311916_2025_2532808
crossref_primary_10_1007_s00530_025_01722_8
crossref_primary_10_1007_s11760_025_04748_7
crossref_primary_10_1007_s11227_025_07466_6
crossref_primary_10_3390_s24186015
crossref_primary_10_1109_TGRS_2025_3539462
crossref_primary_10_1109_ACCESS_2024_3411617
crossref_primary_10_1109_TCSVT_2022_3218880
crossref_primary_10_1007_s00371_023_02901_2
crossref_primary_10_1109_TIP_2025_3526066
crossref_primary_10_3390_app15020736
crossref_primary_10_3390_ani15111543
crossref_primary_10_1145_3626825
crossref_primary_10_1016_j_fmre_2023_02_003
crossref_primary_10_1016_j_knosys_2025_114072
crossref_primary_10_1016_j_neucom_2025_129563
crossref_primary_10_1109_LSP_2023_3329419
crossref_primary_10_1109_TGRS_2024_3416326
crossref_primary_10_1016_j_eswa_2024_123581
crossref_primary_10_1007_s11042_024_20360_2
crossref_primary_10_1007_s11042_023_17983_2
crossref_primary_10_1016_j_measurement_2024_116205
crossref_primary_10_1016_j_neucom_2023_03_068
crossref_primary_10_3390_app13010440
crossref_primary_10_1007_s11227_025_07664_2
crossref_primary_10_1007_s11554_024_01514_9
crossref_primary_10_1016_j_image_2023_117099
crossref_primary_10_1109_TPAMI_2025_3529926
crossref_primary_10_1007_s42979_024_02922_1
crossref_primary_10_1109_TIP_2024_3494600
crossref_primary_10_1109_LSP_2022_3191549
crossref_primary_10_1109_TCSVT_2024_3478758
crossref_primary_10_1016_j_compmedimag_2024_102439
crossref_primary_10_3390_s23094546
crossref_primary_10_1016_j_compeleceng_2024_109392
crossref_primary_10_1016_j_knosys_2024_112760
crossref_primary_10_1109_JSEN_2024_3435856
crossref_primary_10_1109_ACCESS_2024_3432156
crossref_primary_10_3389_fmars_2022_1071618
crossref_primary_10_1016_j_knosys_2024_112528
crossref_primary_10_1007_s40747_023_01273_3
crossref_primary_10_1109_LSP_2023_3236262
crossref_primary_10_1109_TITS_2024_3360875
crossref_primary_10_3390_w17142111
crossref_primary_10_1007_s13042_024_02182_8
crossref_primary_10_1016_j_neucom_2024_128906
crossref_primary_10_1088_1361_6501_ad5c8b
crossref_primary_10_1109_ACCESS_2025_3596684
crossref_primary_10_3390_s22228693
crossref_primary_10_1109_JIOT_2023_3242739
crossref_primary_10_1016_j_knosys_2024_112130
crossref_primary_10_1016_j_compag_2024_109161
crossref_primary_10_1016_j_neunet_2023_09_047
crossref_primary_10_1109_TCSVT_2023_3249162
crossref_primary_10_1109_TNNLS_2024_3384446
crossref_primary_10_1007_s00371_023_02983_y
crossref_primary_10_1109_TCSVT_2024_3392939
crossref_primary_10_3389_fpls_2022_1003243
crossref_primary_10_1016_j_ijtst_2025_05_007
crossref_primary_10_1109_TCSVT_2023_3238716
crossref_primary_10_1109_TITS_2025_3565334
crossref_primary_10_1002_rob_22279
crossref_primary_10_1007_s40747_024_01475_3
crossref_primary_10_1016_j_inffus_2024_102496
crossref_primary_10_1109_TMM_2025_3557710
crossref_primary_10_1111_mice_13461
crossref_primary_10_1007_s00521_025_11518_6
crossref_primary_10_1007_s10489_023_04617_1
crossref_primary_10_1109_TMM_2023_3256761
crossref_primary_10_1007_s00371_025_03872_2
crossref_primary_10_1109_JSEN_2025_3558588
crossref_primary_10_1109_TITS_2023_3316691
crossref_primary_10_1109_ACCESS_2025_3551672
crossref_primary_10_1007_s11227_022_04776_x
crossref_primary_10_1016_j_imavis_2024_104964
crossref_primary_10_1016_j_jvcir_2022_103750
crossref_primary_10_1007_s10489_024_06037_1
crossref_primary_10_1109_TMM_2023_3323852
crossref_primary_10_1109_TCSVT_2024_3404275
crossref_primary_10_1109_TIP_2023_3298538
crossref_primary_10_1007_s10586_024_05059_1
crossref_primary_10_1109_ACCESS_2025_3586901
crossref_primary_10_1007_s00371_025_03861_5
crossref_primary_10_1109_TCSVT_2023_3339609
crossref_primary_10_1109_TC_2023_3343102
crossref_primary_10_1016_j_knosys_2024_112075
crossref_primary_10_1016_j_neucom_2024_127328
crossref_primary_10_1016_j_neucom_2022_09_045
crossref_primary_10_1016_j_engappai_2024_108882
crossref_primary_10_3390_s25175325
crossref_primary_10_1007_s00530_025_01694_9
crossref_primary_10_1117_1_JEI_31_6_063025
crossref_primary_10_1109_LSP_2024_3371331
crossref_primary_10_3390_app13179528
crossref_primary_10_3390_app15010107
crossref_primary_10_1016_j_neucom_2025_130988
crossref_primary_10_1177_09544070251370923
Cites_doi 10.1109/TPAMI.2009.167
10.1109/CVPR42600.2020.01468
10.1109/CVPR.2009.5206735
10.1109/CVPR.2009.5206631
10.1007/978-3-319-10602-1_48
10.1016/j.patcog.2020.107480
10.1155/2008/246309
10.1109/CVPR.2017.357
10.1109/TMM.2019.2958756
10.1109/ICIP.2016.7533003
10.1109/CVPR.2017.474
10.1007/978-3-319-48881-3_3
10.1109/ICPR.2018.8545450
10.1109/ICCV.2019.00103
10.1007/978-3-319-48881-3_2
10.1007/978-3-030-01234-2_1
10.1016/j.artint.2020.103448
10.1109/CVPR.2018.00077
10.1109/ICIP.2017.8296962
10.1007/s11042-018-6467-6
10.1109/CVPR42600.2020.00634
10.1109/WACV.2018.00057
10.1007/978-3-030-58548-8_9
10.1109/ICCV.2017.324
10.1609/aaai.v34i07.6999
10.1109/CVPR.2017.360
10.1007/978-3-030-58621-8_7
10.5244/C.30.87
10.1109/CVPR.2008.4587581
10.1109/AVSS.2017.8078516
10.1109/WACV.2019.00023
10.1145/3394171.3416297
10.1109/CVPR42600.2020.00628
10.1109/CVPR.2016.234
10.1109/CVPR.2017.106
10.1007/978-3-030-58548-8_28
10.1109/TPAMI.2016.2577031
10.1109/ICCV.2019.00409
10.1109/TNNLS.2020.2997006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3165376
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3196
ExternalDocumentID 10_1109_TIP_2022_3165376
9756236
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2020YJ0036
  funderid: 10.13039/100012542
– fundername: Natural Science Foundation of China
  grantid: 61972071; U20A20184
  funderid: 10.13039/501100001809
– fundername: Open Project Program of the National Laboratory of Pattern Recognition
  grantid: 201900014
  funderid: 10.13039/501100011222
– fundername: Research Program of Zhejiang Laboratory
  grantid: 2019KDAB02
– fundername: Intelligent Terminal Key Laboratory of Sichuan Province
  grantid: SCITLAB-1005
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-9ee4ffe2ea494da2fdba31b035262cdf1e1525fcce934e46f940e9f11daf0fc13
IEDL.DBID RIE
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794186400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 21:46:51 EDT 2025
Mon Jun 30 10:11:17 EDT 2025
Sat Nov 29 03:21:16 EST 2025
Tue Nov 18 22:21:56 EST 2025
Wed Aug 27 02:40:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-9ee4ffe2ea494da2fdba31b035262cdf1e1525fcce934e46f940e9f11daf0fc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9237-8825
0000-0002-5888-6735
0000-0003-0479-332X
0000-0003-4450-3868
0000-0003-1654-2157
0000-0003-4707-5774
PMID 35412982
PQID 2655854850
PQPubID 85429
PageCount 15
ParticipantIDs ieee_primary_9756236
crossref_citationtrail_10_1109_TIP_2022_3165376
crossref_primary_10_1109_TIP_2022_3165376
proquest_journals_2655854850
proquest_miscellaneous_2649999948
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Zhang (ref10) 2020
Shao (ref35) 2018
Vaswani (ref26) 2017
Zhou (ref21) 2019
ref24
Lin (ref46) 2020
ref23
Milan (ref33) 2016
ref45
Dendorfer (ref37) 2020
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Redmon (ref19) 2018
ref40
References_xml – ident: ref16
  doi: 10.1109/TPAMI.2009.167
– ident: ref9
  doi: 10.1109/CVPR42600.2020.01468
– ident: ref40
  doi: 10.1109/CVPR.2009.5206735
– ident: ref32
  doi: 10.1109/CVPR.2009.5206631
– ident: ref36
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref44
  doi: 10.1016/j.patcog.2020.107480
– ident: ref38
  doi: 10.1155/2008/246309
– ident: ref34
  doi: 10.1109/CVPR.2017.357
– ident: ref6
  doi: 10.1109/TMM.2019.2958756
– ident: ref12
  doi: 10.1109/ICIP.2016.7533003
– ident: ref31
  doi: 10.1109/CVPR.2017.474
– ident: ref3
  doi: 10.1007/978-3-319-48881-3_3
– volume-title: arXiv:2003.09003
  year: 2020
  ident: ref37
  article-title: MOT20: A benchmark for multi object tracking in crowded scenes
– ident: ref4
  doi: 10.1109/ICPR.2018.8545450
– ident: ref24
  doi: 10.1109/ICCV.2019.00103
– volume-title: arXiv:1805.00123
  year: 2018
  ident: ref35
  article-title: CrowdHuman: A benchmark for detecting human in a crowd
– ident: ref39
  doi: 10.1007/978-3-319-48881-3_2
– ident: ref28
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref1
  doi: 10.1016/j.artint.2020.103448
– ident: ref27
  doi: 10.1109/CVPR.2018.00077
– ident: ref2
  doi: 10.1109/ICIP.2017.8296962
– ident: ref42
  doi: 10.1007/s11042-018-6467-6
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00634
– volume-title: arXiv:1706.03762
  year: 2017
  ident: ref26
  article-title: Attention is all you need
– ident: ref5
  doi: 10.1109/WACV.2018.00057
– ident: ref22
  doi: 10.1007/978-3-030-58548-8_9
– volume-title: arXiv:1603.00831
  year: 2016
  ident: ref33
  article-title: MOT16: A benchmark for multi-object tracking
– ident: ref20
  doi: 10.1109/ICCV.2017.324
– ident: ref29
  doi: 10.1609/aaai.v34i07.6999
– ident: ref7
  doi: 10.1109/CVPR.2017.360
– ident: ref8
  doi: 10.1007/978-3-030-58621-8_7
– ident: ref47
  doi: 10.5244/C.30.87
– ident: ref30
  doi: 10.1109/CVPR.2008.4587581
– ident: ref13
  doi: 10.1109/AVSS.2017.8078516
– ident: ref41
  doi: 10.1109/WACV.2019.00023
– volume-title: arXiv:2004.01888
  year: 2020
  ident: ref10
  article-title: FairMOT: On the fairness of detection and re-identification in multiple object tracking
– volume-title: arXiv:1804.02767
  year: 2018
  ident: ref19
  article-title: YOLOv3: An incremental improvement
– volume-title: arXiv:1904.07850
  year: 2019
  ident: ref21
  article-title: Objects as points
– ident: ref45
  doi: 10.1145/3394171.3416297
– ident: ref18
  doi: 10.1109/CVPR42600.2020.00628
– ident: ref15
  doi: 10.1109/CVPR.2016.234
– ident: ref11
  doi: 10.1109/CVPR.2017.106
– ident: ref25
  doi: 10.1007/978-3-030-58548-8_28
– ident: ref14
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref17
  doi: 10.1109/ICCV.2019.00409
– ident: ref43
  doi: 10.1109/TNNLS.2020.2997006
– volume-title: arXiv:2005.04490
  year: 2020
  ident: ref46
  article-title: Human in events: A large-scale benchmark for human-centric video analysis in complex events
SSID ssj0014516
Score 2.715429
Snippet Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3182
SubjectTerms Bells
Competition
Computational modeling
Detectors
Feature extraction
ID embedding
Misalignment
Multiobject tracking
Multiple target tracking
Object detection
one-shot
reciprocal representation learning
Representations
scale-aware attention
Semantics
Target tracking
Task analysis
Title Rethinking the Competition Between Detection and ReID in Multiobject Tracking
URI https://ieeexplore.ieee.org/document/9756236
https://www.proquest.com/docview/2655854850
https://www.proquest.com/docview/2649999948
Volume 31
WOSCitedRecordID wos000794186400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5UpOhDbbXFs1a20JdC00s2m83uY9WKQisiFu4t7I9ZFEpOvJx_vzubXGipFPoWyGYTdmYyMzuz3wfwsapL5SrMM-tQZoJzkxmHRBlGSCASa-UTuv73-vJSzWb6ag0-j2dhEDE1n-EXuky1fD93S9oqm-qavLVch_W6lv1ZrbFiQISzqbJZ1Vkdw_5VSTLX05uLq5gIch7zU0noJVvwoqxEdHSK_-GNEr3KX__k5GjOdv7vE1_ByyGgZF97DXgNa9juws4QXLLBdBe7sP0b8uAe_LjG7ranTWAxBGQnKXxO7VvsuG_dYqfYpT6tlpnWs2u8OGV3LUsndueWtm9YdHSOpngDP8--3ZycZwOzQuZKnXeZRhQhIEcjtPCGB29NWVjCRpXc-VAg0SIF51CXAoUMWuSoQ1F4E_LgivItbLTzFveB6TJXmksbrAnCWGdQVR4L5DF049bbCUxXK9y4AXac2C9-NSn9yHUTxdOQeJpBPBP4ND5x30Nu_GPsHslgHDcs_wQOV0JsBptcNFxWMTcSqson8GG8Ha2JSiSmxfmSxlAGqLVQB8_P_A626P39JswhbHQPS3wPm-6xu1s8HEXFnKmjpJhPTvDeQg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFW0frLZKr7YawRfB9bLZ7Ece7Rc9vB6lnNC3JR8TLMie9Pb8-5vJ7i2KIvRtYbMhZDI7M5mZ3w_gQ15mlc2RJ8ZikUghdKItEmUYIYEUWFYuoutPy9msurlRVxvwaeiFQcRYfIaf6THm8t3CruiqbKxKstbFI3icSyl416015AyIcjbmNvMyKYPjv05KcjWeT65CKChEiFALwi_ZgqdZLoOpq8Qf9igSrPz1V46m5nznYYt8Ac97l5J96c7AS9jAZhd2eveS9cq73IXt37AH9-DyGtvvHXECC04gO4kOdCzgYsdd8RY7xTZWajVMN45d4-SU3TYs9uwuDF3gsGDqLE3xCr6dn81PLpKeWyGxmeJtohCl9yhQSyWdFt4ZnaWG0FELYZ1PkYiRvLWoMomy8EpyVD5Nnfbc2zR7DZvNosF9YCrjlRKF8UZ7qY3VWOUOUxTBeRPGmRGM1ztc2x54nPgvftQxAOGqDuKpSTx1L54RfBy--NmBbvxn7B7JYBjXb_8IDtdCrHutXNaiyEN0JKucj-D98DroEyVJdIOLFY2hGFApWR38e-Z38Oxifjmtp5PZ1zewRWvprmQOYbO9W-ERPLG_2tvl3dt4PO8Bx1jgoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+the+Competition+Between+Detection+and+ReID+in+Multiobject+Tracking&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Liang%2C+Chao&rft.au=Zhang%2C+Zhipeng&rft.au=Zhou%2C+Xue&rft.au=Li%2C+Bing&rft.date=2022&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=31&rft.spage=3182&rft.epage=3196&rft_id=info:doi/10.1109%2FTIP.2022.3165376&rft_id=info%3Apmid%2F35412982&rft.externalDocID=9756236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon