Neural network assisted branch and bound algorithm for dynamic berth allocation problems
One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation proble...
Uložené v:
| Vydané v: | European journal of operational research Ročník 319; číslo 2; s. 531 - 542 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2024
|
| Predmet: | |
| ISSN: | 0377-2217 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation problem is to determine the allocation of each vessel to a berth and the berthing time that minimizes the total service time. This problem can be solved using exact solution methods such as branch and bound (BB) algorithms or heuristic methods, however, exact methods do not scale to large-scale terminal operations. To this end, this paper proposes a BB algorithm in which branching decisions are made with a deep neural network. The proposed exact algorithm utilizes the search order of nodes based on the output of the neural network, with the goal of speeding up the search. Three types of solution representations are compared, along with machine learning models are created for each of them. Computational results confirm the effectiveness of the proposed method, which leads to computation times that are on average around half of those without the neural network.
•A B&B with deep neural network is proposed for dynamic berth allocation problems.•Three solution representations are compared along with machine learning models.•The CPU time is reduced on average around half of those without the neural network. |
|---|---|
| AbstractList | One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation problem is to determine the allocation of each vessel to a berth and the berthing time that minimizes the total service time. This problem can be solved using exact solution methods such as branch and bound (BB) algorithms or heuristic methods, however, exact methods do not scale to large-scale terminal operations. To this end, this paper proposes a BB algorithm in which branching decisions are made with a deep neural network. The proposed exact algorithm utilizes the search order of nodes based on the output of the neural network, with the goal of speeding up the search. Three types of solution representations are compared, along with machine learning models are created for each of them. Computational results confirm the effectiveness of the proposed method, which leads to computation times that are on average around half of those without the neural network.
•A B&B with deep neural network is proposed for dynamic berth allocation problems.•Three solution representations are compared along with machine learning models.•The CPU time is reduced on average around half of those without the neural network. |
| Author | Korekane, Shinya Nishi, Tatsushi Tierney, Kevin Liu, Ziang |
| Author_xml | – sequence: 1 givenname: Shinya surname: Korekane fullname: Korekane, Shinya organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan – sequence: 2 givenname: Tatsushi orcidid: 0000-0003-1354-3939 surname: Nishi fullname: Nishi, Tatsushi email: nishi.tatsushi@okayama-u.ac.jp organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan – sequence: 3 givenname: Kevin orcidid: 0000-0002-5931-4907 surname: Tierney fullname: Tierney, Kevin organization: Decision and Operation Technologies Group, Bielefeld University, Universitätstraße 25, Bielefeld, Germany – sequence: 4 givenname: Ziang orcidid: 0000-0002-1364-3502 surname: Liu fullname: Liu, Ziang organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan |
| BookMark | eNp9kDtPwzAQgD0UibbwB5j8BxJs5-FEYkEVL6mCBSQ2y48LdUnsynZB_fcklImhN9zdcN_p7lugmfMOELqiJKeE1tfbHLY-5IywMid1TkoyQ3NScJ4xRvk5WsS4JYTQilZz9P4M-yB77CB9-_CJZYw2JjBYBen0Bks3tn4_Ztl_-GDTZsCdD9gcnBysxgpCGqf63muZrHd4F7zqYYgX6KyTfYTLv7pEb_d3r6vHbP3y8LS6XWe6aEnK2qbjhpWVYdIQKnmngfFWQsspQDVF1_DOGKUbTnVtdFkzpWXJuJZFoVSxROy4VwcfY4BO7IIdZDgISsTkQ2zF5ENMPgSpxehjhJp_kLbp9_4UpO1PozdHFManviwEEbUFp8HYADoJ4-0p_AfpqoLE |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2025_07_043 crossref_primary_10_1016_j_oceaneng_2025_121321 crossref_primary_10_1016_j_trb_2025_103317 crossref_primary_10_1016_j_asoc_2025_113740 crossref_primary_10_1016_j_ocecoaman_2024_107529 crossref_primary_10_3390_math13172744 crossref_primary_10_1016_j_oceaneng_2025_120744 crossref_primary_10_1016_j_oceaneng_2025_120843 crossref_primary_10_3390_jmse12091567 crossref_primary_10_1287_inte_2024_0161 |
| Cites_doi | 10.1007/s10489-020-02062-y 10.1287/trsc.1050.0120 10.1016/j.cor.2019.104781 10.1016/j.cor.2016.01.002 10.1287/ijoc.2016.0723 10.1016/j.eswa.2011.11.072 10.1016/j.ejor.2022.08.042 10.1016/j.ejor.2019.03.036 10.1007/s10479-017-2715-9 10.1016/S0191-2615(99)00057-0 10.1016/j.ejor.2020.07.063 10.1016/j.apm.2016.08.017 10.1016/S0191-2615(02)00023-1 10.1007/s00291-003-0157-z 10.1016/j.engappai.2012.06.001 10.1016/j.tre.2010.11.016 10.3390/app12199472 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2024.06.040 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EndPage | 542 |
| ExternalDocumentID | 10_1016_j_ejor_2024_06_040 S0377221724005204 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c390t-98f7d245d2ad01a7fce279ae971ee55555f87fddbc871c6dc462bca427ca33bb3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296175600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Tue Nov 18 22:51:10 EST 2025 Sat Nov 29 05:34:57 EST 2025 Sat Sep 28 16:09:07 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Branch and bound Dynamic berth allocation problem Neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c390t-98f7d245d2ad01a7fce279ae971ee55555f87fddbc871c6dc462bca427ca33bb3 |
| ORCID | 0000-0002-1364-3502 0000-0003-1354-3939 0000-0002-5931-4907 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2024_06_040 crossref_citationtrail_10_1016_j_ejor_2024_06_040 elsevier_sciencedirect_doi_10_1016_j_ejor_2024_06_040 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mauri, Ribeiro, Lorena, Laporte (b25) 2016; 70 Vinyals, Fortunato, Jaitly (b33) 2015; 28 Kool, van Hoof, Gromicho, Welling (b20) 2022; vol. 13292 Nishi, Okura, Lalla-Ruiz, Voß (b26) 2020; 286 Oliveira, Mauri, Lorena (b27) 2012; 39 Kramer, Lalla-Ruiz, Iori, Voß (b23) 2019; 278 Imai, Nishimura, Papadimitriou (b17) 2003; 37 Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In Imai, Nishimura, Papadimitriou (b16) 2001; 35 Prencipe, Marinelli (b28) 2021; 51 Bengio, Lodi, Prouvost (b3) 2021; 290 Guo, Vanhoucke, Coelho (b11) 2023 Choo, Kwon, Kim, Jae, Hottung, Tierney (b5) 2022 Buhrkal, Zuglian, Ropke, Larsen, Lusby (b4) 2011; 47 de Oliveira, Cariou (b7) 2015; 78 United Nations Conference on Trade and Development (b32) 2022 Korekane, Nishi (b22) 2021; 2021 Togo, Asamuna, Nishi, Liu (b31) 2022; 12 Cordeau, Laporte, Legato, Moccia (b6) 2005; 39-4 (pp. 315–323). Alvarez, Louveaux, Wehenkel (b1) 2014 Hansen, Oğuz (b12) 2003 Hottung, A., Kwon, Y., & Tierney, K. (2021). Efficient Active Search for Combinatorial Optimization Problems. In Lalla-Ruiz, Melian, Moreno-Vega (b24) 2012; 25 . Şahin, Kuvvetli (b29) 2016; 40 Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Khalil, Bodic, Song, Nemhauser, Dilkina (b18) 2016; 2016 Kingma, Ba (b19) 2014 Steenken, Voß, Stahlbock (b30) 2004; 26 Hottung, Tanaka, Tierney (b14) 2020; 113 Hottung, Tierney (b15) 2020; 325 Alvarez, Louveaux, Wehenkel (b2) 2017; 29 Grinsztajn, Furelos-Blanco, Barrett (b10) 2022 Gasse, Chételat, Ferroni, Charlin, Lodi (b8) 2019; 32 Alvarez (10.1016/j.ejor.2024.06.040_b1) 2014 Hansen (10.1016/j.ejor.2024.06.040_b12) 2003 Hottung (10.1016/j.ejor.2024.06.040_b14) 2020; 113 Gasse (10.1016/j.ejor.2024.06.040_b8) 2019; 32 Kramer (10.1016/j.ejor.2024.06.040_b23) 2019; 278 Buhrkal (10.1016/j.ejor.2024.06.040_b4) 2011; 47 10.1016/j.ejor.2024.06.040_b13 Nishi (10.1016/j.ejor.2024.06.040_b26) 2020; 286 Mauri (10.1016/j.ejor.2024.06.040_b25) 2016; 70 Hottung (10.1016/j.ejor.2024.06.040_b15) 2020; 325 Korekane (10.1016/j.ejor.2024.06.040_b22) 2021; 2021 Vinyals (10.1016/j.ejor.2024.06.040_b33) 2015; 28 Kingma (10.1016/j.ejor.2024.06.040_b19) 2014 Şahin (10.1016/j.ejor.2024.06.040_b29) 2016; 40 Grinsztajn (10.1016/j.ejor.2024.06.040_b10) 2022 Oliveira (10.1016/j.ejor.2024.06.040_b27) 2012; 39 Imai (10.1016/j.ejor.2024.06.040_b16) 2001; 35 United Nations Conference on Trade and Development (10.1016/j.ejor.2024.06.040_b32) 2022 Kool (10.1016/j.ejor.2024.06.040_b20) 2022; vol. 13292 Lalla-Ruiz (10.1016/j.ejor.2024.06.040_b24) 2012; 25 de Oliveira (10.1016/j.ejor.2024.06.040_b7) 2015; 78 10.1016/j.ejor.2024.06.040_b9 Togo (10.1016/j.ejor.2024.06.040_b31) 2022; 12 Guo (10.1016/j.ejor.2024.06.040_b11) 2023 Imai (10.1016/j.ejor.2024.06.040_b17) 2003; 37 Prencipe (10.1016/j.ejor.2024.06.040_b28) 2021; 51 Steenken (10.1016/j.ejor.2024.06.040_b30) 2004; 26 10.1016/j.ejor.2024.06.040_b21 Choo (10.1016/j.ejor.2024.06.040_b5) 2022 Alvarez (10.1016/j.ejor.2024.06.040_b2) 2017; 29 Bengio (10.1016/j.ejor.2024.06.040_b3) 2021; 290 Cordeau (10.1016/j.ejor.2024.06.040_b6) 2005; 39-4 Khalil (10.1016/j.ejor.2024.06.040_b18) 2016; 2016 |
| References_xml | – volume: 39 start-page: 5499 year: 2012 end-page: 5505 ident: b27 article-title: Clustering search for the berth allocation problem publication-title: Expert Systems with Applications – reference: (pp. 315–323). – volume: 78 start-page: 124 year: 2015 end-page: 133 ident: b7 article-title: The impact of competition on container port (in)efficiency publication-title: Transportation Research Part A – volume: vol. 13292 start-page: 190 year: 2022 end-page: 213 ident: b20 article-title: Deep policy dynamic programming for vehicle routing problems publication-title: Integration of constraint programming, artificial intelligence, and operations research: 19th international conference – volume: 2016 start-page: 724 year: 2016 end-page: 731 ident: b18 article-title: Learning to branch in mixed integer programming publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 40 start-page: 10679 year: 2016 end-page: 10688 ident: b29 article-title: Differential evolution based meta-heuristic algorithm for dynamic continuous berth allocation problem publication-title: Applied Mathematical Modelling – volume: 29 start-page: 185 year: 2017 end-page: 195 ident: b2 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS Journal on Computing – start-page: 579 year: 2023 end-page: 595 ident: b11 article-title: A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem publication-title: European Journal of Operational Research – volume: 25 start-page: 1132 year: 2012 end-page: 1141 ident: b24 article-title: Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem publication-title: Engineering Applications of Artificial Intelligence – volume: 290 start-page: 405 year: 2021 end-page: 421 ident: b3 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research – year: 2022 ident: b10 article-title: Population-based reinforcement learning for combinatorial optimization – volume: 51 start-page: 4127 year: 2021 end-page: 4142 ident: b28 article-title: A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the bee colony optimisation algorithm publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – reference: Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In – volume: 35 start-page: 401 year: 2001 end-page: 417 ident: b16 article-title: The dynamic berth allocation problem for a container port publication-title: Transportation Research Part B – volume: 47 start-page: 461 year: 2011 end-page: 473 ident: b4 article-title: Models for the discrete berth allocation problem: A computational comparison publication-title: Transportation Research – volume: 39-4 start-page: 526 year: 2005 end-page: 538 ident: b6 article-title: Models and tabu search heuristics for the berth allocation problem publication-title: Transportation Science – volume: 37 start-page: 437 year: 2003 end-page: 457 ident: b17 article-title: Berth allocation with service priority publication-title: Transportation Research Part B – volume: 28 year: 2015 ident: b33 article-title: Pointer networks publication-title: Advances in Neural Information Processing Systems – volume: 70 start-page: 140 year: 2016 end-page: 154 ident: b25 article-title: An adaptive large neighborhood search for the discrete and continuous berth allocation problem publication-title: Computers & Operations Research – volume: 113 year: 2020 ident: b14 article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem publication-title: Computers & Operations Research – volume: 286 start-page: 391 year: 2020 end-page: 410 ident: b26 article-title: A dynamic programming-based matheuristic for the dynamic berth allocation problem publication-title: Annals of Operations Research – year: 2003 ident: b12 article-title: A note on formulations of static and dynamic berth allocation problems – year: 2022 ident: b5 article-title: Simulation-guided beam search for neural combinatorial optimization publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 9472 year: 2022 ident: b31 article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems publication-title: Applied Sciences – volume: 325 start-page: 443 year: 2020 end-page: 450 ident: b15 article-title: Neural large neighborhood search for the capacitated vehicle routing problem publication-title: Artificial Intelligence and Applications – reference: . – reference: Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In – year: 2022 ident: b32 article-title: Container port throughput, annual, 2010–2020 – volume: 32 year: 2019 ident: b8 article-title: Exact combinatorial optimization with graph convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 2021 start-page: 208 year: 2021 end-page: 213 ident: b22 article-title: Neural network assisted branch-and-bound method for dynamic berth allocation problems publication-title: Proceedings of IEEE International Conference on Systems, Man and Cybernetics – year: 2014 ident: b1 article-title: A supervised machine learning approach to variable branching in branch and bound – reference: Hottung, A., Kwon, Y., & Tierney, K. (2021). Efficient Active Search for Combinatorial Optimization Problems. In – volume: 278 start-page: 170 year: 2019 end-page: 185 ident: b23 article-title: Novel formulations and modeling enhancements for the dynamic berth allocation problem publication-title: European Journal of Operational Research – volume: 26 start-page: 3 year: 2004 end-page: 49 ident: b30 article-title: Container terminal operation and operations research - a classification and literature review publication-title: OR Spectrum – year: 2014 ident: b19 article-title: Adam: A method for stochastic optimization publication-title: International conference on learning representations – volume: 78 start-page: 124 year: 2015 ident: 10.1016/j.ejor.2024.06.040_b7 article-title: The impact of competition on container port (in)efficiency publication-title: Transportation Research Part A – year: 2014 ident: 10.1016/j.ejor.2024.06.040_b19 article-title: Adam: A method for stochastic optimization – volume: 2016 start-page: 724 year: 2016 ident: 10.1016/j.ejor.2024.06.040_b18 article-title: Learning to branch in mixed integer programming publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 51 start-page: 4127 issue: 7 year: 2021 ident: 10.1016/j.ejor.2024.06.040_b28 article-title: A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the bee colony optimisation algorithm publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-020-02062-y – year: 2022 ident: 10.1016/j.ejor.2024.06.040_b5 article-title: Simulation-guided beam search for neural combinatorial optimization publication-title: Advances in Neural Information Processing Systems – volume: 39-4 start-page: 526 year: 2005 ident: 10.1016/j.ejor.2024.06.040_b6 article-title: Models and tabu search heuristics for the berth allocation problem publication-title: Transportation Science doi: 10.1287/trsc.1050.0120 – year: 2003 ident: 10.1016/j.ejor.2024.06.040_b12 – volume: 113 year: 2020 ident: 10.1016/j.ejor.2024.06.040_b14 article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2019.104781 – year: 2022 ident: 10.1016/j.ejor.2024.06.040_b32 – volume: 70 start-page: 140 year: 2016 ident: 10.1016/j.ejor.2024.06.040_b25 article-title: An adaptive large neighborhood search for the discrete and continuous berth allocation problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2016.01.002 – ident: 10.1016/j.ejor.2024.06.040_b9 – volume: 29 start-page: 185 issue: 1 year: 2017 ident: 10.1016/j.ejor.2024.06.040_b2 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.2016.0723 – volume: 39 start-page: 5499 year: 2012 ident: 10.1016/j.ejor.2024.06.040_b27 article-title: Clustering search for the berth allocation problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.11.072 – start-page: 579 year: 2023 ident: 10.1016/j.ejor.2024.06.040_b11 article-title: A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2022.08.042 – volume: 32 year: 2019 ident: 10.1016/j.ejor.2024.06.040_b8 article-title: Exact combinatorial optimization with graph convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 278 start-page: 170 issue: 1 year: 2019 ident: 10.1016/j.ejor.2024.06.040_b23 article-title: Novel formulations and modeling enhancements for the dynamic berth allocation problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2019.03.036 – volume: 286 start-page: 391 issue: 1 year: 2020 ident: 10.1016/j.ejor.2024.06.040_b26 article-title: A dynamic programming-based matheuristic for the dynamic berth allocation problem publication-title: Annals of Operations Research doi: 10.1007/s10479-017-2715-9 – volume: 35 start-page: 401 year: 2001 ident: 10.1016/j.ejor.2024.06.040_b16 article-title: The dynamic berth allocation problem for a container port publication-title: Transportation Research Part B doi: 10.1016/S0191-2615(99)00057-0 – volume: 325 start-page: 443 year: 2020 ident: 10.1016/j.ejor.2024.06.040_b15 article-title: Neural large neighborhood search for the capacitated vehicle routing problem publication-title: Artificial Intelligence and Applications – volume: 290 start-page: 405 issue: 2 year: 2021 ident: 10.1016/j.ejor.2024.06.040_b3 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.063 – volume: vol. 13292 start-page: 190 year: 2022 ident: 10.1016/j.ejor.2024.06.040_b20 article-title: Deep policy dynamic programming for vehicle routing problems – volume: 40 start-page: 10679 issue: 23–24 year: 2016 ident: 10.1016/j.ejor.2024.06.040_b29 article-title: Differential evolution based meta-heuristic algorithm for dynamic continuous berth allocation problem publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2016.08.017 – volume: 37 start-page: 437 issue: 5 year: 2003 ident: 10.1016/j.ejor.2024.06.040_b17 article-title: Berth allocation with service priority publication-title: Transportation Research Part B doi: 10.1016/S0191-2615(02)00023-1 – ident: 10.1016/j.ejor.2024.06.040_b21 – volume: 26 start-page: 3 issue: 1 year: 2004 ident: 10.1016/j.ejor.2024.06.040_b30 article-title: Container terminal operation and operations research - a classification and literature review publication-title: OR Spectrum doi: 10.1007/s00291-003-0157-z – volume: 25 start-page: 1132 year: 2012 ident: 10.1016/j.ejor.2024.06.040_b24 article-title: Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2012.06.001 – volume: 2021 start-page: 208 year: 2021 ident: 10.1016/j.ejor.2024.06.040_b22 article-title: Neural network assisted branch-and-bound method for dynamic berth allocation problems publication-title: Proceedings of IEEE International Conference on Systems, Man and Cybernetics – volume: 47 start-page: 461 issue: 4 year: 2011 ident: 10.1016/j.ejor.2024.06.040_b4 article-title: Models for the discrete berth allocation problem: A computational comparison publication-title: Transportation Research doi: 10.1016/j.tre.2010.11.016 – year: 2022 ident: 10.1016/j.ejor.2024.06.040_b10 – year: 2014 ident: 10.1016/j.ejor.2024.06.040_b1 – ident: 10.1016/j.ejor.2024.06.040_b13 – volume: 12 start-page: 9472 issue: 19 year: 2022 ident: 10.1016/j.ejor.2024.06.040_b31 article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems publication-title: Applied Sciences doi: 10.3390/app12199472 – volume: 28 year: 2015 ident: 10.1016/j.ejor.2024.06.040_b33 article-title: Pointer networks publication-title: Advances in Neural Information Processing Systems |
| SSID | ssj0001515 |
| Score | 2.5300493 |
| Snippet | One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 531 |
| SubjectTerms | Branch and bound Dynamic berth allocation problem Neural network |
| Title | Neural network assisted branch and bound algorithm for dynamic berth allocation problems |
| URI | https://dx.doi.org/10.1016/j.ejor.2024.06.040 |
| Volume | 319 |
| WOSCitedRecordID | wos001296175600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001515 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhhA8DCggBgP5gbcqKHGcOHmc0NDGUIXEQH2LHNvZUko6pek0_hn-Vs6_0jDYxB7oQxRZidPmvt6dz3ffIfQmA6sDfrAMokiygKYVC3goeCCIqNKQcREa2sWvH9l0ms1m-afR6KevhblYsKbJLi_z8_8qahgDYevS2VuIu58UBuAchA5HEDsc_0nwmm4D3ntj87sn4BxrSYKfqVto2Dq2UvdSmvDF6bKtu7PvJtVQ2tb0E51oDVcttJEz2HAtZ1bXxvCdPwsDrY8sOgqhPtR8vGzVN5dV-_msbn70xmCqY2AGNLxbreG8DyWAvXaZaMdgvDeZQ_XabKgArE-HIQtCB-kfrlSLsYAQW7Tp1XDsVGc9WA5bpZo4O2Htc2LZuP5Q_TYKMX-r5kvN80qo4WW1XFC_82xfsX99VqJPeJsXeo5Cz1HorD8a3kHbhCU5KP7t_aOD2Yfe1mt30OxTuR_kyrJsBuHVb_J312fgzpw8QjtuHYL3LX4eo5FqxuieL4MYo4e-3Qd22n-MHgy4K5-gmcUZdjjDHmfY4gwDzrDBGe5xhgFn2OEMG5zhDc6wx9lT9OX9wcm7w8C16QhEnIddkGcVk4QmknAZRpxVQhGmOd9ZpFSiP1XGKilLAYtzkUpBU1IKTgkTPI7LMn6Gtpplo54jXKVJlAkVwSJYUFGRLNLbForQkqVJmZe7KPJvsBCOw163UlkU18tuF036e84tg8uNVydeMIXzQa1vWQDObrjvxa2e8hLd3_wv9tBW167VK3RXXHT1qn3tQPYLGhis4A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+assisted+branch+and+bound+algorithm+for+dynamic+berth+allocation+problems&rft.jtitle=European+journal+of+operational+research&rft.au=Korekane%2C+Shinya&rft.au=Nishi%2C+Tatsushi&rft.au=Tierney%2C+Kevin&rft.au=Liu%2C+Ziang&rft.date=2024-12-01&rft.issn=0377-2217&rft.volume=319&rft.issue=2&rft.spage=531&rft.epage=542&rft_id=info:doi/10.1016%2Fj.ejor.2024.06.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2024_06_040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |