Neural network assisted branch and bound algorithm for dynamic berth allocation problems

One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation proble...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 319; číslo 2; s. 531 - 542
Hlavní autori: Korekane, Shinya, Nishi, Tatsushi, Tierney, Kevin, Liu, Ziang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2024
Predmet:
ISSN:0377-2217
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation problem is to determine the allocation of each vessel to a berth and the berthing time that minimizes the total service time. This problem can be solved using exact solution methods such as branch and bound (BB) algorithms or heuristic methods, however, exact methods do not scale to large-scale terminal operations. To this end, this paper proposes a BB algorithm in which branching decisions are made with a deep neural network. The proposed exact algorithm utilizes the search order of nodes based on the output of the neural network, with the goal of speeding up the search. Three types of solution representations are compared, along with machine learning models are created for each of them. Computational results confirm the effectiveness of the proposed method, which leads to computation times that are on average around half of those without the neural network. •A B&B with deep neural network is proposed for dynamic berth allocation problems.•Three solution representations are compared along with machine learning models.•The CPU time is reduced on average around half of those without the neural network.
AbstractList One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal operators to maximize the efficiency of quay usage. Given a set of vessels and a set of berths, the goal of the dynamic berth allocation problem is to determine the allocation of each vessel to a berth and the berthing time that minimizes the total service time. This problem can be solved using exact solution methods such as branch and bound (BB) algorithms or heuristic methods, however, exact methods do not scale to large-scale terminal operations. To this end, this paper proposes a BB algorithm in which branching decisions are made with a deep neural network. The proposed exact algorithm utilizes the search order of nodes based on the output of the neural network, with the goal of speeding up the search. Three types of solution representations are compared, along with machine learning models are created for each of them. Computational results confirm the effectiveness of the proposed method, which leads to computation times that are on average around half of those without the neural network. •A B&B with deep neural network is proposed for dynamic berth allocation problems.•Three solution representations are compared along with machine learning models.•The CPU time is reduced on average around half of those without the neural network.
Author Korekane, Shinya
Nishi, Tatsushi
Tierney, Kevin
Liu, Ziang
Author_xml – sequence: 1
  givenname: Shinya
  surname: Korekane
  fullname: Korekane, Shinya
  organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan
– sequence: 2
  givenname: Tatsushi
  orcidid: 0000-0003-1354-3939
  surname: Nishi
  fullname: Nishi, Tatsushi
  email: nishi.tatsushi@okayama-u.ac.jp
  organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan
– sequence: 3
  givenname: Kevin
  orcidid: 0000-0002-5931-4907
  surname: Tierney
  fullname: Tierney, Kevin
  organization: Decision and Operation Technologies Group, Bielefeld University, Universitätstraße 25, Bielefeld, Germany
– sequence: 4
  givenname: Ziang
  orcidid: 0000-0002-1364-3502
  surname: Liu
  fullname: Liu, Ziang
  organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan
BookMark eNp9kDtPwzAQgD0UibbwB5j8BxJs5-FEYkEVL6mCBSQ2y48LdUnsynZB_fcklImhN9zdcN_p7lugmfMOELqiJKeE1tfbHLY-5IywMid1TkoyQ3NScJ4xRvk5WsS4JYTQilZz9P4M-yB77CB9-_CJZYw2JjBYBen0Bks3tn4_Ztl_-GDTZsCdD9gcnBysxgpCGqf63muZrHd4F7zqYYgX6KyTfYTLv7pEb_d3r6vHbP3y8LS6XWe6aEnK2qbjhpWVYdIQKnmngfFWQsspQDVF1_DOGKUbTnVtdFkzpWXJuJZFoVSxROy4VwcfY4BO7IIdZDgISsTkQ2zF5ENMPgSpxehjhJp_kLbp9_4UpO1PozdHFManviwEEbUFp8HYADoJ4-0p_AfpqoLE
CitedBy_id crossref_primary_10_1016_j_ejor_2025_07_043
crossref_primary_10_1016_j_oceaneng_2025_121321
crossref_primary_10_1016_j_trb_2025_103317
crossref_primary_10_1016_j_asoc_2025_113740
crossref_primary_10_1016_j_ocecoaman_2024_107529
crossref_primary_10_3390_math13172744
crossref_primary_10_1016_j_oceaneng_2025_120744
crossref_primary_10_1016_j_oceaneng_2025_120843
crossref_primary_10_3390_jmse12091567
crossref_primary_10_1287_inte_2024_0161
Cites_doi 10.1007/s10489-020-02062-y
10.1287/trsc.1050.0120
10.1016/j.cor.2019.104781
10.1016/j.cor.2016.01.002
10.1287/ijoc.2016.0723
10.1016/j.eswa.2011.11.072
10.1016/j.ejor.2022.08.042
10.1016/j.ejor.2019.03.036
10.1007/s10479-017-2715-9
10.1016/S0191-2615(99)00057-0
10.1016/j.ejor.2020.07.063
10.1016/j.apm.2016.08.017
10.1016/S0191-2615(02)00023-1
10.1007/s00291-003-0157-z
10.1016/j.engappai.2012.06.001
10.1016/j.tre.2010.11.016
10.3390/app12199472
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2024.06.040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EndPage 542
ExternalDocumentID 10_1016_j_ejor_2024_06_040
S0377221724005204
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
VH1
WUQ
~HD
ID FETCH-LOGICAL-c390t-98f7d245d2ad01a7fce279ae971ee55555f87fddbc871c6dc462bca427ca33bb3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296175600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Nov 18 22:51:10 EST 2025
Sat Nov 29 05:34:57 EST 2025
Sat Sep 28 16:09:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Branch and bound
Dynamic berth allocation problem
Neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-98f7d245d2ad01a7fce279ae971ee55555f87fddbc871c6dc462bca427ca33bb3
ORCID 0000-0002-1364-3502
0000-0003-1354-3939
0000-0002-5931-4907
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ejor_2024_06_040
crossref_citationtrail_10_1016_j_ejor_2024_06_040
elsevier_sciencedirect_doi_10_1016_j_ejor_2024_06_040
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mauri, Ribeiro, Lorena, Laporte (b25) 2016; 70
Vinyals, Fortunato, Jaitly (b33) 2015; 28
Kool, van Hoof, Gromicho, Welling (b20) 2022; vol. 13292
Nishi, Okura, Lalla-Ruiz, Voß (b26) 2020; 286
Oliveira, Mauri, Lorena (b27) 2012; 39
Kramer, Lalla-Ruiz, Iori, Voß (b23) 2019; 278
Imai, Nishimura, Papadimitriou (b17) 2003; 37
Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In
Imai, Nishimura, Papadimitriou (b16) 2001; 35
Prencipe, Marinelli (b28) 2021; 51
Bengio, Lodi, Prouvost (b3) 2021; 290
Guo, Vanhoucke, Coelho (b11) 2023
Choo, Kwon, Kim, Jae, Hottung, Tierney (b5) 2022
Buhrkal, Zuglian, Ropke, Larsen, Lusby (b4) 2011; 47
de Oliveira, Cariou (b7) 2015; 78
United Nations Conference on Trade and Development (b32) 2022
Korekane, Nishi (b22) 2021; 2021
Togo, Asamuna, Nishi, Liu (b31) 2022; 12
Cordeau, Laporte, Legato, Moccia (b6) 2005; 39-4
(pp. 315–323).
Alvarez, Louveaux, Wehenkel (b1) 2014
Hansen, Oğuz (b12) 2003
Hottung, A., Kwon, Y., & Tierney, K. (2021). Efficient Active Search for Combinatorial Optimization Problems. In
Lalla-Ruiz, Melian, Moreno-Vega (b24) 2012; 25
.
Şahin, Kuvvetli (b29) 2016; 40
Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In
Khalil, Bodic, Song, Nemhauser, Dilkina (b18) 2016; 2016
Kingma, Ba (b19) 2014
Steenken, Voß, Stahlbock (b30) 2004; 26
Hottung, Tanaka, Tierney (b14) 2020; 113
Hottung, Tierney (b15) 2020; 325
Alvarez, Louveaux, Wehenkel (b2) 2017; 29
Grinsztajn, Furelos-Blanco, Barrett (b10) 2022
Gasse, Chételat, Ferroni, Charlin, Lodi (b8) 2019; 32
Alvarez (10.1016/j.ejor.2024.06.040_b1) 2014
Hansen (10.1016/j.ejor.2024.06.040_b12) 2003
Hottung (10.1016/j.ejor.2024.06.040_b14) 2020; 113
Gasse (10.1016/j.ejor.2024.06.040_b8) 2019; 32
Kramer (10.1016/j.ejor.2024.06.040_b23) 2019; 278
Buhrkal (10.1016/j.ejor.2024.06.040_b4) 2011; 47
10.1016/j.ejor.2024.06.040_b13
Nishi (10.1016/j.ejor.2024.06.040_b26) 2020; 286
Mauri (10.1016/j.ejor.2024.06.040_b25) 2016; 70
Hottung (10.1016/j.ejor.2024.06.040_b15) 2020; 325
Korekane (10.1016/j.ejor.2024.06.040_b22) 2021; 2021
Vinyals (10.1016/j.ejor.2024.06.040_b33) 2015; 28
Kingma (10.1016/j.ejor.2024.06.040_b19) 2014
Şahin (10.1016/j.ejor.2024.06.040_b29) 2016; 40
Grinsztajn (10.1016/j.ejor.2024.06.040_b10) 2022
Oliveira (10.1016/j.ejor.2024.06.040_b27) 2012; 39
Imai (10.1016/j.ejor.2024.06.040_b16) 2001; 35
United Nations Conference on Trade and Development (10.1016/j.ejor.2024.06.040_b32) 2022
Kool (10.1016/j.ejor.2024.06.040_b20) 2022; vol. 13292
Lalla-Ruiz (10.1016/j.ejor.2024.06.040_b24) 2012; 25
de Oliveira (10.1016/j.ejor.2024.06.040_b7) 2015; 78
10.1016/j.ejor.2024.06.040_b9
Togo (10.1016/j.ejor.2024.06.040_b31) 2022; 12
Guo (10.1016/j.ejor.2024.06.040_b11) 2023
Imai (10.1016/j.ejor.2024.06.040_b17) 2003; 37
Prencipe (10.1016/j.ejor.2024.06.040_b28) 2021; 51
Steenken (10.1016/j.ejor.2024.06.040_b30) 2004; 26
10.1016/j.ejor.2024.06.040_b21
Choo (10.1016/j.ejor.2024.06.040_b5) 2022
Alvarez (10.1016/j.ejor.2024.06.040_b2) 2017; 29
Bengio (10.1016/j.ejor.2024.06.040_b3) 2021; 290
Cordeau (10.1016/j.ejor.2024.06.040_b6) 2005; 39-4
Khalil (10.1016/j.ejor.2024.06.040_b18) 2016; 2016
References_xml – volume: 39
  start-page: 5499
  year: 2012
  end-page: 5505
  ident: b27
  article-title: Clustering search for the berth allocation problem
  publication-title: Expert Systems with Applications
– reference: (pp. 315–323).
– volume: 78
  start-page: 124
  year: 2015
  end-page: 133
  ident: b7
  article-title: The impact of competition on container port (in)efficiency
  publication-title: Transportation Research Part A
– volume: vol. 13292
  start-page: 190
  year: 2022
  end-page: 213
  ident: b20
  article-title: Deep policy dynamic programming for vehicle routing problems
  publication-title: Integration of constraint programming, artificial intelligence, and operations research: 19th international conference
– volume: 2016
  start-page: 724
  year: 2016
  end-page: 731
  ident: b18
  article-title: Learning to branch in mixed integer programming
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 40
  start-page: 10679
  year: 2016
  end-page: 10688
  ident: b29
  article-title: Differential evolution based meta-heuristic algorithm for dynamic continuous berth allocation problem
  publication-title: Applied Mathematical Modelling
– volume: 29
  start-page: 185
  year: 2017
  end-page: 195
  ident: b2
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS Journal on Computing
– start-page: 579
  year: 2023
  end-page: 595
  ident: b11
  article-title: A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem
  publication-title: European Journal of Operational Research
– volume: 25
  start-page: 1132
  year: 2012
  end-page: 1141
  ident: b24
  article-title: Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 290
  start-page: 405
  year: 2021
  end-page: 421
  ident: b3
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
– year: 2022
  ident: b10
  article-title: Population-based reinforcement learning for combinatorial optimization
– volume: 51
  start-page: 4127
  year: 2021
  end-page: 4142
  ident: b28
  article-title: A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the bee colony optimisation algorithm
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– reference: Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In
– volume: 35
  start-page: 401
  year: 2001
  end-page: 417
  ident: b16
  article-title: The dynamic berth allocation problem for a container port
  publication-title: Transportation Research Part B
– volume: 47
  start-page: 461
  year: 2011
  end-page: 473
  ident: b4
  article-title: Models for the discrete berth allocation problem: A computational comparison
  publication-title: Transportation Research
– volume: 39-4
  start-page: 526
  year: 2005
  end-page: 538
  ident: b6
  article-title: Models and tabu search heuristics for the berth allocation problem
  publication-title: Transportation Science
– volume: 37
  start-page: 437
  year: 2003
  end-page: 457
  ident: b17
  article-title: Berth allocation with service priority
  publication-title: Transportation Research Part B
– volume: 28
  year: 2015
  ident: b33
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 70
  start-page: 140
  year: 2016
  end-page: 154
  ident: b25
  article-title: An adaptive large neighborhood search for the discrete and continuous berth allocation problem
  publication-title: Computers & Operations Research
– volume: 113
  year: 2020
  ident: b14
  article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem
  publication-title: Computers & Operations Research
– volume: 286
  start-page: 391
  year: 2020
  end-page: 410
  ident: b26
  article-title: A dynamic programming-based matheuristic for the dynamic berth allocation problem
  publication-title: Annals of Operations Research
– year: 2003
  ident: b12
  article-title: A note on formulations of static and dynamic berth allocation problems
– year: 2022
  ident: b5
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 9472
  year: 2022
  ident: b31
  article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems
  publication-title: Applied Sciences
– volume: 325
  start-page: 443
  year: 2020
  end-page: 450
  ident: b15
  article-title: Neural large neighborhood search for the capacitated vehicle routing problem
  publication-title: Artificial Intelligence and Applications
– reference: .
– reference: Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!. In
– year: 2022
  ident: b32
  article-title: Container port throughput, annual, 2010–2020
– volume: 32
  year: 2019
  ident: b8
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 2021
  start-page: 208
  year: 2021
  end-page: 213
  ident: b22
  article-title: Neural network assisted branch-and-bound method for dynamic berth allocation problems
  publication-title: Proceedings of IEEE International Conference on Systems, Man and Cybernetics
– year: 2014
  ident: b1
  article-title: A supervised machine learning approach to variable branching in branch and bound
– reference: Hottung, A., Kwon, Y., & Tierney, K. (2021). Efficient Active Search for Combinatorial Optimization Problems. In
– volume: 278
  start-page: 170
  year: 2019
  end-page: 185
  ident: b23
  article-title: Novel formulations and modeling enhancements for the dynamic berth allocation problem
  publication-title: European Journal of Operational Research
– volume: 26
  start-page: 3
  year: 2004
  end-page: 49
  ident: b30
  article-title: Container terminal operation and operations research - a classification and literature review
  publication-title: OR Spectrum
– year: 2014
  ident: b19
  article-title: Adam: A method for stochastic optimization
  publication-title: International conference on learning representations
– volume: 78
  start-page: 124
  year: 2015
  ident: 10.1016/j.ejor.2024.06.040_b7
  article-title: The impact of competition on container port (in)efficiency
  publication-title: Transportation Research Part A
– year: 2014
  ident: 10.1016/j.ejor.2024.06.040_b19
  article-title: Adam: A method for stochastic optimization
– volume: 2016
  start-page: 724
  year: 2016
  ident: 10.1016/j.ejor.2024.06.040_b18
  article-title: Learning to branch in mixed integer programming
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 51
  start-page: 4127
  issue: 7
  year: 2021
  ident: 10.1016/j.ejor.2024.06.040_b28
  article-title: A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the bee colony optimisation algorithm
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-020-02062-y
– year: 2022
  ident: 10.1016/j.ejor.2024.06.040_b5
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 39-4
  start-page: 526
  year: 2005
  ident: 10.1016/j.ejor.2024.06.040_b6
  article-title: Models and tabu search heuristics for the berth allocation problem
  publication-title: Transportation Science
  doi: 10.1287/trsc.1050.0120
– year: 2003
  ident: 10.1016/j.ejor.2024.06.040_b12
– volume: 113
  year: 2020
  ident: 10.1016/j.ejor.2024.06.040_b14
  article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2019.104781
– year: 2022
  ident: 10.1016/j.ejor.2024.06.040_b32
– volume: 70
  start-page: 140
  year: 2016
  ident: 10.1016/j.ejor.2024.06.040_b25
  article-title: An adaptive large neighborhood search for the discrete and continuous berth allocation problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.01.002
– ident: 10.1016/j.ejor.2024.06.040_b9
– volume: 29
  start-page: 185
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2024.06.040_b2
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.2016.0723
– volume: 39
  start-page: 5499
  year: 2012
  ident: 10.1016/j.ejor.2024.06.040_b27
  article-title: Clustering search for the berth allocation problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.072
– start-page: 579
  year: 2023
  ident: 10.1016/j.ejor.2024.06.040_b11
  article-title: A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2022.08.042
– volume: 32
  year: 2019
  ident: 10.1016/j.ejor.2024.06.040_b8
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 278
  start-page: 170
  issue: 1
  year: 2019
  ident: 10.1016/j.ejor.2024.06.040_b23
  article-title: Novel formulations and modeling enhancements for the dynamic berth allocation problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.03.036
– volume: 286
  start-page: 391
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2024.06.040_b26
  article-title: A dynamic programming-based matheuristic for the dynamic berth allocation problem
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-017-2715-9
– volume: 35
  start-page: 401
  year: 2001
  ident: 10.1016/j.ejor.2024.06.040_b16
  article-title: The dynamic berth allocation problem for a container port
  publication-title: Transportation Research Part B
  doi: 10.1016/S0191-2615(99)00057-0
– volume: 325
  start-page: 443
  year: 2020
  ident: 10.1016/j.ejor.2024.06.040_b15
  article-title: Neural large neighborhood search for the capacitated vehicle routing problem
  publication-title: Artificial Intelligence and Applications
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  ident: 10.1016/j.ejor.2024.06.040_b3
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.063
– volume: vol. 13292
  start-page: 190
  year: 2022
  ident: 10.1016/j.ejor.2024.06.040_b20
  article-title: Deep policy dynamic programming for vehicle routing problems
– volume: 40
  start-page: 10679
  issue: 23–24
  year: 2016
  ident: 10.1016/j.ejor.2024.06.040_b29
  article-title: Differential evolution based meta-heuristic algorithm for dynamic continuous berth allocation problem
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2016.08.017
– volume: 37
  start-page: 437
  issue: 5
  year: 2003
  ident: 10.1016/j.ejor.2024.06.040_b17
  article-title: Berth allocation with service priority
  publication-title: Transportation Research Part B
  doi: 10.1016/S0191-2615(02)00023-1
– ident: 10.1016/j.ejor.2024.06.040_b21
– volume: 26
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.1016/j.ejor.2024.06.040_b30
  article-title: Container terminal operation and operations research - a classification and literature review
  publication-title: OR Spectrum
  doi: 10.1007/s00291-003-0157-z
– volume: 25
  start-page: 1132
  year: 2012
  ident: 10.1016/j.ejor.2024.06.040_b24
  article-title: Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2012.06.001
– volume: 2021
  start-page: 208
  year: 2021
  ident: 10.1016/j.ejor.2024.06.040_b22
  article-title: Neural network assisted branch-and-bound method for dynamic berth allocation problems
  publication-title: Proceedings of IEEE International Conference on Systems, Man and Cybernetics
– volume: 47
  start-page: 461
  issue: 4
  year: 2011
  ident: 10.1016/j.ejor.2024.06.040_b4
  article-title: Models for the discrete berth allocation problem: A computational comparison
  publication-title: Transportation Research
  doi: 10.1016/j.tre.2010.11.016
– year: 2022
  ident: 10.1016/j.ejor.2024.06.040_b10
– year: 2014
  ident: 10.1016/j.ejor.2024.06.040_b1
– ident: 10.1016/j.ejor.2024.06.040_b13
– volume: 12
  start-page: 9472
  issue: 19
  year: 2022
  ident: 10.1016/j.ejor.2024.06.040_b31
  article-title: Machine learning and inverse optimization for estimation of weighting factors in multi-objective production scheduling problems
  publication-title: Applied Sciences
  doi: 10.3390/app12199472
– volume: 28
  year: 2015
  ident: 10.1016/j.ejor.2024.06.040_b33
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
SSID ssj0001515
Score 2.5300493
Snippet One of the key challenges in maritime operations at container terminals is the need to improve or optimize berth operation schedules, thus allowing terminal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 531
SubjectTerms Branch and bound
Dynamic berth allocation problem
Neural network
Title Neural network assisted branch and bound algorithm for dynamic berth allocation problems
URI https://dx.doi.org/10.1016/j.ejor.2024.06.040
Volume 319
WOSCitedRecordID wos001296175600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001515
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhhA8DCggBgP5gbcqKHGcOHmc0NDGUIXEQH2LHNvZUko6pek0_hn-Vs6_0jDYxB7oQxRZidPmvt6dz3ffIfQmA6sDfrAMokiygKYVC3goeCCIqNKQcREa2sWvH9l0ms1m-afR6KevhblYsKbJLi_z8_8qahgDYevS2VuIu58UBuAchA5HEDsc_0nwmm4D3ntj87sn4BxrSYKfqVto2Dq2UvdSmvDF6bKtu7PvJtVQ2tb0E51oDVcttJEz2HAtZ1bXxvCdPwsDrY8sOgqhPtR8vGzVN5dV-_msbn70xmCqY2AGNLxbreG8DyWAvXaZaMdgvDeZQ_XabKgArE-HIQtCB-kfrlSLsYAQW7Tp1XDsVGc9WA5bpZo4O2Htc2LZuP5Q_TYKMX-r5kvN80qo4WW1XFC_82xfsX99VqJPeJsXeo5Cz1HorD8a3kHbhCU5KP7t_aOD2Yfe1mt30OxTuR_kyrJsBuHVb_J312fgzpw8QjtuHYL3LX4eo5FqxuieL4MYo4e-3Qd22n-MHgy4K5-gmcUZdjjDHmfY4gwDzrDBGe5xhgFn2OEMG5zhDc6wx9lT9OX9wcm7w8C16QhEnIddkGcVk4QmknAZRpxVQhGmOd9ZpFSiP1XGKilLAYtzkUpBU1IKTgkTPI7LMn6Gtpplo54jXKVJlAkVwSJYUFGRLNLbForQkqVJmZe7KPJvsBCOw163UlkU18tuF036e84tg8uNVydeMIXzQa1vWQDObrjvxa2e8hLd3_wv9tBW167VK3RXXHT1qn3tQPYLGhis4A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+assisted+branch+and+bound+algorithm+for+dynamic+berth+allocation+problems&rft.jtitle=European+journal+of+operational+research&rft.au=Korekane%2C+Shinya&rft.au=Nishi%2C+Tatsushi&rft.au=Tierney%2C+Kevin&rft.au=Liu%2C+Ziang&rft.date=2024-12-01&rft.issn=0377-2217&rft.volume=319&rft.issue=2&rft.spage=531&rft.epage=542&rft_id=info:doi/10.1016%2Fj.ejor.2024.06.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2024_06_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon